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Abstract 
 
We present a new well behaved class of exact solutions of Einstein-Maxwell field equations. This solution 
describes charge fluid balls with positively finite central pressure, positively finite central density; their ratio 
is less than one and causality condition is obeyed at the centre. The gravitational red shift is positive 
throughout positive within the ball. Outmarch of pressure, density, pressure-density ratio, the adiabatic speed 
of sound and gravitational red shift is monotonically decreasing, however, the electric intensity is monotoni-
cally increasing in nature. The solution gives us wide range of parameter K (0.72 ≤ K ≤ 2.41) for which the 
solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star 
is maximized with all degree of suitability and by assuming the surface density ρb = 2 × 1014 g/cm3. Corre-
sponding to K = 0.72 with X = 0.15, the resulting well behaved model has the mass M = 1.94 MΘ with radius 
rb  15.2 km and for K = 2.41 with X = 0.15, the resulting well behaved model has the mass M = 2.26 MΘ 
with radius rb  14.65 km. 
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1. Introduction 
 
Ever since the formulation of Einstein-Maxwell field 
equations, the relativists have been proposing different 
models of immense gravity astrophysical objects by con-
sidering the distinct nature of matter or radiation (en-
ergy-momentum tensor) present in them. Such models 
successfully explain the characteristics of massive ob-
jects like quasar, neutron star, pulsar, quark star, black- 
hole or other super-dense object. These stars are speci-
fied in terms of their masses as white dwarfs (Mass < 
1.44 solar mass), Quark star (2 solar mass - 3 solar mass) 
and Neutron star (1.35 solar mass - 2.1 solar mass). 

It is well known that the Reissener-Nordstrom solution 
for the external field of a ball of charged mass has two 
distinct singularities at finite radial positions other than 
at the centre. Thus the solution describes a bridge (worm 
hole) between two asymptotically flat spaces and an 
electric flux flowing across the bridge. Graves and Bill 
[1] pointed out that the region of minimum radius or the 
throat of worm hole pulsates periodically between these 
two surfaces due to Maxwell pressure of the electric field. 

Consequently, unlike Schwarzschild’s exterior solution 
of chargeless matter,in Reissener-Nordstrom solution has 
no surface which can catastrophically hit the geometric 
singularity at r = 0.All these aspects show that the pres- 
ence of some charge in a spherical material distribution 
provides an additional  resistance against the gravita- 
tional contraction by mean of electric repulsion and  
hence ,the catastrophic collapse of the entire mass to a 
point singularity can be avoided. 

The above result has been supported by a physically 
reasonable charge spherical model of Bonnor [2], that a 
dust distribution of arbitrarily large mass and small ra-
dius can remain in equilibrium against the pull of gravity 
by a repulsive force produced by a small amount of 
charge. Thus it is desirable to study the implications of 
Einstein-Maxwell field equations with reference to the 
general relativistic prediction of gravitational collapse. 
For this purpose charged fluid ball models are required. 
The external field of such ball is to be matched with  
Reissener-Nordstrom solution. 

For obtaining significant charged fluid ball models of 
Einstein-Maxwell field equations, the Astrophysicists 
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have been using exact solutions with finite central pa-
rameters of Einstein field equations, as seed solutions. 
There are two type of exact solutions of this category. 

Type 1. If the solutions are well behaved (Delgaty- 
Lake [3], Pant [4]). These solutions their self completely 
describe interior of the Neutron star or analogous super 
dense astrophysical objects with chargeless matter. Del- 
gaty-Lake [3] studied most of the exact solutions so far 
obtained and pointed out that only nine solutions are 
regular and well behaved. Out of which only six of them 
are well behaved in curvature coordinates and rest three 
solutions are in isotropic coordinates. In previous papers 
(Pant et al. [5], Pant [4], we obtained a new well behaved 
solution in isotropic coordinates and two new well be-
haved solutions in curvature coordinates respectively. 

Type 2. If the solutions are not well behaved but with 
finite central parameters, such solutions are taken as seed 
solutions of astrophysical objects with charge matter 
since at centre the charge distribution is zero. 

For well behaved nature of the solution in curvature 
coordinates, the following conditions should be satisfied 
(augmentation of (Delgaty-Lake [3] and Pant [4]) condi-
tions). 

1) The solution should be free from physical and geo-
metrical singularities i.e. finite and positive values of 
central pressure , central density and non zero positive 
values of e  and e  i.e. 0  an 00p  0  . For well 
behaved solution in curvature coordinates, it should have 

0r
, i.e. the tangent-3space at the centre in flat 

but converse is not true. 
 e  1

2) The solution should have positive and monotoni-
cally decreasing expressions for pressure and density 
( and p ) with the increase of r. The solution should 
have positive value of ratio of pressure-density and less 
than 1 (weak energy condition) and less than 1/3 (strong 
energy condition) throughout within the star. 

3) The solution should have positive and monotoni- 

cally decreasing expression for fluid parameter 
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decreases with the increase of r. 
4) The solution should have positive and monotoni- 

cally decreasing expression for velocity of sound 
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with the increase of r and causality condition should be  

obeyed at the centre i.e. 
2

d
1

d
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c 
 . 

5) The red shift Z should be positive, finite and mono-
tonically decreasing in nature with the increase of r. 

6) Electric intensity E is positive and monotonically 
increasing from centre to boundary and at the centre the 
Electric intensity is zero. 

Under these well behaved conditions, one has to as-
sume the gravitational potential  and electric field in-
tensity in such a way that the field equation can be inte-
grated and solution should be well behaved. Keeping in 
view of this aspect ,several authors obtained the para-
metric class of exact solutions Pant et al. [6,7], Gupta 
and Maury [8,9], Pant [10], M. J. Pant and Tewari [11] 
etc. These coupled solutions are well behaved with some 
positive values of charge parameter K and completely 
describe interior of the super-dense astrophysical object 
with charge matter. Further, The mass of the such mod-
eled super dense object can be maximized by assuming 
surface density is ρb = 2 × 1014 g/cm3. In the present pa-
per we have obtained yet another new parametric class of 
well behaved exact solutions of Einstein –Maxwell field 
equations, which is compatible within the range of Quark 
star and neutron star . 
 
2. Einstein-Maxwell Equation for Charged  

Fluid Distribution 
 
Let us consider a spherical symmetric metric in curvature 
coordinates 

 2 2 2 2 2 2d e d d sin d e d 2s r r t            (1) 

where the functions  r  and  satisfy the Ein-
stein-Maxwell equations 

 v r

 2
4 4

8π 1 8π

2

1 1
   

4π 4

i i i i i
j j j j j

im i mn
jm j mn

G G
T R R c p v v p

c c

F F F F

  



      
     

(2) 

where  denote energy density, fluid pressure, 
velocity vector and skew-symmetric electromagnetic 
field tensor respectively. 

, , ,i
ijp v F

In view of the metric (1), the field Equation (2) gives  
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Our task is to explore the solutions of Equation (9) and 
obtain the fluid parameters  and p   from Equation 
(7) and Equation (8). 
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     (4) 3. New Class of Solutions 
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In order to solve the differential Equation (9), In this 
paper we consider the electric intensity E of the follow-
ing form 

4r



         (5) 

where, prime (/)denotes the differentiation with respect 
to r and q(r) represents the total charge contained within 
the sphere of radius r. 

  
22 1

1 3
2

1

1 3 1
2

c qE K x x
c x

x          (10) 

Now let us set  
where K is a positive constant. The electric intensity is so 
assumed that the model is physically significant and well 
behaved i.e. E remains regular and positive throughout 
the sphere. In addition, E vanishes at the centre of the 
star.  

 22
11ve B c r                (6) 

which is the same as that of the metric obtained by Adler 
[12]. 

Putting (6) into (3) - (5) , we have In view of Equation (10) differential Equation (9) 
yields the following solution   2
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where A is an arbitrary constant of integration. 

and Z satisfying the equation  2
1ve B x                (11b) 
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      (9) Using (11a), (11b) into Equations (7) and (8), we get 
the following expressions for pressure and energy den-
sity where 2
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4. Properties of the New Class of Solutions 

For 0 andp 0  must be positive and 0

0
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The central values of pressure and density are given by 
have 
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The expression of right hand side of (19) is negative, 
thus the pressure p is maximum at the centre and mono-
tonically decreasing. 
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The expression of right hand side of (20) is negative, 
the density   is maximum at the centre and monotoni-
cally decreasing. 
and hence the velocity of sound v is given by the fol-
lowing expression 
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and A satisfied by(16). 
The expression for gravitational red-shift(z) is given 

by 
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The central value of gravitational red shift to be non 
zero positive finite, we have 

1 B  0                (24) 

Differentiating equation (24) w.r.t. x, we get, 
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The expression of right hand side of (25) is negative, 
thus the gravitational red-shift is maximum at the centre  

and monotonically decreasing. 
Differentiating Equation (10) w.r.t. x, we get, 
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The expression of right hand side of (27) is positive, 
thus the electric intensity is minimum at the centre and 
monotonically increasing for all values of K > 0. Also at 
the centre it is zero. 
 
5. Boundary Conditions 
 
The solutions so obtained are to be matched over the 
boundary with Reissner-Nordstrom metric.;  
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which requires the continuity of  across the 
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The condition (30) can be utilized to compute the val-
ues of arbitrary constants A as follows: 

On setting 
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Centre red shift is given by 
1/2

0 1z B                (35) 

In view of and TableI and Table-II We observe that 
pressure, density, pressure-density ratio, square of adia- 
batic sound speed and gravitational red shift decrease 
monotonically with the increase of radial coordinate  

however, the charge distribution is increasing in nature.  
 
6. Discussion 
 
In view of and Tables 1 and 2, it has been observed  

 , 
2

,
p

c
 ,

dp
z

d
  that all the physical parameters (p, 

and E) are positive at the centre and within the limit of 
realistic equation of state and well behaved conditions 
for all values of K satisfying the inequalities 0.72 ≤ K ≤ 
2.41. However, corresponding to any value of K < 0.72, 
there exist no value of X for which the nature of adia- 
batic sound speed is monotonically decreasing from 
centre to pressure free interface and for K > 2.41 , the 
pressure is negative some where within the ball for all 
values of X. It has been observed that under well be- 
haved conditions this class of solutions gives us the 
mass of super dense object within the range of quark star 
and neutron star.  

We now present here two models of super dense star 
based on the particular solution discussed above by as-
suming surface density; ρb = 2 × 1014 g/cm3. Corre-
sponding to K = 0.72 with X = 0.15, the resulting well 
behaved model has the mass M = 1.94 MΘ

.with radius rb 
 15.2 km and for K = 2.41 with X = 0.15, the resulting 
well behaved model has the mass M = 2.26 MΘwith ra-
dius rb  14.65 km. 

 
Table 1. The march of pressure, density, pressure-density ratio, square of adiabatic sound speed, gravitational red shift and 
electric field intensity within the ball corresponding to K = 0.72 with X = 0.15. 

br r  2
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8π
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p r
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2
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p

c
 
 
 

 
2

1 d

d
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 z 2

bE r  

0 0.133143 1.400572 0.095063 0.216271 0.426164 0 

0.1 0.131095 1.392716 0.094129 0.216101 0.424028 0.00008 

0.2 0.125065 1.369595 0.091315 0.215525 0.417658 0.000332 

0.3 0.115385 1.332484 0.086594 0.214356 0.407167 0.000769 

0.4 0.10257 1.283297 0.079927 0.212291 0.392738 0.001422 

0.5 0.087277 1.224339 0.071285 0.208939 0.374616 0.002334 

0.6 0.070247 1.158033 0.060661 0.203855 0.353097 0.003562 

0.7 0.052258 1.086683 0.048089 0.196582 0.328518 0.005177 

0.8 0.034079 1.01231 0.033664 0.186713 0.301245 0.007265 

0.9 0.016437 0.936551 0.017551 0.173954 0.271658 0.00993 

1.0 0 0.860627 0 0.158177 0.240143 0.013294 
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Table 2. The march of pressure, density, pressure-density ratio, square of adiabatic sound speed, gravitational red shift and 
electric field intensity within the ball corresponding to K = 2.41 with X = 0.15. 

br r  2
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1 d
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 z 2

bE r  

0 0.068295 1.595114 0.042815 0.102667 0.444341 0 

0.1 0.066626 1.584203 0.042057 0.101874 0.442177 0.000273 

0.2 0.061773 1.552015 0.039802 0.099459 0.435726 0.001111 

0.3 0.054182 1.500104 0.036119 0.095324 0.425102 0.002573 

0.4 0.044551 1.430801 0.031137 0.089335 0.410489 0.004759 

0.5 0.033775 1.346889 0.025076 0.081351 0.392136 0.007813 

0.6 0.02288 1.251268 0.018286 0.071278 0.370342 0.011924 

0.7 0.012961 1.146656 0.011304 0.059104 0.34545 0.017328 

0.8 0.005127 1.035372 0.004952 0.044947 0.317829 0.024317 

0.9 0.000462 0.919216 0.000502 0.02907 0.287865 0.033237 

1.0 0 0.79943 0 0.011874 0.255948 0.044497 
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