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ABSTRACT 

The question of the averaging of inhomogeneous spacetimes in cosmology is important for the correct interpretation of 
cosmological data. In this paper a conceptually simpler approach to averaging in cosmology is suggested, based on the 
averaging of scalars within unimodular gravity. As an illustration, the example of an exact spherically symmetric dust 
model is considered, and it is shown that within this approach averaging introduces correlations (corrections) to the ef-
fective dynamical evolution equation in the form of a spatial curvature term. 
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1. Introduction 

The Universe is not isotropic or spatially homogeneous 
on local scales. The correct governing equations on cos- 
mological scales are obtained by averaging the gravita- 
tional field equations (FE). An averaging of inhomo- 
geneous spacetimes in Einstein’s general relativity (GR) 
can lead to dynamical behavior different from the spa- 
tially homogeneous and isotropic Friedmann-Lemaître- 
Robertson-Walker (FLRW) model; in particular, the ex- 
pansion rate may be significantly affected [1-3]. Conse- 
quently, a solution of the averaging problem is of con- 
siderable importance for the correct interpretation of cos- 
mological data. 

The solution to this problem necessitates a method for 
covariantly (and gauge invariantly) averaging tensors on 
a background differential manifold. Unfortunately, this is 
a very difficult problem. In the Isaacson spacetime avera- 
ging scheme in macroscopic gravity (MG) bilocal avera- 
ging operators are utilized [4-8]. Choosing a compact 
region M   in an (n-dimensional differentiable) 
manifold ( M , g n

x
) with a volume -form and a su- 

pporting point  to which the average value will be 
prescribed, the average value of a geometric object, 

 p x

 , over a region  (with volume V ) at  x , 

is defined in terms of the bilocal extension of the object 
 p x


 ,    =,x x W pp

    ,  ,Wx x x x


 
x 

 
  

 ,


W
,  b y 

means of the bilocal averaging operator x x
   . The 

averaging scheme is covariant and linear by construction, 
and the averaged object has the same tensorial character 
as p

 . In any manifold with a volume -form there  n

 ,W

always exist locally volume-preserving divergence-free  

operators [6-8], in which the bilocal operator x x

   

takes the simplest possible form: W  , i
ix x  

  

  ,p x Ex
 

 
[9]. 

The definition of an average consequently takes on a 
particularly simple form when written in a volume-pre- 
serving (system of) coordinates (VPC). Indeed, if the 
manifold is a pseudo-Riemannian spacetime, the space- 
time average of a tensor field  , at a su- 
pporting point  , a Et x   in VPC is thus  

  31
( , ) = d d,

a a a

E
p t x p t xt t x x

V
 
 






      (1) 

In the MG covariant approach to the averaging pro- 
blem the Einstein FE (EFE) on cosmological scales with 
a continuous distribution of cosmological matter are mo- 
dified by appropriate gravitational correlation (correction) 
terms [4,6-8]. The averaged FE can always be written in 
the form of the FE for the macroscopic metric tensor 
when the correlation terms are moved to the right-hand 
side of the averaged field equations, and consequently 
can be regarded as a geometric modification to the ave- 
raged (macroscopic) matter energy-momentum tensor 
[4,6-8]. In [10] it was found that by solving the MG equ- 
ations the averaged EFE for a spatially homogeneous, 
isotropic macroscopic spacetime geometry has the form 
of the EFE of GR for an FLRW geometry with an addi- 
tional spatial curvature term (i.e., the correlation tensor is 
of the form of a spatial curvature term) (see also [11,12]). 
Unfortunately, the spacetime averaging scheme in MG is 
very difficult to apply and is fraught with complications 
[13]. In this paper an alternative approach to averaging is 
suggested, exploiting the preferred nature of VPC and 
based on the averaging of scalars [14-16]. 
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2. Unimodular Gravity 

The fundamental variables in the action for unimodular 
gravity and the Einstein-Hilbert action for GR are dif- 
ferent [17-20]. In unimodular gravity, there is an addi- 
tional restriction on the metric, not present in GR: the de- 
terminant of guv equals one. As a consequence of 

 , unimodular gravity is only invariant under 
volume-preserving diffeomorphisms.1 Thus, unimodular 
gravity presents a natural theory in which to do avera- 
ging. 

det = 1g

Varying the action in unimodular gravity leads to the FE  

relating the traceless Ricci tensor, 
1

4
RgTR R   

T

,  

to the corresponding traceless energy-momentum tensor 

T


= 0T 

ˆ=R T 

̂

 [17]. It should be noted that the energy-momentum 
conservation law   does not follow from this 
equation of motion, but has to be imposed separately. 
Assuming energy-momentum conservation, it then follows 
that 

              (2) 

where  is a constant (and 
4

8π
= 1

G

c
= 1c

= 0G


= ,G T g

 and ). Us- 

ing the contracted Bianchi identity, , we then 
obtain 



   

̂

 

where  is given in terms of  and the vacuum 
energy density (part of the energy-momentum tensor) 

vac vac



   . Hence the cosmological constant   na- 
turally appears in terms of a constant of integration in 
unimodular gravity. 

Therefore, the theory acquires a new integrability 
condition [17]. Both the trace-free FE and the matter 
conservation equations are assumed; the integrability 
condition follows from these equations. Hence, we obtain 
the differential relations which are functionally equiva- 
lent to the full EFE (where the spacetime volume density 

g  is not a dynamical variable), where the cosmolo- 
gical constant is thus given in terms of an arbitrary 
integration constant  and is not given explicitly by 
the vacuum energy . 

̂


71 42 10 GeV 

47 410 GeV 

vac

This is an old proposal essentially initiated by Einstein 
[21-23] and more recently it has been developed under 
the name of unimodular gravity [18-20,24]. It has been 
suggested that unimodular gravity can be used to 
eliminate problems caused by the nature of the cosmo- 
logical constant as well as to resolve the discrepancies 
between theory and observation, while not introducing 
any exotic terms such as quintessence or dark energy into 
the analysis of the EFE [18-20,25]. Indeed, although uni- 
modular gravity does not give a unique value for the  

effective cosmological constant, it has the potential to 
solve the huge discrepancy between theory and obser- 
vation. With a suitable high-energy cut-off, the vacuum 
energy density is estimated by Weinberg [17] to be of the 
order vac , whereas the effective value 
of the cosmological constant as determined by astrono- 
mical observations is of the order obs . 
However, there is no longer a cosmological constant pro- 
blem. For example, for a perfect fluid the matter source 
term is the manifestly trace-free stress tensor 

  (1 4)p u u g  a b ab ; hence, matter enters the FE 
only in terms of the inertial mass density  p  , 
which vanishes in the case of a cosmological constant 
(e.g., see [26,27]). 

Unimodular gravity has also been utilized in the study 
of the quantization of GR [20,24]. The Hamiltonian of a 
generally covariant theory is zero, so in a sense there is 
no evolution, but since unimodular gravity is not gene- 
rally covariant, the classical  problem of time is avoided 
[20]. In addition, in unimodular gravity quantum gravi- 
tational factor ordering ambiguities are alleviated [24]. 

3. Averaging Proposal 

We wish to exploit the structure of unimodular gravity to 
suggest an alternative approach to averaging in cosmo- 
logy. Within unimodular gravity we need to average the 
trace-free part of the FE and the trace of the FE se- 
parately. 

1) Average trace-free part of the FE: Here the re- 
sulting correlation tensor must consequently be trace-free. 
If the form of the resulting equations are of the algebraic 
form of a “perfect fluid”, as in the cosmological appli- 
cation (with a large scale FLRW geometry), then the 
correlation tensor must be of the form of an effective 
energy momentum tensor   ijT  for which the trace 

, corresponding to a radiation fluid 
[28]. Note that if the matter is dust, then  

eff

= 3 = 0effT p 

   = = 3 = 2 ,3tot dust eff
d r r d r r rT T T p p           



 

which could be (trivially) reinterpreted as a renormalized 
dust term (with energy density 2d r  ) and a term 
corresponding to a constant spatial curvature (with 
 3p r r

2) Average trace of the FE: In this case we only need 
to work with the (generalized) Friedmann Equation (2).2 

) [10-12]. 

The problem of averaging is then effectively reduced 
to considering the average of a single scalar eqn (see 
[14]). 

2Note that the sum of the averaged energy-momentum tensor and the 
correlation tensor is covariantly conserved; the question of whether the 
averaged energy-momentum is separately conserved with respect to the 
averaged geometry is determined by averaging the energy-momentum 
conservation equation (if it is not, then there is an effective interation 
between the averaged energy-momentum tensor and the correlation 
tensor [29]). 1Coordinate invariance can always be reinstated into the theory. 
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4. Example: Lematre-Tolman-Bondi Model 

The exact spherically symmetric dust Lematre-Tolman- 
Bondi (LTB) model [30], which can be regarded as an 
exact inhomogeneous generalization of the FLRW solu- 
tion, can be rewritten in VPC  , , ,t x u   [11,12]. Taking 

, the line-element becomes  = ,A A t x
2

s t2 2
4 4

2 2
2 2 2

4 2

d = 1 d 2 d d

d d
(1 )d

1

U U
t x

A A

x u
A u

A u


 
   
 

 
     

det = 1g  ,t x

      (3) 

which has  as desired, where U  is de- 
fined as  

  2

2

2
t x tx=,

x xx

A A AA
U t x

A AA




            (4) 

The constraints on the original LTB metric ensuring a 
dust solution are given in [11,12]. For general functions 
A  and , the Ricci scalar of the metric (3) is given by U

 2 4 2 2
2

2 2

= 1 5 3 2

6 2 

5 2

2 2

2
2 3x x x t xx t

x t x x xx

R A A U A U A
A

UA A AUU A A UU A

  

   tx x

A A A A

U A U

 

 

= 0E

 

(5) 

The spatially flat ( 0 ) FLRW model in VPC is 
given by the metric (3) with 

     1 3
0 = ,, 3

2
=,

B

x
A At x x U t x

t t

  2
~R t t



     (6) 

where, strictly speaking, the degenerate form for U(t,x) 
does not follow directly from Equation (4) (however, 
Equation (5) is valid for (6) and B ). Defin- 
ing  0 , the Ricci scalar of the FLRW metric 
with positive curvature constant k  is given by 

. For the zero-curvature Einstein 

=A rS t
= 1

 2= 6
t

R SS S k  
2S tt

de-Sitter metric, 
2

3~S t , and setting , we get the = 0Bt

approximate expression:  

 
2

39

2
kt t

 
   

24
= 1

3
R t          (7) 

consistent with the expression given in [11,12] (with 

 2
0 0

9
=

2
E k cr



). 

A Perturbative Solution 

Let us assume that B  is zero, which implies that the 
bang time is uniform and we are consequently restricting 
our choice of LTB models to those with no decaying 
modes. We shall also consider solutions of the LTB me- 
tric in VPC as perturbations about the spatially flat 

FLRW model given by (6). In this respect our appro- 
ximate solution will be an expansion with respect to 0  
and we require the Einstein tensor to have the form of 
dust (after truncation of terms of 

0
 or higher). We 

begin by making the formal expansion for  in the 
form:  

t r

E

 2E
A

  2
0 1 0 2 0=, a b c dA A x t E x t Et x          (8) 

where 1 , 2 , a, b, c and d are constants. We can use 
Equations (4) and (8) to obtain . Calculating the 
Einstein tensor and requiring it have the form of dust (up 
to order 0 ) allows us to determine the constants in our 
perturbative solution (we obtain:

 ,U t x

2E
= 1 3a = 0b, , = 5 6c

= 1
 

and d   [11,12]). 
The expression that results from substituting U  in 

terms of A using Equation (4) and the expression (8) for 
A (with the given powers of x  and  in our particular 
perturbative solution) leads to the expression for the 
Ricci scalar  (keeping only terms up to 

t

R  2
0E ): 

 

2 3
0 12

2 1 6 1 2 1 3 2 3
0 1 2

4
= 4

3

15 2 3

R E x
t

E x t x



 



   



 

3 2= 3  r x t

    (9) 

 , we obtain Defining 

 

2 4 3
0 12

2 1 2 4 3 2 2 4 3
0 1 2

4
=

3

 

R aE r t
t

E b r t c r t



 

 

   



 
      (10) 

where  
2 3 1 6 1 34 3 , 15 3 , 2 3a b c        

r 0r

   (11) 

Finally, we obtain the averaged version of the Ricci 
scalar equation by integrating Equation (10) over the 
radial variable , where  is the (radial) averaging 
length scale: 

 2 3 2 2 3 2 2 3
0 1 0 1 22

4
= 1

3
R aE t E b t c t

t
      

r

  (12) 

(where the “barred” constants are the appropriately 0 - 
renormalized constants). We see that all of the correction 
terms (correlations) introduced by averaging the Ricci 
scalar equation are of the form of a spatial curvature 
term (7), which is consistent with the results of [11,12].3 

5. Discussion 

Recent observations are usually interpreted as implying  

3We note that for this perturbative solution, we obtain higher order 
correction terms of the form 2~ t  , which can be interpreted as a re-

normalization of 0A in the exact dust solution. We also note that, in 

principle, for the second order terms ( ) to be formally compara-

ble, 

2

0( )E
3

22

1 2 0~ r  . 
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that the Universe is very nearly flat, currently accele- 
rating and indicating the existence of dark matter and 
dark energy [31-33]. A cosmological constant is a candi- 
date for the dark energy. Averaging can have a very sig- 
nificant dynamical effect on the evolution of the Univer- 
se; the correction terms change the interpretation of ob- 
servations so that they need to be accounted for carefully 
to determine if the models may be consistent with an 
accelerating Universe. Indeed, it has been argued that a 
more conservative approach to explain the acceleration 
of the Universe without the introduction of exotic fields 
might be to utilize a backreaction effect due to inhomo- 
geneities of the Universe. 

In this paper we have argued that a rigorous approach 
to cosmological averaging (and necessary for studying 
cosmological data) is perhaps most naturally studied 
within the context of unimodular gravity. In the simple 
example studied here, we found that all correction terms 
introduce correlations of the form of a spatial curvature 
term [11,12]. 

As another simple illustration, we can consider the 
special case ( C = 0, = 0i  ) of the exact solution repre- 

senting a two-scale Buchert average of the EFE for an 
inhomogeneous universe approximating the observed 
Universe [34]. This exact solution has voids surrounded 
by walls (within which clusters of galaxies are located). 
The geometry within a wall is given by 

 and the geometry within   22d wa    2 2 2d dw w  

a void has negative curvature. 
The averaging procedure leads to the equations 

    
3
0
3

1 1i v

a
f

a
 2

0 0

1
1 =

3v v M

a
f f H

a
  

   

1 30 0
0 01/3

=
3

v
k v

v

0
0 1 3M i

v v

f H aa
f

a f

a

f a f a
 


 

where i  is an integration constant, M  and k  are 
the matter and curvature parameters, respectively, and 

vf  and wf  are the volume fractions occupied by voids 
and walls. For the averaged cosmic scale factor  a t , 

we find that    1 32 3= 1a t tt   ,  

where 

     2 3 1 3

0 003a fH   2 3

01 2v vf
  

and 

   1 1

0 02 vf
 0 03 1v vf H f   . 

In this example, the Ricci scalar is again of the form of 
Equation (7). 

In future work we intend to consider this averaging 
scheme in more general cosmological contexts. In parti- 
cular, we wish to study approximate solutions within 
linear perturbation theory. A first step will be to develop 

perturbation theory within unimodular gravity [35,36]. 
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