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ABSTRACT 

A special approach to the geometrization the theory of the electron has been proposed. The particle wave function is 
represented by a geometric entity, i.e., Clifford number, with the translation rules possessing the structure of Dirac 
equation for any manifold. A solution of this equation is obtained in terms of geometric treatment. New experiments 
concerning the geometric nature wave function of electrons are proposed. 
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1. Introduction 

The problem of how to geometrical presentation of the 
theory of the electron and include it in the scheme of the 
general relativity theory is far from being solved. The 
expression for the co-variant derivative obtained in [1] 
from intuitively consideration, with some interpretation 
corrections introduced in [2], is the generally accepted 
formula now. Cartan [3] has showed, however, that finite- 
dimensional representation of a complete linear group of 
coordinate transformations does not exist. Moreover, the 
set of Dirac spinors preserves the structure of the linear 
vector space, but does not preserve the ring structure 
since defining the composition operation involves some 
complications. Thus allowed states are depleted inas-
much as wave function behavior under the parallel trans-
lation cannot be calculated and appropriately interpreted, 
and, besides that, the states of the particle ensemble can-
not be determined. As early as 1878 G. Frobenius [4] to 
prove a theorem, that exist only one associative algebra 
with partition on the field of real number-real number, 
complex number and Clifford number. The algebra, which 
use the Clifford number possesses ring structure [5] 
since it is a vector space over the field of real numbers 
and hence makes an additive group whose low of ele-
ments composition is distributive rather than commuta-
tive with respect to addition. This ring has ideals which 
may be obtained by multiplying the separated element on 
the right or on the left by ring elements [5]. The ideals 
resulting from this procedure are just the Dirac spinors of 
the standard approach. Now, the application of the con-
ventional approch by spinor representation in a Hilbert 
space is well-known. However attempt to discus the 
Dirac theory from Clifford algebra itself have been 
judged to have achieved limited success. Thus the repre-

sentation of the Clifford algebra by the Clifford number 
contains more information on particle properties than 
spinor representations. We known, that the Clifford alge-
bra can be extended to include relativity and plays essen-
tial role in the Dirac theory of relativistic electron [6,7]. 

As was shown early [8-12] covered all the standard 
features of quantum mechanics. Clifford algebra gives 
[13] an unifying framework of physical knowledge here 
including relativity, electromagnetism and other physical 
matter. When we introduce a Clifford rough scheme of 
quantum mechanics, as note in [10], we cannot ignore the 
emerging salient feature of this formulation. It is that in 
this case we obtain a quantum mechanical theoretical 
framework invoking only an algebraic structure that does 
not contain any further specific requirement. It possible 
to show [8-12], that the Clifford algebraic formalism are 
completely equivalent to the conventional approach to 
quantum mechanics. This open up the possibility of a 
different interpretation an explanation of quantum phe-
nomena in term of a non-commutative geometry and 
predict the new experiment for determination geometri-
cal presentation of wave function for elementary particle. 
The mean idea this article are in presentation the particle 
wave function by a geometric entity, i.e., Clifford num-
ber, with the translation rules possessing the structure of 
Dirac equation for any manifold. A solution of this equa-
tion can obtain in terms of geometric treatment. The 
novel experiments of geometrical nature of wave func- 
tion determination can be proposed. 

2. Wave Function as Geometric Entity 

We employ the mean idea of correspondence between 
the spinor matrices and the elements of an exterior alge-
bra and thus define the space of states in terms of a space 
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of representations of a space-time Clifford algebra. The 
construction of such algebra [5,7] requires imposing a 
vector space  over the field of real numbers, and the 
quadratic form which associated with scalar product. Can 
introduce the notion of p-vectors i.e. the product of p 
vectors from , which geometrically sets the oriented 
volume constructed upon these vectors. Each p-vector 
has n  components and is an element of space of n  
dimensions and each element, made up by a product of 
an arbitrary set of p-vectors is an element of vector space 

nR

nR

pC pC

= 2
n

with the dimensions p n
np

C  which in itself is a  

direct sum of its subspaces. Clifford algebra can be con-
structed for the elements of such space, which makes 
possible a single approach to the examination of the in-
ternal product of any vector associated with quadratic 
form, and the external product that the ring structure. An 
arbitrary basis, similar to the vector basis, can be intro-
duce in any point of the space, allowing us to construct 
an induced vector space with geometrical characteristics 
of different tensor subspaces. In the case finite dimen-
sionality, the space of function is isomorphic to the space 
itself. Thus, we can define a single general character- 
istic in each point of the manifold, regarding it as the 
direct sum of all possible forms as elements of vector 
space. The direct sum of such tensor representations 
can be attributed with the Clifford algebra structure by 
means of the direct product [5]. The final dimension- 
ality of the algebra is determined by the number of basis 
vectors, provides the ring structure and is responsible 
for the existence of an exact matrix representation. 
Moreover, the space of functional is isomorphic to this 
very linear space, and the algebra of outer products is 
isomorphic to the algebra of the outer product of these 
very vectors. 

In the case of space-time in the special theory of rela-
tivity, Clifford algebra is algebra constructed by the 
Dirac matrix   which is associated with unit vectors. 
The linear combination product of this matrix has all the 
properties of the structure of Clifford algebra with three 
complex units because one time matrix 0  and 
three space matrix  . Therefore, we can repro-
duce any element belonging to the induced vector space 
in the form of direct sum all possible tensor presentation. 
The existence of a unique set of linear independent forms 
defined at an arbitrary point of the space suggests that the 
nature of the forms translated over the manifold is similar 
to the nature of forms which characterize it [13]. This 
may be also determined by the similar form of the geo-
metric entities as functions of elements of the induced 
space. Making use of this basis, we consider the realiza-
tion of the different function in the ordinary Euclidean 
space. In this case the different function may be written 
in terms of a direct sum of a scalar, a vector, a bi-vector, 
a three-vector, and a pseudo-scalar, 

2 = 1
2 = 1 

= s v b t p      ,    

0=

      

that is given by 

         


    

         

     

  


   (1) 

with the reverse order of composition, we have 

 = s v b t p         

and having changed the direction of each basis vector, 
we obtain  = s v b t p      

i

. It is symmetry 
element for Clifford number. If introduce the notice 

5 0 1 2 3      i

=i i

 (complex number we will note as ), 
can introduce the once one symmetry element as multi-
plication by i that present as  

=

. After introducing 
symmetry element should be present mathematical 
operation on the field of Clifford number. The direct sum 
of tensor subspaces can be given a ring structure with the 
help of direct tensor product in the following symbolic 
notation: 

                    (2) 

where    is an inner product or convolution that de-
creases the number of basis vectors and    is ex-
ternal product that increase number of basis vectors. If 
every Clifford number multiple on special fixed matrix, 
which have one own column with elements own and 
other zero we can obtain the Dirac spinor with four ele-
ment. With the help this column can reproduce spinor 
presentation every Clifford number. Exist full corre-
spondence between the spinor column and the elements 
of an exterior algebra. 

Next we would like determine the rule of comparing 
two Clifford number in different point of manifold. For 
this goal should be determine the deformation of coordi-
nate system and rule of parallel displacement on different 
manifold. An arbitrary deformation of the coordinate 
system can be set in terms of basis deformations 

 =e X , where X is the Clifford number that describes 
arbitrary changes of the basis (including arbitrary dis-
placements and rotations) which do not violate its nor-
malization, i.e., provided X = 1X

2 2= = =e X X XX I   

0=

      

e e e e e e

e e e e

. It is not difficult to 
verify that      and this does not 
violate the normalization of the basis [5]. Now, for an 
arbitrary basis, we can set, at each point of the space, a 
unique complete linearly independent form as a geomet-
ric entity that characterizes this point of the manifold. 
For a four-dimensional space, such geometric entity may 
be given by 

       

    

    



  




     (3) 

If this point of the manifold is occupied by an elemen-
tary particle, then its geometric characteristics may be 
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described by the coefficients of this representation. A 
product of arbitrary forms of this type is given by a simi-
lar form with new coefficients, thus providing the ring 
structure. This approach makes it possible to consider the 
mutual relation of fields of different physical nature 
[13,14]. However, in what follows we consider new 
concept to description of a particle and characteristic of 
manifold as a geometric entity. 

Defining a single characteristic of manifold as a point 
function means associating each point of manifold with a 
rial number, determined by the function value. If the 
function is differentiable with respect to its argument, 
then we have differentiation of present form. In order to 
determine the operation of form translation over an arbi-
trary manifold we have to define the derivative operation. 

It may written as a linear form =d
x


 


 where 
x




  

that forms a basis of the vector space of all changes along 
the curves passing through a given individual point of the 
space. The action of such an operator on an arbitrary 
form may be presented as 

=d d d                   (4) 

where d   and d   may be called the “diver-
gence” and the “curl” of the relevant form, according to 
the definition of the differentiable variety, it is insuffi-
cient to have one non-singular coordinate system to 
cover a manifold the topology of which differs from the 
topology of an open set in the Euclidian space. The 
structure of such geometric construction should be com-
plemented with a correlation between the values of the 
transferred forms in different points of the manifold. 
When assigning intrinsic values to the manifold charac-
teristics, it is necessary to introduce the low of form 
transformation with the change of the coordinate system. 
Manifold mapping is defined through mapping of corre-
sponding system of the form which a certain group Li 
causes to transform. A possible transformation of any 
geometric characteristic which caused both by the turn of 
a corresponding coordinate system as well as by the 
transformation of the geometric entity themselves, re-
quires the use of Clifford algebra upon the elements of 
the inner vector space group (simplectic group  Sp n

=

). 

XY fZ

=

                   (5) 

where X, Y, Z have representation, constructed with the 
elements of the simplectic group and analogous to those 
of original form, while f are structural constant, depend 
on the manifold point, they are represented by tensor 
values of all dimensional determined by the initial vector 
space. A certain transformation group transforms each 
form according to the law 

X 

= d

                 (6) 

where X determines the mapping elements, of Clifford 

algebra in our case, and satisfies the condition XX = 1. 
For this algebra, we can write the first structure equation 
that defines the co-variant derivative as given by [13]: 

                 (7)   

with the gauge transformation law for the constraint   
being given by 

 X= X Xd X  

=

               (8) 

for the conservation co-variant transformation according 
to the same law X  . Here the tensor representa-
tion of the constraint is similar to that of an arbitrary 
form of the Clifford algebra. The present equation called 
the first structural equation but now the form will assume 
the value in Clifford algebra. In this case the arbitrary 
Clifford number can always be reduced to the canonical 
form, but local deformations of the proper basis become, 
however, is not observable since the Tetroude form 
Xd X

=F d

 corresponds to the second term of the gauge 
transformation. Then the second structure equation that 
defines the “curvature” form may be written as 

                 (9) 

with the law of transformation under the algebra being 
given by F = XF X

=dF F F J

. The transfer equation for the cur-
vature tensor with the present transformation law can 
written in the following form 

           (10)   
where J is the source form with the analogous general 
representation which complies the transformation  

J = XJ X

= 0d F

. The obtained equation can be regarded as 
field equation, its form externally similar to analogous 
equation for the connectivity form obtained in Li algebra. 
Those equations have a more general character as their 
structure contains interrelation of geometric characteris-
tic whose tensor nature is different. In this presentation 
can be written the fourth structural equation which de- 
monstrates the dependence between covariant derivation 
and form curvature: 

  

=d m

          (11) 

We can assume that the every elementary particle in 
every point of manifold can describe in the term Clifford 
number. Then the particle wave function is represented 
by a complete geometric entity—A sum of probable di-
rect forms of an induced space of the Clifford algebra. 
Moreover, having attributed the wave function with 
geometrical sense we can obtain correct translation rules 
for an arbitrary manifold [13] and come to some new 
quantum results associated with the geometric nature of 
the wave function. For wave function as geometrical en-
tity can write the first structural equation in the standard 
form: 

                 (12) 
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if suppose that the covariant derivation proportional same 
wave function as = m  where m is mass coefficient. 
The form of this equation is analogous to the Dirac equa-
tion in the spinor representation. Among these results we 
indicate the observation that Dirac equation in the geo-
metric representation is nothing but the translation equa-
tion in the general relativity sense, hence its solutions 
may be interpreted geometrically. Moreover, the geomet-
ric representation of the wave function yields other re-
sults concerning the interference of elementary particles 
which just may reveal the geometric nature of the wave 
function [15]. 

This equation is more informative for several reasons. 
The first one is that spinors are only special projections 
of Clifford numbers [5], Dirac spinors are represented 
only by ideals in this algebra, and thus it is impossible to 
introduce the composition operation on the spinor set. 
And the most important difference is that complete group 
of linear transformations of the coordinate system does 
not exist for spinors [3]. As follows from the previous 
analysis, a complete transformation group associated 
with the structure equation exists only in the Clifford- 
number representation of the wave function. The first 
structure equation for the wave function reproduces the 
form of the Dirac equation and, as it has been shown in 
[5], its solutions are similar to those for the spinor repre-
sentation. This solves the problem of finite-dimensional 
representation of the wave function under the complete 
linear group of coordinate transformations. The Dirac 
equation for wave function can be obtained minimize the 
action, constructed from geometrical invariants 

  S m= d 

 d = 1 

 . 

The Lagrange multiplier m ensure the normalization 

condition for wave function . The present 

action non degeneracy on the solution of Dirac equation 
in contrast with standard approach. In our approach the 
dynamic equation for wave function is presented as rule 
the parallel translation for characteristic of elementary 
particle on the arbitrary manifold. As proof in [5] the 
each even number =   for , the Clifford 
number in Euclidean space may be reduced to the ca-
nonical form, i.e., 

 0 

   
1

2xp= ex i X           (13) 

where  = 1X X

 d

 describes all the coordinate transforma-
tions associated with the translation and rotation of coor-
dinates and with the Lorentz transformation in the 
Euclidean space. As simple to see    is scalar and 
in the physical interpretation of this geometric entity is 
rather evident since  x  can be associated with the 
probability density of finding a particle in an arbitrary 

spatial point, and   is the angle that determines the 
eigenvalue of a particle with positive or negative energy. 
We can take = 0  for an electron and = π  for a 
positron. Thus it becomes possible to describe the inter-
mediate states of the particle since the form of the wave 
function of an arbitrary ensemble of particles is analo-
gous [7]. As proof in the book [5] the odd part of general 
Clifford number can present as even part which multi-
plied on the isolate element of this algebra γ0 and thus not 
problem with manipulation of full Clifford number. The 
structure equation thus obtained is written in the intro-
duced terms is completely equivalent to the Dirac equa-
tion, and has well known solutions both for the calcula-
tion of the hydrogen atom spectrum and for the interpre-
tation of electron states [5]. 

3. Experimental Determination of Geometric 
Entity 

General problem consist to experimental observation 
geometrical presentation of wave function. Usually, that 
in general relativity the geometrical presentation of wave 
function should be crucial role and will be observed for 
many cases. But we would like suggest on possibility to 
determine geometrical character of wave function which 
relate to modern real condition. We consider the case of 
particle diffraction on two holes that might be helpful in 
revealing the geometric character of the wave function. 
In our representation, two possible passing the one parti-
cle can be described by the wave functions represented 
by geometric entities in the canonical form, i.e., 

    
1

2
1 1 1 1= expx i X  

    

 

and         
1

2
2 2 2 2= expx i X  

= = 0

. 

For electrons we have 1 2 

    

. The canonical 
form of the interference two possible passing of the wave 
function of electron should be similar, i.e., 

1

2
1 2= exp =x i X    

    

. 

Now the post-interference result can be written as 

  
1

2 2 11 2 1 2 1 2= =x X X X X       

i

 (14) 

In the case of even Clifford numbers, when X corre-
sponds to Lorentz rotations, i.e., when X  can be writ-
ten as  = expi  =B i bX B , where    is a double 
vector,   and   are constant numbers, and b is a 
vector whose modulus is equal to one, the result of inter-
ference, is given by the standard expression, i.e., 

    
1

2
1 2 1 2= = cosx            (15) 

For plane monochromatic waves [5], the solution of 
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the Dirac equation is given by 

    3xp
1

2
1 1= ex u i p x   , 

where 3  is the Pauli matrix, u is particle amplitude, 
and p is particle momentum. The second solution is 
similar except for the phase shift, i.e., we have 

    3xp i p x
1

2
2 2= ex u    

=

. 

We see that now electron interference is described by 
the well known formula. 

Next we assume that deformations of the reference 
system can change the geometrical entity and can give 
the result, which principal are different as standard ap-
proach. The existence of this effect can be verified ex-
perimentally. A coherent electron beam should be di-
vided into two beams, the latter should be passed through 
separate regions with variable basic geometric character-
istics. The change of the wave function passing through 
different regions can be written as i i a bX X   where 

aX  and bX  describe the transformation of particle 
characteristics in the regions a and b. If the sequence 
order is changed, =i i b aX X   a b b aX X X X  then 
electron interference should correspond to the last case of 
the previous analysis, i.e., the interference pattern should 
be different from the standard case. The various regions 
can be infinite solenoids of the Aaronov-Bohm experi-
ment with different directions of the magnetic flux. If 
change the direction of the magnetic flux in two sole-
noids we can observe the different interference picture, 
which will be different as standard. Another way to ob-
serve the difference of the interference patterns is to pass 
electrons along and across the solenoids. The difference 
is given rise to only by the geometric representation since 
in the first case the flux is not changed as distinct to the 
opposite case. We can assume that this effect might be 
also observed for neutron interference, the regions of 
variation of the wave function geometric components 
being two inclusions with different mass numbers occur-
ring on the neutron propagation path. A similar experi-
ment had been proposed in paper [15], however, it has 
not been performed till now. 

4. Conclusions 

We can assume that the Clifford algebraic formalism is 
completely equivalent to the conventional approach to 
quantum mechanics. Quantum mechanics holds about the 
basic phenomenon of quantum interference. The first 
structure equation is written in the introduced geometri-
cal terms is completely equivalent to the Dirac equation, 
and has well known solutions both for the calculation of 
the hydrogen atom spectrum and for the interpretation of 
electron states [5]. We may realize it using the basic 
lements, and the structure of the Clifford algebra. This 

open up the possibility of a different interpretation an 
explanation of quantum phenomena in term of a non- 
commutative geometry and predict the new experiment 
for determination geometrical presentation of wave func-
tion for elementary particle. We have to consider the 
basic foundations of quantum mechanics as basic frame- 
work representing conceptual entities [8]. 

I would like to thank Prof. J. Klauder for very useful 
discussion. 
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