
Journal of Modern Physics, 2011, 2, 488-497 
doi:10.4236/jmp.2011.26059 Published Online June 2011 (http://www.SciRP.org/journal/jmp) 

Copyright © 2011 SciRes.                                                                                 JMP 

A New Parallel Algorithm for Simulation of Spin-Glass 
Systems on Scales of Space-Time Periods of an  

External Field 

Ashot S. Gevorkyan1,2, Hakob G. Abajyan1, Hayk S. Sukiasyan3 
1Institute for Informatics and Automation Problems, NAS of Armenia, Yerevan, Armenia 

2Joint Institute of Nuclear Research, Moscow Reg., Russia 
3Institute of Mathematics, NAS of Armenia, Yerevan, Armenia 

E-mail: g_ashot@sci.am 
Received March 25, 2011; revised April 27, 2011; accepted May 7, 2011 

Abstract 
 
We study the statistical properties of an ensemble of disordered 1D spatial spin-chains (SSCs) of certain 
length in the external field. On nodes of spin-chain lattice the recurrent equations and corresponding inequal-
ity conditions are obtained for calculation of local minimum of a classical Hamiltonian. Using these equa-
tions for simulation of a model of 1D spin-glass an original high-performance parallel algorithm is developed. 
Distributions of different parameters of unperturbed spin-glass are calculated. It is analytically proved and 
shown by numerical calculations that the distribution of the spin-spin interaction constant in the Heisenberg 
nearest-neighboring Hamiltonian model as opposed to the widely used Gauss-Edwards-Anderson distribu-
tion satisfies the Lévy alpha-stable distribution law which does not have variance. We have studied critical 
properties of spin-glass depending on the external field amplitude and have shown that even at weak external 
fields in the system strong frustrations arise. It is shown that frustrations have a fractal character, they are 
self-similar and do not disappear at decreasing of calculations area scale. After averaging over the fractal 
structures the mean values of polarizations of the spin-glass on the scales of external field's space-time peri-
ods are obtained. Similarly, Edwards-Anderson’s ordering parameter depending on the external field ampli-
tude is calculated. It is shown that the mean values of polarizations and the ordering parameter depending on 
the external field demonstrate phase transitions of first-order. 
 
Keywords: Spin-Glass Hamiltonian, Birkhoff Ergodic Hypothesis, Statistic Distributions, Frustration,  

Fractal, Parallel Algorithm, Numerical Simulation 

1. Introduction 
 
Spin glasses are prototypical models for disordered sys-
tems which provide a rich source for investigations of a 
number of important and difficult applied problems of 
physics, chemistry, material science, biology, nanoscience, 
evolution, organization dynamics, hard-optimization, 
environmental and social structures, human logic sys-
tems, financial mathematics etc (see for example [1-9]). 
The considered mean-field models of spin-glasses as a 
rule are divided into two types. The first consists of the 
true random-bond models, where the couplings between 
interacting spins are taken to be independent random 
variables [10-12]. The solution of these models is ob-
tained by n-replica trick [10,12] and the invention of 

sophisticated schemes of replica-symmetry breaking is 
required [12,13]. In the models of second type, the bond- 
randomness is expressed in terms of some underlining 
hidden site-randomness and is thus of a superficial nature. 
However, it has been pointed out in the works [14-16] 
that this feature retains an important physical aspect of 
true spin-glasses, viz. that they are random with respect 
to the positions of magnetic impurities. 

As recently shown by authors [17], some type of di-
electrics can be treated as the model of quantum 3D 
spin-glass. In particular, it was proved that the initial 3D 
quantum problem on space-time scales of an external 
field in the direction of wave’s propagation can be re-
duced to two conditionally separable 1D problems, 
where one of them describes the classical 1D spin-glass 
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problem with the random environment. 
In this paper we discuss in detail statistical properties 

of the spin-glass short-range interaction model which 
describes an ensemble of 1D spatial spin-chains of cer-
tain length xL  while taking into account the influence 
of an external field. Recall that each spin-chain from 
itself represents 1D lattice, where on every node of lat-
tice one random-orientated (3)O  spin is located. 

In Section 2 the spin-glass problem on 1D lattice is 
formulated. Equations for stationary points and corre-
sponding conditions for definition of energy minimum 
on lattice nodes (local minimum of energy) are obtained. 
The formula for distributions’ computation for different 
parameters of spin-glass system are derived. 

In Section 3 the exact solutions of recurrent equations 
for angles of i + 1-th spin depending on i-th and i + 1-th 
spin-spin interaction constant are obtained. The scheme 
of parallel simulation of statistical parameters of system 
is suggested and the corresponding pseudo-code is ad-
duced. 

In Section 4 the numerical experiments for unper-
turbed 1D spin-glass system are adduced, including dis-
tributions of energy, polarization and spin-spin interac-
tion constant. 

In Section 5 the statistical properties of spin-glass, on 
the scales of space-time periods of external field are in-
vestigated in detail. The distribution of average polariza-
tion on different coordinates and Edwards-Anderson type 
ordering parameter of spin-glass system in external field 
are investigated. 

In Section 6 the obtained theoretical and computa-
tional results are analyzed. 
 
2. Formulation of the Problem 
 
We consider a classical ensemble of disordered 1D spa-
tial spin-chains (SSC) of length xL  (Figure 1), where 
for simplicity is supposed that the interactions between 
spin-chains are absent. A specificity of a problem is such 
that statistical properties of a system on very short time 
intervals t  at which system cannot be thermally re-
laxed are of interest to us. Let us note that for a problem 
the following time-correspondences take place 

1< 1Tt     , where   is a frequency of an 
external field,   is a relaxation time of spin in an ex-
ternal field and T  is the time of thermal relaxation. In 
other words we suppose that the spin-glass system is 
frozen and nonsusceptible to thermal evolution. 

Mathematically such type of spin-glass can be de-
scribed by 1D Heisenberg spin-glass Hamiltonian [1-3]:  

 
1 1

1 1
0 0

.
N Nx x

x ii i i i i
i i

H N J S S h S
 

 
 

            (1) 

where iS  describes the i-th spin which is the unit length 
vector and has a random orientation, ih  describes the 
external field which is orientated along the axis x: 

 0 0= cos , = , = 2π ,i x i i x xh h k x x i d k L    (2) 

where 0h  is the amplitude of the external field. In addi-
tion, in expression (1) 1iiJ   characterizes a random in-
teraction constant between i and i + 1 spins which can 
have positive as well as negative values (see [1,18]). The 
distribution of spin-spin interaction constant will be 
found by way of calculations of classical Hamiltonian 
problem. 

For further investigations, (1) is convenient to write in 
spherical coordinates (see Figure 1): 

    

 

1

1 1 1
=0

1

= cos cos cos

sin sin sin

Nx

x ii i i i i
i

i i i i

H N J

h

   

  



  



 

 


 (3) 

For the consecutive calculations of problem the equa-
tions of stationary points of Hamiltonian will play a cen-
tral role:  

= 0, = 0,
i i

H H

 
 
 

            (4) 

where  = ,i i i   are the angles of i-th spin in the 
spherical coordinates system ( i  is a polar angle and 

i  is an azimuthal one). 
Using expression (3) and equations (4) it is easy to 

find the following system of trigonometrical equations:  

 
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1
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1
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(5) 

 

 Z

Y

d0 
XO 

S0 
S1 

Lx 

xNSS2 

1xNS   

 

Figure 1. A stable 1D spatial spin-chain with random inter-
actions and the length of Lx = d0Nx, where d0 is a distance 
between nearest-neighboring spins, Nx designates the num-
ber of spins in chain. The spherical angles φ0 and ψ0 de-
scribe the spatial orientation of S0 spin, the pair of angles 
(φ0, ψ0) defines the spatial orientation of the spin Si. 
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In the case when all interaction constants between i-th 
spin with its nearest-neighboring spins 1i iJ  , 1iiJ   and 
angles 1 1( , )i i   , ( , )i i   are known, it is possible to 
explicitly calculate the pair of angles 1 1( , )i i   . Cor-
respondingly, the i-th spin will be in the ground state (in 
the state of minimum energy) if in the stationary point 

 0 0 0= ,i i i   the following conditions are satisfied:  

 
     

0
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> 0,

> 0,

ii i

i i ii i i i i i

A

A A A
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   
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where  
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in addition: 
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Evidently by Equations (5) and conditions (6) we can 
calculate a huge number of stable 1D SSCs which will 
allow to investigate the statistical properties of 1D 
SSCs ensemble. It is supposed that the average polari-
zation (magnetization) of 1D SSCs ensemble (polariza-
bility of 1D SSC) at absence of external field is equal to 
zero. 

Now we can construct the distribution function of en-
ergy of 1D SCCs ensemble. To this effect it is useful to 
divide the non-dimensional energy axis =    into 
regions 00 > > > n  , where 1n   and   is a 
real energy axis. The number of stable 1D SSC configu-
rations with length of xL  in the range of energy 
[ ,   ]   will be denoted by ( )Lx

M   while the 
number of all stable 1D SSC configurations - corre-
spondingly by symbol  =1

=
nfull

L L jjx x
M M  . Accord-

ingly, the energy distribution function of ensemble may 
be defined by expressions [19]: 

    0; = ,full
L L Lx x x

F d T M M   

     0

0 0
1

; ; 1,lim
n

L j j Lx xn j

F d T F d T d   
 

    (8) 

where the second expression shows normalization condi-

tion of distribution function to unit. By similar way we 
can define also distributions of polarization and spin-spin 
interaction constant. 
 
3. Simulation Algorithm 
 
Using the following notation:  

 1 1 1 1= cos , = sin ,i i i i i               (9) 

equations system (5) may be transformed to the follow-
ing form:  

2 2
1 1 1 1 1

2 1 1 1

1 tan 1 = 0,

= 0,

ii i i i i

ii i i

C J

C J

   

 

   

  

      


  (10) 

where parameters 1C  and 2C  are defined by expres-
sions: 
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= sin tan cos cos

      cos ,

= cos sin .

i i i i i i i

i i
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h
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   

  
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
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From the system (11) we can find the equation for the 
unknown variable 1i  :  

2 2 2 2
1 1 2 1 1 1 21 tan = 0.i i i ii iC C J C            (12) 

We can transform the Equation (12) to the following 
equation of fourth order:  

2 2 2 4
1 2 1

2 2 2 42
2 1 2 1 2

4 sin

2 2 = 0,sin

i i

i i

A C C

AC C C C

 

 





  
     

    (13) 

where  
2 2 22 2

1 1 2= .cos sinii i iA J C C           (14) 

Discriminant of Equation (13) is equal to:  

   
 

24 4 2 2 22 2
2 1 2 1 2

4 2 2 22 2
2 1 1 2

= 2 4sin sin

= 4 .sin sin

i i
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 
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  

 
 

From the condition of non-negativity of discriminant 
0D   we can find the following condition:  

2 22
1 2 0.sin iA C C             (15) 

Further substituting A from (14) into inequality (15) 
we can find the new condition to which the interaction 
constant between two successive spins should satisfy:  

2 2 2
1 1 2 .iiJ C C                 (16) 

Now we can write the following expressions for un-
known variables 1i   and 1i  :     
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where 2 2 2

3 1 2= .sin iC C C    
Finally in consideration of (9) for the calculating an-

gles 1 1( , )i i    we find:  
2 2

1 10 1, 0 1.i i                (18) 

These conditions are very important for elaborating 
correct and high performance simulation algorithm. 
Moreover, as shown in [19] the condition (16) excludes 
the possibility to get normal distribution for spin-spin 
interaction constants in the 1D Heiseberg nearest- 
neighboring spin-glass Hamiltonian model. 
Algorithm Description 

Let us note that the developed algorithm is an iterative 
algorithm depending on 1D SSC’s nodes. The first and 
second nodes are initialized randomly, then i-th node is 
obtained from ( 2)i  -th and ( 1)i  -th layers nodes. 
Every node contains the following information: 
 -polar angle, 
 -azimuthal angle, 
J -interaction coefficient, 

The following parameters are initialized in the fol-
lowing way: 

0  and 1  - rand() 2 π R   ; 

0  and 1  - acos (rand()); 

01J  - rand(); 
where rand() function generates uniformly distributed 
random numbers on the interval (0,1) . 

The algorithm pseudo-code is following: 
for = 1:m n // n  separate independent  
              //sets of problem 
  for = 1: xi N  
    for = 1:j R //regenerate iJ  maximum   
                // R  times if needed 
      for = 1: ik L //go through all elements in   
                   //the i-th layer 
        if conditions (9) are satisfied 
         begin 
          //calculate energy on i-th layer, 
          //calculate polarization on ,x y  
          //and z-axis 
          //calculate 1ix   and 1,iy   
          //save iJ  value 
         .... 
         end 
      endfor 
    endfor 

  endfor 
endfor 
if ( = xi N )//reached the xN -th layer 
   begin 
   //save energy, polarizations values 
   end 
endif 
//construct distribution functions of energy  ,  
//polarization p  and interaction constant J  
//calculate the mean value of energy  , polarization  
// p , interaction constant J  and its variance 2J . 
 
4. Numerical Experiments 
 
Let us suppose that the ensemble consists of M  
number of spin-chains each of them with the length 100 

0d . For realization of simulation we will use parallel 
algorithm the scheme of which is represented in the 
Figure 2 (see also [19]). The algorithm works as fol-
lows. Randomly M sets of initial parameters are gener-
ated and parallel calculations of Equation (17) for un-
known variables ix  and iy  transact taking into ac-
count conditions (16) and (18). However only specify-
ing initial conditions is not enough for the solution of 
these equations. Evidently these equations can be 
solved after the definition of the constant 01J , which is 
also randomly generated. When the solutions of recur-
rent equations are found, the conditions of stability of 
spin on the node (7) are being checked. The process of 
simulation proceeds on the current node if the condi-
tions (7) are satisfied. If conditions are not satisfied, the 
new constant 01J  is randomly generated and corre-
spondingly new solutions are found which are checked 
later on conditions (7). This cycle is being repeated on 
each node until the solutions do not satisfy conditions 
of the energy local minimum. 

At first we have conducted numerical simulation for 
definition of different statistical parameters of the en-
semble which consists of 45 10  spin-chains and at 
absence of external field (the case of unperturbed Ham-
iltonian). Note that during simulation we suppose that 
spin-chains can be polarized correspondingly up to 20, 
40 and 100 percent i.e. the total value of spins sum in 
each chain can be within the interval of { 5 5},p     
{ 10 10}p     and { 100 100}p    , where p  
designates the polarization of spin-chain. In other words,  
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x y  
calculate 

 ,
n

x y  
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 ,
n

x y  
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 ,
n

x y 

1-st layer 

n-th layer 

Nx-th layer 

Output 

      2, , , , , ,F F p F J p J J   

 

Figure 2. The algorithm of parallel simulation of statistical 
parameters of 1D SSCs’ ideal ensemble. In the scheme the 
following designations are made: F(ε), F(p) and F(J) are 
distribution functions of energy, polarization and spin-spin 
interaction constants of 1D SSCs ensemble. In addition,  , 
p , J  and 2J  designate average values of corresponding 
parameters of system. 
 
each spin-chain is a vector of a certain length which is 
directed to coordinate x . Calculations have shown that 
in ensemble a full self-averaging of spin-chains (the po-
larization vector) occurs on each of the above-mentioned 
scenarios on all directions. Energy distributions ( )F   
practically independent from simulation scenario and by 
one global maximum are characterized (see Figure 3(a)) 
and correspondingly the average energy for all scenarios 
is equal to 53.084   . As for distributions of polari-
zations,    , ,x yF p F p  and  zF p , in considered 
cases, they are very symmetric on all coordinates and 
correspondingly the average values of polarizations 

 = dp F p p p    ; = { , , }x y z  are close to zero on 
all coordinates(see Figure 3(b)). 

It is important to note that the distribution of spin-spin 
interaction constant is not accepted a priori as normal 
(Gauss-Edwards-Anderson model), but it is calculated 
from the first principles by analyzing the statistical data 
of simulation. As the detailed analysis of numerical data 
shows (in particular its asymptotes) the distribution of 
interaction constant can be approximated precisely by 
Lévy alpha-stable distribution function (see Figure 4(a)). 
For more details about Le'vy distribution see [20]. 

Let us note that at simulation of spin-chain four solu-
tions arise on each node of 1D lattice, which satisfy  

 
(a)  

 
(b) 

Figure 3. (a) The energy distributions for ensembles of 1D 
SSCs of the length Lx = 1000 d0, with spin-chains polariza-
tion correspondingly up to 20, 40 and 100 percents. Note 
that all ensembles consist of 5 × 104 spin-chains but various 
level of spin-chain polarizations, however their distribu-
tions are practically similar and have only one global 
maximum; (b) The polarization distributions correspond-
ingly on coordinates x, y and z are shown for scenario up to 
100 percent polarized spin-chains. 
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(a) 

 
(b) 

Figure 4. (a) The distribution of spin-spin interaction con-
stant essentially differs from Gauss-Edwards- Anderson 
distribution model and corresponds to Lev’y alpha-stable 
distributions class. The green curve is fitted by Cauchy 
function; (b) It is obvious from the graphic that for a wide 
range of parameter γ there is not any phase transition in the 
spin-glass system depending on the amplitude of an exter-
nal field. It means that under the influence of an external 
field the system is reconstructed so, that the average energy 
of spin-chain practically is not being changed. 

equations of stationary points (5). It is possible to think 
that it would lead to exponentially growth of number of 
solutions along with increase in number of nodes or 
length of spin-chain. However, such scenario of solutions 
branching does not occur due to accounting of additional 
conditions (6)-(7) and also (16) (see the numerical simu-
lation for different initial parameters Figure 5). 

At last it is important to recall that condition (16) 
plays an important role during the modeling. This condi-
tion specifies the border of regions where interaction 
constants J are localized and thus the process of simula-
tion is very effective (see Figure 6). 
 

 

Figure 5. On the figure the process of solutions ν branching 
with increase in length of 1D spin-chains is shown. As one 
can see the number of solutions does not exceed 12 on each 
layer of branching for spin-chains of length Nx and till the 
end of the spin-chain it is independent from the initial an-
gular configurations needed for the start of the simulation. 
 

 

Figure 6. On the picture localization regions changes of the 
spin-spin interaction constants are shown, depending on the 
node sequence number of 1D lattice. Different colors cor-
respond to different numerical experiments. 
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5. Statistical Properties of Ensemble in  
External Field 

 
Using the obvious similarity between temperature T of 
usual statistical ensemble and the average energy coming 
on one spin 0 = xN   we can define the partition 
function as follows:  

   1

0

d ;d
; = exp ,

4 4

N xx
H N g

Z g J
  

     
  

    (19) 

where J describes the set of spin-spin interaction con-
stants in chain. 

The integration in the expression (19) in above-men- 
tioned model may start from the end of the chain (see 
[21]). When integrating over the solid angle d i  we 
take the direction of the vector  0

1S hii i iJ p   as a 
polar axis and it is easy to obtain the following expres-
sion: 
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(20) 
Assuming that the distribution of spin 1iS   around 

the field ih  direction is isotropic, one can perform an 
integration over the angle i  and after simple calcula-
tions find:  
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where 
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Now using the expression (21) we can average the 
partition function by distribution ( )F J : 
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(22) 
where  

   01 1 01 1. d dN N N NJ x x x x
F J F J J J      . 

Like in the usual thermodynamics, Helmholtz free en-
ergy for 1D SSC ensemble may be specified in the fol-
lowing kind:  

   0 0 0 0, = ln , , < 0.Q g Z g          (23) 

Note that all thermodynamic properties of the statistical 
system in this case may be obtained by means derivation 
of the free energy by external field parameters g. After 
the derivation of the free energy by 0h  we can find:  
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where 

 0
0 0 0 0

0

= , = , = cos ,

= , = 2π .

i N ix

i N xx

h h p h y k x

x id k N

 
 

As calculations show, the free energy derivation line-
arly depends on   parameter. The last result testifies 
the absence of a phase transition on this parameter (see 
Figure 4(b)). Thereby a logical question arises - are 
there phase transitions in considered system depending 
on other parameters? 

To answer this question we will investigate the be-
havior of the average value of polarization depending on 
parameter   or the value of an external field. 

Using the definition (8) we can calculate the polariza-
tion distribution on coordinates  ,F p  , where 

= , , .x y z  As numerical simulation shows, distribu-
tions of polarizations depending on parameter   are 
strongly frustrated [22] and these frustrations do not dis-
appear at regular dividing of computation region (see 
Figures 7(a), (b), (c)). Moreover, at each division a 
self-similar structure is conserved which testifies about 
its fractal character. The dimensionality of fractal struc-
ture is calculated by simple formula:  

     = ln ln ,D n N            (25) 

where n is the number of partitions of the structure size, 
and N is the number of placing of the initial structure. 
The calculation particularly shows, that at value of 

= 0.00425  dimensionality 1.2095xD  . In a similar 
manner yD  and zD  can be calculated. It is obvious 
that at increasing   all of them converge to 1. 

At last we will pass to a question on average value of 
polarization. Namely, how to calculate it? Taking into 
account above-mentioned, it is obvious that the average 
value of polarization (magnetization) must be calculated 
by following formula:  

   1
= = , dlim i

M fi f

P p F p p p
M    




  (26) 

where the slanting bracket .
f

 stands for averaging of 
expression by the fractal structure which itself represents 
an arithmetic mean. As follows from the Figure 8(a), 
after averaging on fractal structures the average value of 
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polarization depending on   has several phase transi-
tions of the first order. Finally we can introduce a pa-
rameter which can characterize the ordering process in 
system. Using obvious similarity between our and usual 
cases we can define Edward-Anderson type ordering 
parameter in the form: 

   2 2 21
= = , d .lim i

M fi f

P p F p p p
M    




   

(27) 
As calculations show, the ordering parameter also has  

several phase transitions of first-order, however at in-
creasing of  , the system goes to the full ordering (see 
Figure 8(b)). 
 
6. Conclusions 
 
Using equations for stationary points of Hamiltonian (5) 
and conditions of energy minimum (6)-(7) on nodes of 
periodic lattice we have developed a new high perform-
ance parallel algorithm (see scheme on Figure 2) for a 
simulation of 1D spin-glass. The idea of algorithm is  

 

 
(a)                                    (b)                                     (c) 

Figure 7. On the picture the type of fractals arising at area partition of self-similar figures is visible and connected with frus-
trations of spin-glass medium. 
 

 
P  2P

 
(a)                                                         (b) 

Figure 8. (a) On the picture the average polarization on ensemble on coordinates x, y, z is shown, where phase transitions of 
first order are visible; (b) The order parameter of type Edwards-Anderson depending on the external field. It is visible that 
on a measure of increase of an external field, frustrations in a spin-glass system disappear and an ordering occurs in it.  
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based on the construction of stable spin-chains of certain 
lengths. We have shown that the number of spin-chains 
(the simulation number) can be considered as a “timing” 
parameter as in case of dynamic system and the ergodic 
properties of system can be studied depending on this 
parameter. It is shown by numerical experiments that 
distribution functions of different parameters of the sys-
tem after 2

xN  simulations converge to the equilibrium 
values. In other words, system which consists of 2

xN  
number spin-chains satisfies Birkhoff's ergodicity condi-
tions. We have shown that the distribution of spin-spin 
interaction constants can be found directly by way of 
calculations of classical Equations (5) and analysis of 
statistical data of simulation. It is theoretically shown 
(see inequality (16)) that at least for the 1D spin-glass 
problem the distribution of the spin-spin interaction con-
stants can not be Gauss-Edwards-Anderson type. In par-
ticular, the analysis of numerical data of simulation 
shows that they obey to Lévys alpha-stable distribution 
law. In other words, if we use the normal distribution in 
these problems, we make calculations ineffective, not to 
say doubtful. 

As it is shown, the derivative of a free energy (24) 
does not have a phase transition depending on the pa-
rameter of an external field’s energy (see Figure 4(b)). 
The last means that under the influence of an external 
field the essential changes of energy does not occur in 
the system. The last, however, does not mean that in the 
system a critical phenomena can not occur under the in-
fluence of an external field related to other parameters. 
Only through numerical calculations we were able to 
show that in the system the phase transitions of first or-
der occur under the influence of weak external field in 
the value of average polarization of spin-glass on all co-
ordinates (see Figure 8(a)). As calculations show, the 
critical phenomena can be considerable even for weak 
fields. For example, they can lead to formation of a su-
perlattice of a dielectric constant in the spin-glass’ me-
dium which can have a wide applications for solutions of 
different applied problems. 

Finally, it is important to note that the algorithm can 
be simply generalized for high dimensional cases and in 
particular for 3D case, which means that it will be a very 
needed instrument for numerical investigations of above- 
mentioned class of problems. 
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