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ABSTRACT 

To construct pulsed high magnet, with rapid adjustments to large changes in the field strength, it is a mandatory acces-
sory to development a special NMR probes to provide a precise real-time map of the magnetic field. In order to do so, it 
is necessary to understand the variations of the spin transition and susceptibility of NMR samples in a time dependent 
longitudinal field. This work analyzes the effect on the spin transition by a time dependent longitudinal field. For a 1/2 
spin system, we have derived a simple formula for the prediction of the probabilities of occupation of the 1/2 and −1/2 
states in a non-static field. We also calculate the magnetic susceptibility of the water and give an analysis of the effect 
on the magnetic susceptibility in a time dependent longitudinal field and RF frequency. 
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1. Introduction 

Nuclear magnetic resonance (NMR) is a most versatile 
research tool in material science. NMR spectroscopes 
can give detailed information on the atomic scale about 
material properties as a function of temperature, pressure, 
and external fields [1]. One of the weaknesses is that 
NMR is preferably performed in static magnets. How-
ever, there is a growing demand for NMR spectroscopy 
in a non-static field. For example, high magnetic fields 
are beneficial for NMR since high fields boost sensitivity 
and resolution, but the highest fields can only be created 
with pulsed magnets which produce time-dependent 
fields. The motivation to study the NMR spectroscopy in 
non-static magnetic fields is driven not only by the 
higher SNR (Signal-to-Noise Ratio) and chemical shift 
resolution attainable, but also by the desire to study sys-
tems with markedly field-dependent properties which 
may only be observable at changing field strength values. 
On the other hand, as more and more pulsed high field 
magnetic facilities have been built in the world [2-5], 
while the traditional electromagnetic induction method 
for field strength measurement is not reliable since it 
lacks of accurately calibration, there are requires for de-
veloping the probes with the abilities to provide a precise 
real-time map of the magnetic field. Up to now, very few 
people have given feasibility analysis of real-time NMR 
probes in a non-static field. Recently, it has been shown  

that NMR experiments are not only possible, but that the 
broadening of the NMR lines caused by the time de-
pendence of the field (frequency modulation of the signal) 
can be removed from the spectra [6]. The other devel-
opment is the ultra-broadband NMR probe was con-
structed by using the transmission line [7], which makes 
a precise real-time measurement of the magnetic field 
become possible. 

This work has been driven by a project to construct 
pulsed high magnet, with rapid adjustments to large 
changes in the field strength. For this purpose, we will 
development a special NMR probes to provide a precise 
real-time map of the magnetic field. In order to do so, it 
is necessary to understand the variations of the spin tran-
sition and susceptibility of NMR samples in a time de-
pendent longitudinal field. In the pass, most people fo-
cused on the mechanics of the nuclear spin in a static 
field along the z axis and a rotating magnetic field along 
the x axis. Under the circumstances, using the quantum 
mechanics method to describe the motion of the spin, 
transition probability amplitudes can be easily derived. 
When the longitudinal magnetic field changes with time, 
even the bandwidth of the transverse RF field is very 
narrow, the effects of the longitudinal field changing can 
not be ignored. In this paper, for a 1/2 spin system; we 
have derived a simple formula for the prediction of the 
probabilities of occupation of the 1/2 and –1/2 states in a 
non-static field. Another fact could not be ignored is that 
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the NMR signals are dependent on the magnetic moment 
measurement of the samples, which is related to the 
magnetic susceptibility of NMR Samples. When both of 
the transverse RF field and longitudinal field are time 
dependent, the magnetic susceptibility of the NMR sam-
ple is completely unknown. Dynamic magnetic suscepti-
bility is generally expressed as a complex i     . 
The real part of the susceptibility,   changes the in-
ductance of the detecting coil, whereas the imaginary 
part,  , modifies the resistance of the detecting coil. 
However, up to now, very few people have given an 
analysis of this problem. We try to calculate the magnetic 
susceptibility in time dependent longitudinal field and 
transverse RF field, than we try to give an analysis of the 
effect on the magnetic susceptibility in a time dependent 
longitudinal field and RF frequency. 

2. The Nuclear Spin Movement in a 
Non-Static Longitudinal External Field 

In order to give the description of spin in a non-static 
external field, let us consider the simplest case first. We 
now consider the form it takes for a spin of 1/2. First 
look at the most simple situation; there is a static external 
field in the z direction and plus an oscillating field in the 
x direction. The interaction energy between the spin 
magnetic moment and the field is. 

 μ H                      (1) 

where zI   , H  is the external field in the z direc-
tion and the Hamiltonian operator of the system is 

ˆ
zH HI                      (2) 

Considering a system whose nuclei posses spin m. The 
corresponding eigen-function of the time independent 
Schrodinger equation is denoted by ,I m , the time de-
pendent solution corresponding to a particular value of m 
is 

u

   i
, , e tmE

I mt u  
I m                (3) 

Thus the most general time dependent solution is:  

   i
, e tmE

m I mu  

 t

I

m I

t c



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where the cm’s are complex constants. We may compute 
the expectation value of any observable by means of 

. For simplicity we consider a system whose nuclei 
posses spin 1/2. By using (2), we get: 
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    (5) 

Now consider a magnetic field H1, which rotates at an-

gular velocity z, in addition to the static field H. The 
total field is then: 

  1 1cos sinz zt H t H t H     H i j k      (6) 

We have the time dependent Schrödinger equation for a 
proton 

 
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μ H
  (7) 

Let 0 0H   (Larmor frequency). For a system 
whose nuclei posses spin 1/2, in the rotation coordinate 
system, it is convenient to express the wave function and 
the c’s in terms as follows: 

     
1 2 1 2t a t u b t u             (8) 

where 
1 2

 and u 1 2  are the eigenstate of the spin op-
erator Iz. Following discussion will focus on the case of a 
non-static external field that is the longitudinal magnetic 
field changes with time. Suppose when t = 0, the Hamil-
tonian operator of the system is: 

u

0Ĥ zH I                    (9) 

when 0z H  

 0 z

, the resonance occurs in the system. 
However, the longitudinal magnetic field still has a 
change over time: 

H H H t                 (10) 

In the rotation coordinate system effective magnetic 
field is not a static magnetic field [1], but a time de-
pendent effective field 
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z

eff zH H H t



 
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 
H i k        (11) 

when t > 0 , the Hamiltonian operator of the system is:  

 0 0
ˆ ˆ ˆ

z zH H H t I H H               (12) 

In the rotation coordinate system, the Hamiltonian op-
erator of the system is: 

   0 1ĤR z z z xH H t I H I              (13) 

And the time dependent Schrödinger equation become 
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Take (8) into Schrödinger equation, we have 
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Copyright © 2012 SciRes.                                                                                 JMP 



Y. F. HU  ET  AL. 1734 

Multiplying by 1 2  from the left, integrating over u

spin space, the right side of the Equation (15) is: 

     
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


and consider the fact of that [1]: 
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We get: 
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Considering the rf pulse bandwidth is very short, 
within that time, the increment of the field can be ap-
proximated into a linear change over time:  zB t kt  , 
(19) and (20) become:  
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Let 
i

2

k
q


 1 1, H  , this is the precession fre-  

quency of the magnetic moment relative to x axis (rela-
tive to H1) in rotation coordinate system. 
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2
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
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From a(t) and b(t), one can easily to determine the 
wave function by the Equation (8). Equations (23) and 
(24) are solved with Runge-Kutta method, and the solu-
tions are shown in Figure 1. 

3. The Susceptibility of the Sample in a Non 
Static Longitudinal Field 

Considering that change rate over time of the vertical 
field is much slower than the transition speed of the 
quantum magnetic moment, so, quasi-static approxima-
tion can be used here. In other words, the orientations of 
the microscopic magnetic moments are quantized and the 
energy levels tend to comply with the Boltzmann distri-
bution, at thermal equilibrium. Under local thermal equi-  

 
(a) 

 
(b) 

Figure 1. (a) The variation of a(t) with time; (b) The varia-
tion of b(t) with time. 
 
librium hypothesis, the magnetization vector can be ex-
pressed as 
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where I is the nuclear spin quantum number. According to 
electromagnetic theory 
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Compare (25) and (26), magnetic susceptibility can be 
obtained: 
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where  is permeability. In the non-ferromagnetic mate-
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rials, we have   0.  In the case of macroscopic samples, unlike precession 
or nutation of a single magnetic moment in a magnetic 
field, the interaction among spin and the surrounding 
lattice, spin and spin must be considered, and it involves 
the spin—lattice relaxation and spin—spin relaxation, 
corresponding to T1 (longitudinal relaxation) and T2 (lon-
gitudinal relaxation). In this case, Bloch equation is the 
equation of motion of the macroscopic magnetization 
vector M [1], 
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where 0M  is the macro moment of samples at the mo-
ment of the transverse RF magnetic is added. 
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In the rotating frame of reference, RF field is constant, 
therefore 
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By the first equation in (28): 
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Let 
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By the third equation in (28): 
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Take (34) into the second equation in (28), and let 
  , we have 
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We get, 
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Above result is acquired in rotating c frame of refer-
ence. Now considering the laboratory frame of reference, 
the magnetization vector of the sample can be expressed 
as 

 X Y ZM M M  M

cos sinX x y

              (38) 

Here 

M M t M t           (39)    

Take (36) and (37) into (39): 
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The RF field, BX0cost, is expressed as superposition 
of levorotatory and dextral rotating fields, therefore 
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Compare (41) and (42), we find the plural dynamic 
susceptibility      . The real and imaginary part 
can be written as  
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The effects of larmor precession frequency corre-
sponding to the longitudinal field,  and rate of 
change of the longitudinal field are shown in Figure 2. In 
this calculation, we take   0;  = 2.6752E4 and M0 = 
0.03773 A/m, respectively. 

According to the theory of the electric and magnetic 
fields, ’reflects the absorption of the sample to the al-
ternating field, and   reflects the chromatic dispersion 
of the sample. From Figure 1, one can find that if the 
longitudinal field changes too fast, the chromatic disper-
sion of the sample become increase significantly and 
reduce the SNR (Signal-to-Noise Ratio). When the larmor 
frequency corresponding to the longitudinal field is  
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4. Conclusions and Prospect 

 

Through The NMR signals in a time dependent longitu-
dinal field is sensitive to both of the variation rate and 
frequency difference between larmor frequency corre-
sponding to the longitudinal field and the frequency of 
the RF field. Increasing the longitudinal field changes 
rate is a double-edged sword to the quality of NMR spec- 
troscopy, because both of the chromatic dispersion and 
the absorption of the sample increase significantly as the 
variation rate increase. The chromatic dispersion can work 
to the disadvantage of the SNR (Signal-to-Noise Ratio), 
and the absorption of the sample increasing is beneficial 
to the signal output power. 
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