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Abstract 
 
Using the basic ingredient of two-body problem, we propose accurate algebraic solutions in a closed form for 
the ground state of helium and helium-like atoms. These simple but explicit expressions involve exact 
screening parameters for each system considered and provide an insight into their physical structure. The 
energy eigenvalues have been exactly calculated for atoms with nuclear charge Z in the range 1 ≤ Z ≤ 12, 
clarifying the relation between the screening parameteter and Z.  
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1. Introduction 
 
One of the challenging problems in non-relativistic 
quantum mechanics is to find exact solutions to the 
Schrödinger equation for potentials that can be used in 
different fields of physics. In connection with this, 
two-electron atoms have been subjected to intensive in- 
vestigations during the last decades. The determination 
of accurate wavefunctions for few-body Coulombic sys- 
tems can be achieved in many ways, and could be con- 
sidered nowadays to be resolved problem if one over- 
looks the necessity of simple and compact wavefunctions 
for further calculations. The last point is of importance in 
the theoretical study of inelastic process involving two 
electrons. In order to calculate the cross section of such 
processes one needs a convenient form of the ground 
state wavefunction to describe the initial state of target, 
and to perform subsequent calculations. More generally, 
the search for simpler but more accurate wavefunctions 
should result in more insight and understanding of the 
collision dynamics. We believe that this goal remains up 
to date and the recent theoretical contributions [1-6], 
together with all the related references therein, indicate 
that this is true. 

Within this context, we propose a novel treatment re- 
vealing that an exact solution can be clearly produced 
with the introduction of accurate screening parameters in 
the calculations carried out. These solutions naturally 
remove the need for involving the correlation wavefunc- 
tion for the consideration of the interaction betwen two 
electrons, the effects of which have been a subject of 
interest from the early days of quantum mechanics. This 

leads to more explicit and accurate analytical expressions 
for the spectra of helium and isoelectronic atoms when 
compared to the calculations reported previously by sev- 
eral workers. Moreover, the long-standing dichotomy of 
choosing distinct parameters and correlation function 
descriptions in providing an appropriate prescription for 
the analysis of quantum mechanical three-body problem 
of interest is greatly clarified by the present discussion.  

So far, the ground state energies of helium and he- 
lium-like atoms have been calculated by the use of 
wavefunctions constructed from the conventional orbital 
product, times a correlation function depending on the 
interelectronic distance 12r . These wavefunctions in- 
volve, in general, a number of adjustable parameters 
which are constrained to satisfy some kind of variational 
principle to give an improved value for the ground state 
energy. Although one achieves the desired accuracy in 
energy eigenvalue by introducing a large number varia- 
tional parameters in the trial wavefunction as done in the 
earlier calculations based on variational procedure, one 
quickly loses the physical meaning of the parameters, 
and also is required to perform tedious and cumbersome 
calculations in the theoretical study of the atomic proper- 
ties using such functions. In particular, it is well known 
that integration of the functions of 12  is quite difficult, 
so the topic of electron correlation is often studied by 
using numerical routines only. Hence, there is a need to 
obtain a simple, yet physically meaningful, wavefunction 
by choosing fewer parameters.  

r

In this article, using the spirit of the work in [2], we 
report that an exact analytical expression for the total 
wavefunction underlined, having only one parameter due 
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to screening of the nucleus, is able to define the physics 
behind the whole interaction mechanism, providing a 
deeper understanding, and yields accurate energies for 
the systems under consideration. This reveals the exis- 
tence of a link between the screening parameter and the 
charge of the nucleus, which is one of the main motive- 
tions behind this work. It is however emphasized that 
this unique parameter in the present work is introduced 
in the Hamiltonian of the system rather than in the trial 
wavefunction, unlike the earlier calculation techniques. 
Although, the literature covered similar problems, to our 
knowledge an investigation such as the one we have dis- 
cussed here was nonexistined. Further, the whole devel- 
opment is very elegant, appealing, and yet rather simple, 
even any student of quantum mechanics may easily un- 
derstand and appreaciate it. Hence, we kept this article at 
a pedagogical level and made it self-contained.  

The paper is set out as follows. In Section 2, we dis- 
cuss the present procedure and its application to distinct 
sytems, together with the analysis of the results obtained. 
Section 3 summarizes the conclusions of the present in- 
vestigation.  
 
2. Theoretical Consideration 
 
The motivation for adopting the alternative approach 
stems from the consideration of the one-parameter exact 
wavefunction for the two-electron atom amounting to 
screening of the nucleus. For the case of nondegenerate 
S-states, the idea of screening the nucleus can be re- 
flected in the Hamiltonian of the systems by writing it (in 
atomic units) as  

0H H H                  (1) 

where 
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1 2
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which was first discussed by Tripathy et al. [2] in a dif- 
ferent manner. In the above equations 1 , 2  are the 
positions of electrons with respect to the nucleus having 
a charge of 

r r

Z  with infinite mass, and 12  is the dis- 
tance between electrons. For those electronic configure- 
tions of the system in which two electrons are at unequal 
distances from the nucleus, the outer electron should 
experience a smaller effective charge than the inner one. 
In other words, each electron is partially screened from 
screening the full charge of the nucleus due to the pres- 
ence of the other electron. This would suggest introduce- 

ing an appropriate parameter, 

r

 , in the calculations.  
The unperturbed Hamiltonian, 0H , is separable and 

hence the corresponding Schrödinger equation is solved 
analytically. Each of these independent electron picture 
is the same as the Schrödinger equation for the Hydrogen 
atom, leading to the full unperturbed solutions  

    1 2 2, exp expr r Z r       1Z r        
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 Z Z


 
        (4) 

The reader is referred to [7] for a comprehensive dis- 
cussion of exactly solvable potentials within the frame- 
work of supersymmetric quantum mechanics, the advent 
of which has had a significant impact on the theoretical 
physics in a number of distinct disciplines.  

Assuming that  

12 2

1 1 1

r
 

1r r
             (5) 

the Hamiltonian,    1 1 2 1 1 2H , ,r r H r r  

E

, in- 
corporating a perturbation due to the correlation term 
vanishes. In this case, Equation (2) gains a physical im- 
portance, the solution of which reflects also the correla- 
tion effects indirectly. This is in agreement with the well 
known fact from the literature that the inclusion of elec- 
tron correlation in the Hamiltonian accounts for the 
screening precisely.  

Physically, the parameter introduced above screens the 
nuclear charge and produces a change in the wavefunc- 
tions corresponding to the interaction of the each elec- 
tron with the nucleus. Bearing in mind that the interelec- 
tronic interaction is repulsive, one may think of this re- 
pulsion resulting in some kind of positional displacement 
for the electronic wavefunctions such that the correlated 
atomic state might not be associated only with pure 
S-orbitals. This justifies the claim put forward with 
Equations (2) and (5) that correlation can also be ac- 
counted for by introducing a correct screening parameter.  

To proceed, in both cases we consider the form of the 
exact energy  

 2
E Z                   (6) 

where 0   and E  is the correction term to the 
energy value within the consideration of electron corre- 
lation, and  

   2 2 2
0 2E E Z Z Z              (7) 

in case of screening, leading to a connection between 
energy expressions  

2 2E Z                   (8) 
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of different physical considerations. 
In order to provide an insight into the physical nature 

of the screening parameter, we obtain  

2
1,2 Z Z    E             (9) 

using Equation (8). Though mathematically we have 
arrived at two roots for  , the substitution of Equation 
(8) into (9) and a careful study of Equation (4) direct us 
to choose the physically reasonable lower root due to the 
physical fact that .Z   The dependence of   on 
nuclear charge Z , in Equation (9), is in quite striking 
contrast with the previous calculations used trial func- 
tions where, in general, 5 16   irrespective of Z . 
Equation (9) thus justifies the discussion in [2]. As far as 
we know, this feature has not been perceived in an ex- 
plicit way until now.  

The accurate values of screening parameter for differ- 
ent atoms having two electrons are shown in Table 1. In 
calculating these parameters, exact energy values which 
are taken from the works in [8,9] are employed within 
the frame of Equations (6), (8) and (9).  

Clearly,   slightly increases with increasing Z . In 
addition, we observe that there is a universal relation 
between the reduced energy 0(E )  and the reduced 
screening parameter ( )Z  such that  
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
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for states. The present result indicates another inter- 
esting point. Here, 

S 
Z  behaves as a critical screening 

parameter for which the binding energy of the level, 
Equations (4), (7) and subsequently (10), in question 
becomes zero. It is of interest however to examine 
whether such a relationship is also valid for 0  
states.  

Afterall, we wish to generalize the framework of our 
discussion by focusing on Equation (5), in which there 
are two unknowns: the positions of electrons with respect 
to the nucleus  and the distance between inter- 
acting electrons 12 t is therefore obvious that there is 
a need for a second equation to be able to estimate these 
two unknown observables. By the use of Heisenberg’s 
uncertainty relation, we propose a similar idea to that of 
Yukawa for the correlation between the electrons,  

1 2( , )r r
( )r . I

12 12

c
E t x r c t r

E
         


     (11) 

Throughout the work presented here we work in atomic 
units, Equation (11) is thus formed as 12 1r

Table 1. Exact screening parameters. 

Atom 1( )S Exact energy (au) ΔE (Equation (6)) β (Equation (9))

H   0.52775  0.47225 0.273535 

He  2.90372  1.09628 0.295969 

Li  7.27991  1.72009 0.301869 

2Be   13.65556  2.34444 0.304656 

3B   22.03097  2.96903 0.306283 

4C   32.40624  3.59376 0.307352 

5N   44.78144  4.21856 0.308106 

6O   59.15659  4.84341 0.308667 

7F   75.53171  5.46829 0.3091018 

8Ne   93.90680  6.09320 0.3094479 

9Na   114.28188  6.71812 0.3097296 

10Mg   136.65694  7.34306 0.3099640 

 
photon exchange between these charged particles is quite 
short due to the photon moving with the speed of light.  

Therefore, in the light of Equations (5), (8) and (11) 
one gets  

1 2

1 1
2Z

r r


 
   

  
            (12) 

and with the use of either Equation (7) or Equation (10), 
the energy expression in a closed algebraic form is given 
as  

2

1 2

1 1
E

r r
Z

 
   
  

            (13) 

It is useful at this stage to remind ourselves that these 
results are in a very good agreement with a significant 
but ongoing discussion in the literature. In brief, Equa- 
tion (13) clarifies explicitly that for low Z values, when 
one of the electrons coalesces with the nucleus the radial 
distribution of the second electron extends over several 
atomic units. As the charge increases, the second elec- 
tron moves nearer to the nucleus. The equations above, 
also agree with the Bohr’s suggestion that the radius of 
hydrogen-like atoms is inversely proportional with the 
charge of the nucleus if electron-nucleus problem is 
treated independently without considering the correlation 
effect.  

E  . 
During the electron-electron interaction, we can expect a 
considerable change in total energy (E E)  

)
, on 

average, due to the correlation  visualized as in 
Equation (11), keeping in mind that the time required a  

( E

Additionally, Equations (12) and (13) also reveals that 
one needs either a reasonable parameter reletad to the 
screening effect or the accurate positions of electrons to 
obtain exact binding energies for the cases of interest. To 
end up this discussion, we provide 1 21 1r r  values 
in Table 2 for the atoms appeared in Table 1 considering  

Copyright © 2011 SciRes.                                                                                 JMP 



 
1054 M. ÇAPAK  ET  AL. 

Table 2. Locations of electrons with respect to the nucleus.  

Atom  1( )S 1 21 1r r  (Equation (12)) 

H   1.726465 

He  3.704031 

Li  5.698131 

2Be   7.695344 

3B   9.693717 

4C   11.692648 

5N   13.691894 

6O   15.691333 

7F   17.690898 

8Ne   19.690552 

9Na   21.690270 

10Mg   23.690036 

 
the corresponding exact - values.  

The use of these numerical results in Equation (13) 
reproduces exact energy values in Table 1, indicating 
that our suggestion in Equation (11) within the frame of 
HUP is physically resonable, leading to reliability of the 
tabulated results. Moreover, the comparison of the pre- 
sent results, 12r  and 1 21 1r r , with those of 
[5,10,11] confirms the physics behind the idea proposed 
in Equation (11). We believe that these equations, in 
their present form, would hence raise many interesting 
conceptual problems of a fundamental nature.  
 
3. Concluding Remarks 
 
The helium atom and isoelectronic ions are universal 
examples which illustrate the properties of few-electron 
atoms and ions, and the complications introduced by 
many-particle systems. By the consideration of this es- 
sential point, we have been principally concerned in this 
work with finding correct secreening parameters for the 
systems considered. We have observed that for helium 
and its isoelectronic series the size of   scales with the 
nuclear charge. It has been also demonstrated that physi- 
cally reasonable parameters can be included in the ham- 
iltonian rather than in the trial functions.  

The screening factor is a refinement taking the 
screening of the nuclear charges by the electrons into 
account. Since a screening factor complicates in general 
the calculation of off-diagonal matrix elements, many 
theoretical techniques do not include this parameter in 
the wavefunction due to the structure of their framework. 
Therefore, one can expect that the results will be less 

accurate in cases where screening becomes important; i.e. 
at smaller internuclear distances of two-electron mole- 
cules, or for dissociation limits involving negative 
atomic ions, see [1]. However, the present approach 
would be helpful in removing such deficiencies. In addi- 
tion, the relatively simple and compact form of the pre- 
sent wavefunction would be of interest for the calcula- 
tion of electronic transition moments needed in dynami- 
cal studies, where intermediate and large internuclear 
distances are involved.  

Clearly, considerable additional work is still needed to 
extend the present scenario to the excited states of he- 
lium and its isoelectronic ions with the consideration of 
electrons’ spins. Further, since the same   value has 
been chosen for both electrons, our method can be easily 
extended to doubly-excited configurations in which both 
the electrons occupy the same orbital. With this consid- 
erations, the authors hope to stimulate further examples 
of applications of the present procedure in important 
problems in physics. Along this line the works are in 
progress.  

As a final remark, with the wide application of the 
screened Coulomb potential families in different areas of 
physics, we believe that our discussion presented in this 
letter would also provide new insights to the research 
communities of atomic physics.  
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