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ABSTRACT 

In this work we are presenting a modified Coulomb potential function to describe the interaction between two micro-
scopic electric charges. In particular, concerning the interaction between the proton and the electron in the hydrogen 
atom. The modified potential function is the product of the classical Coulomb potential and an oscillatory function de-
pendent on a quantized phase factor. The oscillatory function picks up only selected points along the Coulomb potential, 
creating potential wells and barriers around the nucleus of the atom. The new potential reveals us new features of the 
hydrogen atom. Searching for a manner to determine the phase factor, we are using the concept of the de Broglie parti-
cle wavelike behavior and the quantum analogue of the virial theorem for describing the bound motion of a particle in a 
central force field. This procedure is a kind of feedback action, where we are making use of well established concepts of 
the quantum mechanics aiming to determine the phase factor of the new interaction potential. 
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1. Introduction 

This work is the first of a series of four papers, for which 
we are revisiting, reexamining and questioning some 
points about the foundations of the atomic theory deve- 
loped, mostly between the years 1910-1930, by many 
distinguished physicists: Niels Bohr, Erwin Schroedinger, 
Werner Heisenberg, Alberl Einstein, Max Born, Louis de 
Broglie and many others. What motivate us to produce 
this work are, in our opinion, some unclear and question- 
able points, that we believe still exist, particularly, con- 
cerning the applicability of the classical Coulomb po- 
tential for describing the interaction between two micro- 
scopic electric particles. For instance, in the hydrogen 
atom, the Coulomb potential, used by Bohr and, years 
later, in the quantum mechanics (Schroedinger) to des- 
cribe many of the known properties of the current atomic 
model, is an increasing smooth function of the distance 
between the proton and the electron. Being so, how can 
the electron possibly know that certain positions around 
the nucleus of the atom are more likely to be occupied 
than others? [1] What is the real cause for this behavior 
for the electron? It is difficult to imagine the electron 
making regular probabilistic choice to occupy certain 
particular positions in the vicinity of the nucleus of the 
atom, based solely in the characteristics presented by the 
Coulomb potential. The observed discrete values of the 
total energy of the electron, suggest us the existence of 

potential wells and barriers in the form of closed shells 
surrounding the nucleus of the atom. The question of 
how and why the electron is able to jump from one state 
of equilibrium to another, emitting or receiving energy 
radiation (light), could be better explained if we can 
accept the idea that the electron is tunnelling through 
these potential barriers. 

The stability of the atom is an interesting question that 
deserves further explanation.1 The de Broglie wavelength 
associated to the waving nature of a microscopic charged 
particle is an attribute of the mass, as postulated by Louis 
de Broglie in 1923, or is it an attribute of the charge of 
the particle?2 Another interesting question is concerned 
to the actual movement of the electron around the 
nucleus of the atom. Is the electron orbiting the nucleus 
of the atom as predicted by Bohr theory? Is it behaving 
like a cloud of negative charge around the nucleus of the 
atom? Or yet is it oscillating radially in quantum wells 
like a harmonic oscillator? 

The Coulomb potential belongs to what is known as 
classical physics. Since long ago it is a fact well known 
that it correctly describes the energy interaction between 
two punctual macroscopic electric charges. Also, it is 

1The stability of the atom will be treated in the second paper of this 
series. 
2This subject will be considered in the third paper and, for an un-
charged particle, possessing an electric dipole moment, the subject will 
treated in the fourth paper of the series. 
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well known that the behavior of a particle in the 
micro-world of the quantum physics is not the same as 
that in the macro-world of classical physics. What we 
want to say is that, the classical Coulomb potential reveal 
us only the macro-behavior of the interaction between 
electric particles This make us to suspect the existence of 
a different interaction potential, capable of describing 
more accurately the physics of the atoms, and also be 
able to answer the questions formulated above. We be- 
lieve that the choice of any potential function that pro- 
poses to be candidate to describe the interaction between 
two microscopic charges, in some way, needs to carry by 
itself the seeds of the quantum physics of the atom, that 
is, the quantization of the angular momentum and energy, 
both concepts, intimately related to the Heisenberg uncer- 
tainty principle. Besides, in some way, the new potential 
must be responsible to the wavelike nature of the par- 
ticles.  

2. The Hydrogen Atom 

In this paper, trying to answer the questions formulated 
above, let us postulate that in the hydrogen atom, the 
interaction energy between the proton (nucleus of the 
atom) and the electron, considered as spinless particles, 
can be expressed by the product of the Coulomb potential 
and one oscillatory function, written as  

   
2

2= .cos
Ze

r
r.

0

1

4πoscU r 


       (1) 

The parameter  , with dimension of inverse of dis- 
tance, represents a radial-space frequency. We believe 
that the phase factor r  of the oscillatory function is 
the key point to answer the questions formulated pre- 
ously. As we will see soon, this phase factor is directly 
related to the Heisenberg uncertainty principle and the 
quantization of the angular momentum. 

For fixed values of the parameter   ( 0  ), the 
function  2cos r  oscillates between zero and one, 
while the function .osc  oscillates between zero and 
the classical Coulomb potential energy. The Equation (1), 
tell us that when 

 rU

0  , , the new po- 
tential function becomes equal to the classical Coulomb 
potential.  

 2 r 1cos 

 
2

0

1
= .

4π.cou

Ze

r




= 0

U r            (2) 

However, we need to observe that if we make  , 
we have . .osc couU r  for all values of the dis- 
tance  between the proton and the electron in the 
hydrogen atom. This implies that the linear momentum 
of the electron 

   = U r

=p

r



.r p

 is null. That is, the electron is at 
rest in the LFR (Laboratory Frame of Reference). This 
condition strongly contraries one of the basilar principles 

of the quantum mechanics, the Heisenberg uncertainty 
principle r   

= = 0p
 That is, if we make the uncertainty 

of the linear momentum r 
r

, we have  
 

= 0r

, and the radial position of the electron becomes 
completely undetermined. On the other hand, if we make 
 , we have r =p 

= πr n

, making the kinetic energy of 
the electron infinitely large [2-4]. This clearly shows the 
inadequacy of the Coulomb potential to describe the 
interaction between the proton and the electron in the 
hydrogen atom, except at particular points of the space in 
the vicinity of the nucleus of the atom. The phase factor 
of the oscillatory function selects only specific points of 
the Coulomb potential, making it to satisfy the Hei- 
senberg uncertainty principle only at points, where the 
condition   is satisfied. This constitutes a quan- 
tized relation between the normal and the reciprocal 
space. 

Looking for the determination of the parameter  , we 
will make use of the quantum-mechanical analogue of 
the virial theorem and the de Broglie relation between the 
linear momentum of the particle and the wave number 

. With this procedure, we are making use of well 
known quantum concepts to determine the phase factor 
of the new potential. The quantum analogue of the virial 
theorem can be set in the form [4] 

k

 1
= .

2
T U rr

=p k

               (3) 

and the required de Broglie relation is 

                     (4) 

To facilitate the application of Equation (1), it turns 
out to be convenient that the parameter   may be ex- 
pressed in terms of known quantities such as, the charge 
and mass of the electron and some physical constants. 
With the use of Equations (1) and (3), the average kinetic 
energy of the electron in the hydrogen atom is found to 
be expressible as 

   
2 2

2

0

1 1
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2 2 4π

p Ze
r r
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With the use of Equation (4) it follows that 
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Zme
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  
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r

(6) 

We will select the desired particular points along the 
Coulomb potential, observing that every time the product 
  satisfies the quantization relation,  

= π,  = 1, 2,3, ,r n n             (7)  

the Coulomb potential becomes equal to the oscillatory 
potential and the Equation (6), may be written as  
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The Equations (7) and (9) become consistent if we set 
= k n  and  

2

2 2
0

1 1
= ,

4π

Zme

r n
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what permit us to rewrite the Equation (9) as  

2

2 2
0

π
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Zme
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n

 
 
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1

4π



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Comparing the Equations (7) and (11) we can identify 
the space-frequency   as a quantized quantity given by  

2

2 2
0

1 π
= .

π4n

Zme

n 
= 1

            (12) 

In the hydrogen atom we have Z  and, in its 
ground state,  The quantity = 1.n  2 2

0π me 4  may 
be identified as the first Bohr radius 1 0  Å 
of the electron. The Equation (12) may be rewritten as  

= = 0.529r a

2
0

π
= .n n a

               (13) 

This implies that for two atomic bound particles, such 
as the proton and the electron in the hydrogen atom, the 
average value of the linear momentum of the electron is 
also a quantized quantity  

2

0

1
= .

4π

me

n

 
   np           ((14)) 

Using Equation (13), the new potential function may 
be rewritten as  

   
2

2= .cos n

e
r

r


0

1

4πnU r 


        (15) 

We are naming this potential by Quantum Oscillatory 
Modulated Potential-QOMP; because, it is quantized, it 
oscillates with k-space frequency n , and it is partially 
modulated by the classical Coulomb potential. Using the 
condition given by Equation (7) and the Equations (1) 
and (5), the average total energy of the electron with 
respect to the nucleus is 
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Taking the average value 1 ,r  as given by Equa- 
tion (10), the energy of the electron becomes quantized 
and may be written as 

2 4

2 2
0

1 1
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2 4πn

me
E

n

 
    

         (17) 

as would be expected, it is the same relation as obtained 
with Bohr theory and also with the solution of the 
time-independent Schroedinger wave equation for the 
hydrogen atom when the Coulomb potential is used. But, 
differently from these two theories, that in different cir- 
cumstances, make explicit use of the quantization of the 
angular momentum to obtain the total energy of the elec- 
tron, in this work, the same result is achieved without 
making explicit use of this concept. Implicitly, the quan- 
tization of the angular momentum is contained in the 
phase factor of the oscillatory function, Equation (7). 

The Figure 1 shows a graphic of the potential U r



1 . 
As shown in the figure, the electron in the hydrogen atom 
occupies the first well with position and total energy 
satisfying the Equations (10) and (17), respectively. The 
Figure 2 shows the graphics of nU  for  
and 3. The values of the energies shown in the graphic 
determined by the positions of the electron are, respec- 
tively, −13.6 eV, −3.4 eV and −1.5 eV. The same results 
are predicted by Equation (17) [4,5]. 

r = 1, 2n

The new potential present us with several interesting 
features: 1) Its waving character shows a sequence of 
periodic wells and barriers with variable depth and height; 
2) The first well is at the position most likely to be 
occupied by the electron in the ground state of the atom; 
3) The quantization of the energy may be attributed to 
the existence of concentric quantum shells, formed by 
wells and barriers, created by the interaction of the 
nucleus of the atom and the electron; 4) According to this 
potential, the electron bound to the nucleus can only 
jumps from one quantum well to another by tunneling 
through finite potential barriers. The tunneling effect (a 
purely quantum mechanical phenomenon) now appears 
naturally as necessary condition for emission or absorp- 
tion of energy (light) by the atom; 5) Another new in- 
teresting aspect of the oscillatory potential, observed in 
the Figure 2, and predicted by Equations (13) and (14) is 
the fact that the de Broglie wavelength associated to the 
electron is equal to the first Bohr radius of the electron in 
the hydrogen atom. Thus, the average distance between 
the proton and the electron, for any excited state of the 
atom, may be written as 

2
1=nr n r .                (18) 

Or, equivalently, in terms of the de Broglie wave- 
lengths we may write  

2
1= .n n               (19)  
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Figure 1. The Coulomb potential U(r)Coul and the quantum oscillatory modulated potential U1(r), showing the position and 
energy of the electron in the ground state of the hydrogen atom. The positions R1 and R2 are classical turning points for the 
electron. 
 

 

Figure 2. The Coulomb potentials U(r)Coul, the quantum oscillatory modulated potentials Un(r) and the energy levels and 
positions of the electron in the hydrogen atom for n = 1, 2 and 3. 
 

This result is completely different from that predicted 
by the quantization rule 2π =r n  for each allowed 
orbit for the electron, as postulated by Louis de Broglie, 
to explain the quantization of the angular momentum of 
the electron in the Old Quantum Theory [5,6]. 

Figure 2 shows that the averaged positions occupied by 
the electron in the first three quantum wells of  1U r

 U r  U r
, 

 and 3  are, respectively, 2 1  Å, = 0.53r

2 1= 4r r  and 3 1  In this work we are arguing 
that the Coulomb potential is not totally appropriated to 

describe correctly the potential interaction between two 
microscopic electric charges. However, as is well known, 
the solution of the time independent Schroedinger wave 
equation predicts correctly the quantization of the angu- 
lar momentum and energy of the electron, when Cou- 
lomb potential is used in the Hamiltonian of the proton- 
electron system. This occur because, in the solution of 
the radial part of the Schroedinger differential wave 
equation, without noticing it, we are making use the 
quantization rule 

= 9 .r r
= πr n  for the phase factor of the 
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oscillatory function of the new potential. That is, impli- 
citly, we are making n  and, consequently, 
selecting only the points of minima of the new potential, 
where both interaction potentials are coincident, see 
Figure 2. In these selected points the Coulomb potential 
satisfies the Heisenberg uncertainty principle. In terms of 
a mathematical treatment, the quantization of the phase 
factor 

 2 = 1cos r

r  allow us to see that the Coulomb potential is 
a particular case of the oscillatory potential, by trans- 
forming the Schroedinger radial differential equation 

   

   2
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d d1 2

d

cos n

 
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 







  (20) 

obtained with the use of the Quantum Oscillatory 
Modulated Potential in the Hamiltonian of the proton- 
electron system into the simpler and familiar radial 
differential equation [4,5]  

       1 1
= 0,

4
S 

 
 

 

2

2 2 2

d d1 2

dd

S S l l  
    


     

(21) 

obtained with the use of the classical Coulomb potential, 
with the condition 2 = πn n    or  2 2 = 1.cos   

= πr n

n  
The solution of Equation (21) is well known and it is 
found in many books of modern physics literature [4-7]. 
Its solution shows that the total energy of the electron in 
the hydrogen atom is the same as predicted by Equation 
(17). Up to this point we can also state that the Coulomb 
potential is restricted to describe correctly the interaction 
between two microscopic electric charges only at par- 
ticular points of the space around nucleus of the atom, 
points where the quantization relation n  and, 
consequently, the Heisenberg uncertainty principle are 
satisfied.  

3. A New Electric Interaction Microscopic  
Force 

The electric force between two macroscopic electric 
point charges 1  and 2Q  separated by a distance  
is given by the well known classical Coulomb formula 

Q , ,r

1 2
2

0

1

4π

Q Q

r




   

. =coulF             (22) 

which is perfectly valid as far as we consider the two 
charges built up of a very large number of protons or 
electrons, but still considered as point charges. However, 
the electric force between two microscopic charges such 
as proton-proton, proton-electron, or electron-electron, 
originated from the new potential function, has the form 
of a wave packet, written as 

   2 2
2

0

d
=

d
1 1

= sin 2 ,cos
4π

n n

n
n n

F r U r
r

Ze r r
rr

 



  
 (23) 

   

 nFThe forces r

n

 oscillate with the same k-space fre- 
quencies  . For the hydrogen atom, Figure 3 shows a 
graphic of  1F r , as predicted by Equation (23). Since 
this force is the gradient of the energy function  1 , 
which presents a minimum at position 

U r

1 , it becomes 
null at this point. We must observe that with the use of 
the classical Coulomb potential this situation never 
occurs, the interaction force between the proton and the 
electron is always attractive. The acceleration due to the 
electric force being null at this position, eliminates the 
argument or defiance against the Classical Laws of the 
Electrodynamic that an electron revolving the nucleus of 
the atom, lose energy by radiation [8-10]. The force being 
null at the equilibrium position 

r

1 0 , means that the 
electron cannot be orbiting the nucleus of the atom as 
predicted by Bohr theory. Thus, according to the QOMP, 
the angular momentum of the electron in its ground state 
is null, in agreement with the prediction of the Schroe- 
dinger radial differential wave Equation (21). On the 
other hand, the electron cannot be a static physical object 
due to the Heinsenberg uncertainty principle. The angu- 
lar moment of the electron being null ,  implies that the 
movement of the electron, inside a quantum well must be 
radial, bouncing back and forth, confined by two poten- 
tial barriers. 

=r a

r

This argument is reinforced by observing that in Fig- 
ure 3, the interaction force between the proton and the 
electron is repulsive to the left of the position 1  and 
attractive to the right of this position. That is, the electron 
is always being pushed towards the equilibrium position, 
acting like a harmonic oscillator. However, being accele- 
rated towards the equilibrium position, again, the elec- 
tron should lose energy by radiation and the problem of 
stability of the atom continues to be unexplained. The 
stability of the atom will be object of a deeper discussion 
in the second paper of this series of work. Figure 4 
shows the behavior of the electric forces  nF r

= 1,2n
n

 for 
 and 3. The graphics show that the waving cha- 

racter of interaction electric force decreases when  
increases, in agreement with the Bohr correspondence  
principle. The reasons for this behavior are two: 1) The 
destructive interference of the waving pattern of the 
individual charges, protons and electrons occur because, 
when macroscopic charges3 are built up, these particles 
do not occupy the same position in space and the waving 
pattern of the force must be destroyed by an interference 
process; 2) The actual measurements of the interaction         
3A macroscopic charge of 1 μC = 1 × 10−6 C, contains about 1013 elec-
tronic charges. 
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Figure 3. The interaction oscillatory force F1(r), the quantum modulated potential U1(r) and the Coulomb potential U(r)Coul in 
the ground state of the hydrogen atom. The figure also shows that the force is null at the equilibrium position r1. 
 

 

Figure 4. The Coulomb force F(r)Coul and the interaction oscillatory forces Fn(r) between the proton and the electron in the 
hydrogen atom, for n = 1, 2 and 3. 
 

tion. In addition, it shows several peculiarities of the 
hydrogen atom, such as: The existence of quantum wells 
and barriers, forming closed shells around nucleus of the 
atom. These wells constitute the most probable positions 
for the electron to occupy when moving around the nu- 
cleus of the atom; The emission or absorption of energy 
by the atom happens when the electron moves from one 
state of equilibrium to another by tunneling through these 
potential barriers created by the oscillatory potential; The 
new potential shows that the electric force between the 
proton and the electron oscillates, presenting negatives 
and positives peaks, the positive peaks represent regions 
where the interaction force between the proton and the 

force between two macroscopic particles are usually 
performed, using large ionized atoms, for which the 
escaped electrons come from outer shells of the atoms, 
making the new electric force to approximate quickly to 
the classical Coulomb force as indicated in Figure 4. 

4. Conclusion 

We can summarize this work as follows: For the hy- 
drogen atom, the oscillatory potential function is able to 
predict correctly the values of the total energy and po- 
sition of the electron in the atom, without the necessity of 
solving the time-independent Schroedinger wave equa-  
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electron is repulsive and the negative peaks where it is 
attractive, that is, the electron is always been pushed to 
the equilibrium position, which is a necessary condition 
for the stability of the atom. The new potential predicts 
that de Broglie wavelength associated to the electron is 
equal to the radius of Bohr 1 0 , what is quite dif- 
ferent of the condition postulated by Louis de Broglie for 
the quantization of the angular momentum of the electron 
in the Bohr Old Quantum Theory. According to the new 
potential, the electron is not orbiting the nucleus of the 
atom but oscillating radially, confined by two potential 
barriers. Whats more, this work presents strong evi- 
dences that the Coulomb potential function is not ade- 
quate to describe the correct interaction between two 
microscopic electric charges, because, except at parti- 
cular points around the nucleus of the atom, it is in disa- 
greement with one of the basic principles of quantum 
mechanics-the Heisenberg uncertainty principle. The new 
potential is much more informative than the classical 
Coulomb potential and more appropriated to accomplish 
the function for the interaction between two microscopic 
electric charges. 
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