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Abstract 
 
We study the quantum dynamics of diatomic molecule driven by a circularly polarized resonant electric field. 
We look for a quantum effect due to classical chaos appearing due to the overlapping of nonlinear reso-
nances associated to the vibrational and rotational motion. We solve the Schrödinger equation associated 
with the wave function expanded in term of proper stationary states, n lm  (vibrational  angular 

momentum states). Looking for quantum-classic correspondence, we consider the Liouville dynamics in the 
two dimensional phase space defined by the coherent-like state of vibrational states. We consider the rela-
tionship between the overlapping of the classical resonances and the mixing of the quantum states, and it is 
found some similarities when the quantum dynamics is pictured in terms of number and phase operators. 



 
Keywords: Nonlinear Resonance, Diatomic Molecule, Quantum Resonances 

1. Introduction 
 
The study of quantum dynamics in the interval of pa-
rameters where classical chaotic behavior occurs is what 
we call “Quantum Chaos, Chaology, or Quantum Mani-
festation of Chaos” [1] which deals with some type of 
quantum manifestation of the classical chaos, mainly 
associated with the statistical properties of near neighbor 
levels of energy of the system [1]. In contrast, for quan-
tum systems associated to non chaotic classical ones, it is 
mostly believed that classical dynamical behavior must 
occur for large quantum numbers or high value of the 
action variable [2] (Rydberg states). In particular, studies 
of dynamical chaos in atomic and molecular systems has 
been of great theoretical and practical interest [3-12] 
since not enough integrals of motion are found either in 
the classical or in its quantum system. Different ap-
proaches and studies have been used for the classical 
[13-15] and quantum (quasi-classical region) [16-18] 
cases, and most of them are based on the Morse potential 
as the inter-atomic interaction [19]. On the other hand, 
the classical study of the dynamics of atomic and mo-
lecular systems has shown that, under certain conditions, 
these systems are capable of exhibiting a chaotic behav-
ior, even in the case the system has few degrees of free-

dom. In what follows of this introduction and to have a 
better perspective of the problem, we summarize what 
Berman et al. [20] did for the classical part of the prob-
lem. 

It is known that the dynamics of a diatomic molecule 
in a resonant circularly polarized electric field can be 
modeled by the Hamiltonian 
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where  describes the vibration of the molecule 
along its axis in terms of the action variable I and its 
conjugated angle variable 

( )
0

vibH

 ,  describes the rota-
tion of the molecule around its transversal axis of sym-
metry in terms of spherical coordinates (

( )
0
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, ,r   ), and 
 =intH t d E  describes the interaction of the electric 

dipole moment (d) of the molecule with and external 
electric field (  tE ). These term are given explicitly by 
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For the derivation of these expressions, the motion of 
the molecule has been done with respect the center of 
mass   1 1 2 2 1 2=R m m m m r r  and relative 2 1= r r r  
coordinates associated to the diatomic molecule, where 
  is its reduced mass. The parameter ex  is defined as 

  2 ( ) 2
0= 2 vib

e e x d H dI . The electric field has been 
chosen as , and the magni-
tude of the electric dipole moment has been given by 

   0= cos ,sin ,0t E t t E

0= 2 ceff ed d e I os  , where 0 eff , being 

eff  the effective charge of the molecule and 0  repre-
sents the point of the minimum on the Morse potential 
[19] which simulates the atom-atom interaction in the 
diatomic molecule and has been taken up to second order. 

The average small vibration oscillation around the equi-
librium point o  is just 

0r
r

=d e
e

r  2π 2 2

0 e= 2 cosr d I   , 
with e  representing the angular frequency of the os-
cillation of the molecule at first order. The dynamical 
system described by this Hamiltonian close to resonance 
( e  ), and under the condition ,     has the 
following constant of motion 

= constant = ,p I k             (4) 

The Hamiltonian (1.1) can be written in a more suit-
able form through a change of variable defined by the 
generatrix function  2 , , ; , , ; =F n k p      1 2n   
  k p    

=

    , which are given by  

= , = ,t                  (5) 

 = 1 2 , = , = , = ,I n p p p k I   t       (6) 

and the Hamiltonian in this coordinates is written as  
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where the variable “n” is assumed to have continuous 
values, and the following definitions have been made: 

2
0= 2 r2  , and 0= 2eff eW E e  . This Hamilto-

nian depends only in the conjugate variables ( , )n   and 

( , )p   since   is an ignorable variable, and therefore, 
k is a constant of motion. In this way, the Hamilton equ-
ations with this variables define the four dimensional 
classical dynamical system  
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This system has its critical points at , = 0p = π 2 , 
= πm  with , and  with  the 

roots of a third order polynomial. In the example given 
by the reference [20], the parameters associated to the 
diatomic molecule GeO [17] are used,  

m Z = in n = 1i , 2,3

1= 985.8 cm , ( ) = 15 cm ,e e     1

1

 
1= 2.2 cm , = 0.48 cm ,e ex            (9) 

0 = 3.28d D , , 0 = 1.62r Å = 13.1 amu  

where the units have been selected such that  

13
= = 1 cm

2 bk T   and . Note that these  = 0.956T K

parameters correspond to be close to resonance. Then, 
there is one center points at = π  and  which 

forms the first resonances of the system (for W = 0.05 
cm–1 and ), and there is other resonance located 
near 2

1 2n 

= 0k
1.5n   which is due to   degree of freedom 

rather that a critical point of the system. The resonances 
overlapping Chirikov’s criterion [13] for appearing of 
chaos was verified at , and total chaotic 
behavior is observed after , see Figure 1. 
This result suggests that classical chaotic behavior ap-
pears within the first two exited states of the associated 
quantum system. However, the correspondence principle 
[2] tells us that the quasi-classical behavior of a quantum 
system is gotten for very large quantum numbers. 
Therefore, one would not expect any quasi-classical be-
havior for ground and first exited states of the quantum 
system.  

1= 0.177W 

= 1  cmW
 cm
.03 1
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(a) 

 

 
(b) 

 

 
(c) 

Figure 1. Poincaré map for θ = π/2 with θ > 0, k = 0, θ0 = 1, 
and p0 = 0 and for: (a) W = 0.048 cm–1; (b) W = 0.68 cm–1; (c) 
W = 1.03 cm–1. 

In this way, in this paper we study the quantum be-
havior of this system in the region of parameters where 
this classical chaotic dynamics appears. This behavior 
could be important in the study of diatomic molecular 
clouds during the star born formation or supernova wind 
shock studies from dying stars [25,26]. We solve the 
associated Schrödinger equation, assuming the wave 
function is a linear combination of the stationary states 
with time depending coefficients and solving numeri-
cally the resulting equations for these coefficients, and 
picture the expectation values of the quantum variables 
in a phase space-like to look for a similarity with the 
classical behavior. 
 
2. Quantum Dynamics 
 
2.1. Quantum Hamiltonian 
 
Our goal is to solve the Schrödinger equation,  

   ˆ=i t H t
t


 


 ,           (10) 

where Ĥ  is the Hermitian operator associated to the 
Hamiltonian,  
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For this propose, the following operators are assigned 
to the observables,  
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where a and  represent the usual ascend and 
descend operators of the quantum harmonic oscillator. If 

 †† =a a

 n  and  lm  are the basis for the harmonic oscil-
lator and the angular moment operators such that  

†

† †

= , = 1

ˆ= = , , = 1

a n n n a n n n

a a n n n n n a a


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and  

 2 2ˆ = 1 ,

ˆ = ,z

L lm l l lm

L lm m lm l m l


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


        (14) 

the action of ̂  is defined in terms of the phase opera-
tor [21-23] as  
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From Equation (11) and the definitions (12) - (14), we 
get the quantum Hamiltonian of the form 0

ˆ ˆ ˆ=H H W , 
where 0Ĥ  and  are given by  Ŵ
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and  
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To construct the Hermitian operator , we have 

used the fact that for any operator 
Ŵ

Â , the operator 
 †ˆ ˆ 2A A  is Hermitian. Using the commutation relations 
of Equation (16), one gets the commutativity of the vibra-
tional and rotational operators,  , 
and we see that 
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where there is a (2 1)l   degeneration due to quantum 
number “m”. On the other hand, since the relation 

1, > 0n l nlE E   must be satisfied, the quantum vibra-
tional number “n” is bounded [19] in the following way  1ˆˆ ˆ ˆ ˆ, = , =
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             (21) 
which is the quantum analogue of Equation (4) and has 
the physical meaning that external electric field’s pho-
tons excite the rotational and vibrational degree of free-
dom with the same number of quanta. The main reason 
for choosing the phase operator as Equation (15) was to 
be able to get this quantum constant of motion correctly. 

where [ ]x  means the integer part of the real number “x”. 
Therefore, the spectrum is finite. Let us propose the so-
lution of Equation (10) of the form  
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Now, substituting this equation in (10) and using the 

orthogonality relation = n n l l m mn l m nlm        , we get 
the system of equations for the coefficients as  

2.2. Time Evolution Equations 
 
Using the number states n  and the spherical harmonic 
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From the expressions A1 to A7 of the Appendix, this matrix elements can be written as  
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Substituting this expression in Equation (23) and using 

the same dimensionless variables defined in the intro-
duction, we get the time evolution equation of the coeffi-
cients as  
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where we have made the definitions = d dD D  , 
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Note that the last two terms of these expressions are a 
consequence of the constant of motion (19). The time 
evolution of the coefficients in Equation (27) and the 
selection rules in Equation (25) are similar to the electric 
dipole transitions in an atom, except with the extra selec-
tion rule of n. Furthermore, suppose we are initially in a 
given state   0 0 00 = n l m  and we set the frequency 
  to be such that it is almost in resonance with the fre-
quency of an allowed transition, say f f fn l m  (that is  

, 0 0n l n lf f
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which in terms of the Pauli operators becomes  
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and this one is of the form  
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
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3

     (27) 

which is the Schrödinger equation for a two level atom 
introduced in a circularly polarized electromagnetic field 
[5]. 

2.3. Numerical Results 
 
We solve numerically Equation (28), considering only 
the coefficients nlm  for . We use the same 
parameters used in the classical numerical calculations, 
Equation (9), which implies to have a close resonant 
transition between the states 

D ,n l 

100  and 211  with 

10,( ),( ) = 0.82  . Higher order of excitation are not 
considered since we want to see what happen to the 
states closely related with the classical ones, where clas-
sical chaos appears. In this way, we are not interested 
here in the quasi-classical region (very highly exited 
states) but in the deep quantum region (first few states), 
where quantum-classical correspondence is not expected. 
The results of the numerical simulations are shown in 
Figures 2(a) and (b) which represent the typical oscilla-
tion between the population in the two resonant states. 
The Figure 2(a) shows the transition probabilities for 
small values of W before there is a considerable mixing 
of states (observe that 

2

211 < 0.5c ). Figure 2(b) shows 
the same probabilities but for the value 
 1= 1.03 cmW   which should correspond to have clas-
sical chaotic behavior, in the classical dynamics (note 
that the value of W for classical chaos to appear is  

1= 0.177 cmchW  ).  
We see also that the classical value of the closed clas-

sical resonance suggests overlapping between quantum 
states in n = 1 and n = 2, as we precisely observe in our 
simulations, which is consequence of the resonant transi-
tion frequency between the states 100  and 211 . 

2.4. Quantum Phase Space Pictures 
 
In this section we try two different approaches to see a 
better relation between the quantum and classical dy-
namics. Here, we are interested in the behavior of ex-
pectation values of the dynamical variables rather than 
the statistical properties in the phase space due to the 
Schrödinger wave function (Wigner [27], Husimi [28], or 
Glauber-Sudarshan [29,30] distribution functions) since 
these values are the ones we want to compare. The first 
and most used approach [21-23], is to use the phase 
space representation in terms of the expectation value of 
the dimensionless canonical variables X̂  and  P̂

† †
ˆ ˆ= , =

2 2

a a a a
X P

i

 
.

 
         (28) 
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(a) 

 

 
(a) 

Figure 2. Time evolution of the total probability, the probability amplitude of the state 100  (upper line) and the state 211  
(lower line) for different values of the perturbation: (a) W = 0.048 cm–1, solid; W = 0.19 cm–1, dashed; W = 0.68 cm–1, bold; (b) 
W = 1.03 cm–1. 
 

The results of the numerical simulations of this ap-
proaches is presented in Figure 3, where we used the 
same parameters of expression (15) and W = 1.03 cm–1. 
For the initial state wave function of the system we chose 
a poisson-like distribution in the coefficients  with 
the maximum in value in the state . This initial state 
is determined by the following coefficients 

0nlD

100D

000 010 020

100 110 120

200 210 220

1.5 0.2 0.05
= , = , =

12 12 12

8 0.4 0.
= , = , =

12 12 12

1.5 0.2 0.05
= , = , =

12 12 12

D D D

D D D

D D D

1

.

    (29) 

Copyright © 2011 SciRes.                                                                                 JMP 



 
478 G. LÓPEZ  ET  AL. 

 

 

Figure 3. Phase space like picture with the expectation values variable X  and P  for the initially poission-like distribu-
tion, Equation (29), using the same parameters as with the classical case. 
 

The reason to use this initial state is based in the prop-
erties of the coherent states of the harmonic oscillator. 
This selection not only gives a well defined initial value 
of the expectation values, but also permits a further study 
in terms of the Liouville dynamics for both the classical 
and quantum case [24]. Although the dynamics of each 
variable seem to be stable and similar to each other, the 
phase space representation does not seem to give any 
picture alike to the classical dynamics of the system (see 
reference [20]), i.e., the phase space in terms of the ca-
nonical variables X̂  and P̂  shows no resem-
blance to the classical dynamics, and this happen for 
other different initial states. 

In the second approach, we will use the phase space 
representation in terms of the expectation value of 

 ˆ
arg ei , as the angle, and the expectation value of the 
number operator . In polar coordinates, the n̂ n̂   will 
correspond to the radius and  ˆ

arg ei  to the angle of 
the phase space of this set of variables,  and †n a aˆ =

ˆ
e =i a †a

3. Conclusions and Comments 
 
We have studied the quantization of a diatomic molecule 
by solving the Schrödinger equation with the known 
Hamiltonian of the diatomic molecule with a circularly 
polarized resonant rf-field, written in spherical coordi-
nates (rotations) and angle-action variables (vibrations). 
The wave function was expanded in a finite combination 
of a proper stationary basis with time dependent coeffi-
cients, and the system of equations for these coefficients 
was obtained. Using the same parameters as in the clas-
sical case, a near resonant transition between the states 
100  and 211  is gotten, which correspond to the 

closer integer numbers for  where the classical non 
linear resonances appeared, 1  and 2

n
n 2 1.5n  . Us-

ing a poisson-like distributed initial wave function in the 
quantum numbers, with maximum in the resonant state 
100 , we try two different approaches to see the quan-

tum phase space expectation value dynamics and com-
pare it with the classical case. The usual approach, using 
the canonical variables X̂  and , fails to provide any 
intuitive picture of the classical case. On the other hand, 
the approach using the expectation value of 

P̂

ˆie   and  
suggests some resemblance and relationship with the 
classical case. Therefore, we have here the following 
situation, on one hand, the correspondence principle tells 
us that we must have the quasi-classical behavior (clas-
sical chaos) for this quantum system at very large quan-
tum number. However, classical chaotic behavior is ob-
tained just for the associated first states of the quantum 
system, implying that quasi-classical chaotic behavior 
can not be obtained here. So, as one could expect for this 
case, quantum dynamics does not follow the classical 
one. 

n̂

† 1 a . The expectation values of these va-
riables represent the classical analogous of the variables 
on Figure 1 above. In the upper left plot of Figure 4 it is 
shown the time evolution of n   which resemblances to 
the classical case in terms of the main and different fre-
quencies with which it oscillates. For the numerical si-
mulations results presented in these figures we used the 
same parameters as in the Subsection 2.3, and the same 
initial state (29). The phase space picture in terms of the 
operators  and 

ˆ
n̂ ie   seems to have a little bit resem-

blance with the classical results, perhaps because the 
dynamics of  resembles the classical part. Also, the 
sudden slow changes of 

n̂

 ˆie arg   seem to suggest some 
kind of relation with the resonances of the classical 
case. 
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Figure 4. Phase space like picture with the same parameters as in the classical case in terms of the expectation values n̂  
and  ˆiarg e  . 
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