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Abstract 
 
In almost all previous works, the hyperbolic dispersion surfaces of the central proper quadrics have been 
crudely derived from reduction of the degree from the bi-quadratic equation by use of some roughly inde-
finable approximate relations. Moreover, neglecting the high symmetry of the hyperbola, both the branches 
have been approximated on the asymmetric surfaces composed of a pair of a branch of the hyperbola and a 
vertex of the ellipse without the presentation of reasonable evidence. Based upon the same dispersion sur-
faces equation, a new original gapless dispersion surfaces could be rigorously introduced without crude 
omission of even a term in the bi-quadratic equation based upon usual analogy with the extended band theory 
of solid as the close approximation to the truth. 
 
Keywords: Dynamical Theory of X-Ray Diffraction, Gapless Dispersion Surface, Gappy Dispersion Surface 

1. Introduction 
 
First of all, it could be necessarily considered that the 
firm establishment of E(energy) vs. k(wave number) 
curves as the dispersion relation of the electron in solids, 
which have been used as the usually popular gappy dis-
persion surfaces by solid line in Figure 1 [1] in almost 
all works of the dynamical theory of X-ray diffraction 
(DTXD) [2-6], were carefully introduced from the solu-
tions of the secular equation based upon the experimental 
and theoretical examinations in the low-energy elec-
tron-diffraction by R. M. Stern et al. [1] and have pre-
vented to foster greater understanding of DTXD. In the 
band theory of the solid state physics, the energy gap at 
the Brillouin zone boundary between the hyperbola and 
ellipse in Figure 1 could be introduced as a perturbative 
effect of the Fourier component of the periodic potential 
in the crystal [7], which is the off-diagonal term in the 
secular equation shown in the Section 5. It plays impor-
tant role that the band structure and its electronic struc-
ture occupied by electrons depending on their concentra-
tion could give an insulator, a metal or a semiconductor 
and a semi-metal [7]. The energy band structure with the 

forbidden band as the Bragg gap due to the potential bar-
rier from the band theory in Figure 1 [1] could be valid 
for only the valence and conduction electrons and inci-
dent electrons in the electron diffraction [1,7,10]. On the  

contrary, the off-diagonal terms of 2 2Cχ and Cχ ggK K  in  

Equation (2) in the Section 3 are composed of the wave 
number, the polarization factor and the Fourier compo-
nent of polarizability as a response function of X-rays,  

which could be rewritten by 2χ λ πg gR F V  [3]. Here  

R  is the classical radius of electron,  the wavelength, λ

gF  the Fourier component of the structure factor and V 
the unit cell volume. All of the factors are transparent to 
X-rays contrary to the potential for electron, and there-
fore cannot construct forbidden band as the Bragg gap, 
as in the Section 2 [8,9]. 

Secondly, the hyperbolic gappy dispersion surfaces in 
DXTD have been arranged near an intersectional point at 
the Lorentz point LD between the hyperbola and ellipse 
in Figure 1. The hyperbola is perfectly point symmetry 
about the center of the hyperbola. However, the gap in 
Figure 1 is composed of a branch of the hyperbola and 
an arc of the ellipse. According to each definition of the  
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Figure 1. The familiar dispersion surfaces. The formation 
of the Bragg gap has reasonably derived only in the elec-
tron-diffraction by Stern [1]. Superposition of the hyper-
bola over the gap between a branch of hyperbola and a 
vertex of ellipse in DTXD is a misapplication by a light-
hearted interpretation. 
 
central proper quadrics, the ellipse and hyperbola can be 
formed from the loci that the sum and difference of the 
two distances from the definite two points are constant, 
respectively, as is written like    2 2

1x a y b  . 
Therefore, the hyperbola has two asymptotes that cannot 
exist in the ellipse. Let it be ever so infinitesimal line 
elements in each, ellipse and hyperbola are invariably 
ellipse and hyperbola, respectively. Generally, approxi-
mation can round off magnitude of the quantity but can-
not change the plus and minus signs in algebra and the 
symmetry in geometry. Therefore, the ellipse could not 
transform into the hyperbola by approximation. By na-
ture, that’s something that cannot be, as mentioned in the 
sections 3 and 4. 

As a preliminary work, surpassing the above two er-
roneous points the rightly reasonable dispersion surfaces 
[8,9] are carefully described based upon high analogy [3] 
with the extended band theory in solid state physics as 
the closest approximation to the truth [10]. 

 
2. The First New Gapless Dispersion  

Surfaces in DTXD Based upon the Band  
Theory of the Solid 

 
Mainly following Kato’s scheme [2] based upon a man-
ner of the Laue method [3], we carefully examined deri-
vation of the gapless dispersion surfaces from the bi- 
quadratic equation of the two wave approximation. The 
vector propagation equation of an electro-magnetic wave 
by the electric displacement d in a medium with a peri-
odic polarizability χ(r) has been represented by  

2 rot rot 0K χ    d d d . 

Based upon this equation, the two wave propagation  

equations from the Bloch waves of do and gd defined by 

     exp expo o g gd i i     d r k r d k r  

could be derived to be 

 2 2 2 0o o g gk d K C d k          (1a) 

and 

 2 2 2
o 0g gK Cχ d k dg  k         (1b) 

in which k is the wave number in the crystal, K the wave 
number in vacuum defined by( 01

2 
), 

where n the refraction index, C the polarization factor 
and 

χ
k K nK

    

o , gχ   Fourier components of the polarizability, in 
which 

2

g gg  from χ χ χ *
ggχ χ  by neglecting the 

absorption. Here, in order to solve the two wave propa-
gation Equations (1a) and (1b), which could be repre-
sented by the simultaneous linear equations with two 
unknowns, the necessary and sufficient condition, which 
is satisfied for existence of solutions [6] could be repre-
sented by  

 
2 2 2

o g 4 2 2
ij o2 2 2

k C
k k

C k g
g g

K χ

K χ


  


k

S k
k

2 k

0

 

2 2 4 2 2
o Cg gK χ ,   k k             (2) 

which was designated as the bi-quadratic dispersion 
surface equation called by Pinsker [4], not the secular 
equation. Here, heads of o  and k gk ( o  where k g 
g  is the reciprocal lattice vector) in Figure 2 lie at the 
point O and G and their initial common point 1 , which 
chanced to be there satisfies a loci in Equation (2) in the 

S

 

 
Figure 2. Diffraction in reciprocal space based upon the two 
wave approximation. The points S1 and S2 are intersectional 
points, through which a horizontal lines of H1 and H2 are 
reference lies. The vector of OG 


g  is the reciprocal lattice  

vector, 1 oS O  k


 the incident wave vector and 1 gS G  k


 the  

reflected wave vector. 
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reciprocal space. 
The diagonal terms of S11 and S22 in Equation (2) rep-

resent the two same radius circles intersected at two 
points S1 and S2 in Figure 2. The roots of X ( 2 0k  : 
positive definite) in Equation (2) can be given by 

   22 2 2 2 4 2 2
o o

1
4 .

2 g gX K χ
      
 

k k k k gC
 

  (3)  

Accurately, Equation (2) could not be a form of the 
secular equation but has been frequently impressed as the 
secular equation in some references [2,3,6]. Just to be 
sure, the intrinsic secular equation of equation (2) could 
be represented from the usual definition as follows: 

    
2 2 2

2 2 2Det ij
g

g g

k E K Cχ

K Cχ k E


 
 

 
k

S E
k

o
ij  

 2 2 2 2 2 2
O O2g gE k E      k k k k  

   22 2 2 4 2
O 0g k k K Cχ ,   k k g            (4) 

in which E is the eigen-value, 
1 for

0 forij

i j

i j



  

 the 

Kronecker’s delta, which represents the unit matrix. The 
eigen-values of Equation (4) could be obtained to be 

   22 2 2 2 2 4 2 2
o o

1
4

2 g gE k K C χ ,
      
 

k k k k g


  (5) 

where the first term of “ ”in Equation (5) only trans-
lates the origin of E, therefore ordinarily it is omitted 
hereafter. It is the most important that the behavior of the 
whole multinomial commonly in the right hand side in 
Equations (3) and (5) should be carefully analyzed over 
all k-space especially in the vicinity of the Brillouin zone 
boundary. When E = 0, Equations (2) and (3) are com-
pletely equivalent to Equations (4) and (5), respectively. 
Then, it is self-evident that the analytic results in both of 
Equations (3) and (5) without any abbreviation of even a 
term as done in the conventional crude approximation 
could remain wholly valid as the close approximation to 
the truth. It could be understood that the refracted beam k 
in the roots in Equation (3) can be sufficiently character-
ized by AM and FM due to the three kinds of photons of 

o ,

2k

k gk  and K,which could be polarized by the periodic 
electron distribution in gχ  in conformity with the dual 
polarized photons by .  C

Approximately assuming that two in- 4 2 2 0gK C χ ,
tersected circles with the same radii in Equation (3) are 
shownin Figure 2. If the magnitudes of  and ok gk  are 
close to each other, then the term of 4 2 24 gK C χ cannot be 
neglected. Thus, the amplitude of neither plane waves is  
negligible. When o gk k , Equation (3) becomes 

2 2
o gX k K C   and hence the ratio of  to od gd , 

determined from Equation (2) is 2 2
g gK Cχ : K Cχ  

Hence, o 1 1gd : d : . Assuming that  224 gK Cχ is 

large compared with the first term under the radical sign 

in Equation (3) in case of 2
o

2
gk k , X can be expanded 

to be, 

   22 2
o2 2 2

2 χ gK C

  
o

1
82

g
g gX K Cχ


  

k k
k k  

  
 (6) 

If we translate the origin of k by 2 g  and consider 
the vector 2k g  and if we denote by x the compo-
nent of  parallel to k g  and by z the normal compo-
nent to g , then by using the following relations, after 
more elaborate vector analysis than it looks like, 

2 2 2 2
o o2g ok    k k g g k  

2 2
o2 2

2
z

        
  

g
x  g g k x g  

and 
2

2 2 2 2
o 2

        
 

g
k z x z x x

2

4 g
g , 

a reasonable roots of X in Equation (3) from the 2nd and 
3rd terms in Equation (6) can be rewritten as 

2
2 2

4X    gz x  

2
2 2

2

2 g
g

K C
K C




  
        

x
g

       (7) 

The 4th term in the brackets in Equation (7) could be the 
most important one expanded in series near the Brilluoin 
zone boundary described in the above as one of main 
subjects. As a result, the 4th term in Equation (7) could be 
indicated by  

 2 2 2 2 22g gK C K C    y g x .      (8) 

The expressions in Equation (8) show the precisely ca-
nonical forms of the hyperbola and ellipse as 

2 2 2 2 2y b b x a               (9) 

in which the ellipse with plus sign and hyperbola with 
minus one are shown in Figures 3(a) and 3(b), together  

with asymptotes of 0
y x

b a
   labeled  in  1 andL 2L

hyperbola. The constants a and b in Equation (9) can be 
given by Equation (8) as 

22 ga K C g             (10a) 

and
 

Copyright © 2011 SciRes.                                                                              JMP 



T. NAKAJIMA 
 

149

 

 
Figure 3(a). The dispersion surfaces composed of the 
ellipse and hyperbola in Equation (8) with the two 
asymptotes L1 and L2 defined by extended two diago-
nals of the rectangle with both sides of 2a and 2b. 
3(b).This shows superposition of Figure 3(a) upon 
Figure 1, which shows smooth variations of the dis-
persion surfaces in forward and backward X-ray near 
the Brillouin zone boundary.

  

χ gb K C .              (10b) 

Therefore, 22 2 2 ga K C g  and 2 2 χ gb K C
 

from Equations (10a) and (10b) are the minor and major 
axes of the ellipse, respectively and the latter of 2b also 
stands for the transverse axis of the hyperbola. The gra-
dients of the two asymptotes of hyperbola defined by the 
gradients of diagonals of the rectangle with both sides of 
2a and 2b in Figures 3(a) and 3(b) could be expressed 
by  b a  2 sing BC    from Equations (8) and 
(9) by the Bragg law, which will be discussed in the final 
section. Both of the hyperbola and ellipse could stand in 
a line without a gap as in Figures 3(a) and 3(b). Conse-

quently, it could be apparently proved that the expected 
Bragg gap as shown in Figure 1 between hyperbola and 
ellipse could not absolutely exist in Equation (8) in 
DTXD and the gappy dispersion surfaces in Figure 1 can 
be rigorously set to the right gapless dispersion surfaces 
in Figure 3(a).  

 
3. Examination on the Crude Approximation 

to Derive the Previous Gappy Dispersion 
Surfaces 

 

According to the previous works [2-6], the dispersion 
surface Equation (2) can be factorized as 

2 2 2

2 2 2

χ

χ g g

gk K C

K C k





k

k
o  

     4 2 2χ 0g gk k k k K C g     k k k ko o .  (11) 

In almost previous references [2-6], by use of the nu-
merical approximate relations of 

O 2 2k k K k    and ,  (12) 2 2gk k K k  

the central proper bi-quadratic Equation (11) could be 
further decomposed into two quadratics as follows: 

   24gk k K 0   k ko          (13a) 

    2 2 2χ 4 0g gk k K C   k ko .    (13b) 

The factorization in Equation (11) by Equation (12) is 
over the limits of approach and beyond reasonable con-
ception in Equation (4).  

Originally, the bi-quadratic dispersion surface Equation 
(2) should be a product of the two central proper quadrics 
consisting of the hyperbola and ellipse including circle as 
easily understood from Figures 1 and 2. First, the central 
proper quadric of the hyperbola in Equation (13a), which 
could be constructed by replacing a very big product of 

Ok k  and gk k  with 24K  by use of Equation (12), 
has been cut down without any thought for the conse-
quence. Secondly, although a product of both terms of 
k ko  and gk k  has been approximated at zero from 
Equation (12), an order of magnitudes of the second term 
in Equation 13(b) can be estimated to be  

   

 

2 9to104 2 2 2 2 2 2 5 2

2 8to10

4 4 10 10

4 10 1

g gK C χ K C χ C

C

   

 




. 

This is tremendously large number. The above approxi-
mate expression cannot coincide with Equations (11) and 
(13b). Commonly used factors in Equations (13a) and 
(13b) from Equation (12) could be only understandable 
in approximation of numerical values but not in vector 
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analysis of  and ko gk  considering its direction and 

orientation in the vector space. These approximations are 
unmistakably self-contradictory and definitely break na-
tive goodness of the two central proper composite quad-
rics in Equation (2), which should be never allowed 
without rigorous verification. This is a violation without 
cause. 

Reserving examination of the elimination of the de-
composed factors in Equation (13a) in the crude ap-
proximation, it could be concluded that Equation (13b) 
intuitively has at least two solutions. From the condition 
that the product of two variables is a constant of 
 2 2 2χ 4gK C   in Equation (13b), a simple solution 
represents a rectangular hyperbola. However, this is not 
practically reasonable, considering the variations of the 
Bragg angle. In another solution, it could be easily un-
derstood from a well-known attribute that the product of 
the two perpendiculars to the two asymptotes of the hy-
perbola from an arbitrary point on it is constant described 
by   2 2 2 2ba b a ,  which could be easily prove from 
the canonical form of Equation (13b) as  

2

y x

B B

1
2cosθ 2sinθg g

k k

KC KC 

  
    

  

2




, 

 B0 θ π 2 .                  (14) 

The fitness of Equation (14) to the hyperbola at the cen-
ture point D  in Figure 1, which is composed of a hy-
perbolic branch (named as “branch 1” for 

L
,kok  

0g k k ) and an elliptic arc near a vertex on the major 
axis side (similarly “branch 2” for ) has 
not yet been correctly examined from a geometrical 
viewpoint to decide whether to support Equation (13b) 
on the principle of being fair and just.  

, 0gk k k k  o

 
4. Geometrical Examination on the  

Conventional Gappy Dispersion Surfaces  
In DTXD 

 
It is thoughtless beyond mathematical knowledge to as-
similate both substantially different extremities from a 
different nature of symmetry between hyperbola and 
ellipse, by simple numerical approximation in Figure 1. 
In Figure 2, the oblique lines of T1 and T2 represent tan-
gential lines of two circles at the intersection point S1. It 
is very important to note that the intersected curves 
above and below H1 show quietly an obvious asymmetry, 
which could be paraphrased as follows: the vertically 
opposite angles at the intersectional point S1 of the two 
composite arcs O1S1G1 and O2S1G2 defined by intersec-
tional angle included by both of the tangential lines T1  
and T2 at S1 are identical. The angle included by two tan-
gential lines at the points O1 and G1 on both arcs S1O1and 

S1G1 can increase with increasing distances to both 
points O1 and G1 from the point S1 and become mono-
tonically larger than the vertically opposite angles in the 
vicinity of S1. But a variation of the corresponding angles 
included by two tangential lines at the points O2 and G2 
on both arcs S1O2 and S1G2 can become entirely vice 
versa. As easily imagined from Figure 2, both of the 
whole closed curves of oval S1G2G3S2O3O2S1 and co-
coon-shaped S1O1O4S2G4G1S1 constricted in the middle 
could be redrawn as hyperbolic and elliptic dispersion 
surfaces with the Bragg gap as in Figure 1 for low- 
energy electron-diffraction by Stern [1], not for X-ray 
diffraction. This is a rigorous proof of asymmetry of arcs 
O1S1G1 and O2S1G2, from which the symmetric branches 
of the hyperbola can never be constructed. Therefore, the 
gappy dispersion surfaces in Figure 1 cannot be applied 
to TDXD as the hyperbola. In the previous works, a pair 
of asymmetric arcs of O1S1G1 and O2S1G2 has been in-
sensitively replaced by the hyperbola of Equation (13b). 
This is the second violation without cause. For a long 
term, the previous works [2-6] have been just an attempt 
to put together the indefinable hybrid dispersion surfaces 
composed of a pair of the hyperbolic branch and elliptic 
arc to lay basis for today’s TDXD. However, by nature 
that is something that cannot be. Consequently, ap-
proximation can round off magnitude of the quantity but 
cannot substantially change the plus and minus sign and 
geometrical symmetry. Therefore, the ellipse could not 
transform into the hyperbola by reasonably scientific 
approximation, whose use is totally outrageous and 
should not be fundamentally permitted. 

 
5. Origin of the Energy Gap in the Band 

Theory of Solid and Brief  
Characterization of the Off-Diagonal 
Term in the Dispersion Surface Equation 
(2) 

 
There are very close resemblance in physical treatment 
between the energy gap in conduction band [1,7,10] and 
anomalous transmission of X-rays [2-6] but the definite 
necessary results reveal that the off-diagonal terms of the 
Fourier component of potential in electrons create a for-
bidden energy gap [1,7,10] and those in photons in Equ-
ation (2) closely relate with the different ratio between 
the absorption and transmission of photons [2-6]. 

According to Kittel [7], two different standing waves 
of electron in solids could be derived from the two trav-
eling waves of exp  i x / a  and exp  i x a   as  

 ψ exp exp 2cos
i x i x

x a
a a

            
   

    (15a) 
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and 

 

 

i
ψ exp exp

2 sin

i x x

a a

i x a .

        
  

 



    (15b)

 

The two standing waves     and  ψ   pile up 
electrons at different regions, and therefore the two 
waves have different values of the potential energy. This 
is the origin of the energy gap. The probability density ρ 
of a particle is equal to * 2ψ ψ ψ

ki
. For a pure traveling 

wave exp( x), ρ is equal to exp( x)exp(-ikx)=1 so that 
the charge density is constant in Figure 4(b).  

ki

From the standing waves  ψ   in Equation (15a), 
the probability density could be expressed by 

     2 2ρ ψ cos x a .      

The function piles up negative charge on the positive 
ions at the periodic lattice points of x = na (n = 0, 1, 2, 

), where the potential energy is the lowest. For the 
standing wave 


 ψ   in Equation (15b) the probability 
density is given by 

     2 2ρ ψ sin πx a ,     

which concentrate electrons away from the ion cores.  
Consequently, the wave function  ψ 



 piles up elec-
tronic charge on the cores of the positive ions, thereby 
lowering the potential energy in comparison with the 
average potential energy seen by a traveling wave in 
Figure 4(b). The wave function ψ   piles up charge 
in the region between the ions, thereby raising the poten-
tial energy in comparison with that seen by a traveling 
wave in Figure 4(b). When the expectation values of the 
potential energy could be calculated over these three  
 

 
Figure 4(a) Variation of electrostatic potential energy of 
conduction electron in the field of ion cores of a linear lat-
tice. 4(b) Distribution of probability density ρin the lattice 
for   2 2ψ sin π x a   (solid line),    2 2ψ cos x a    

charge distributions, it is in the nature of things that po-
tenti  ρ   

 trave

(dotted line) and for a traveling wave (one point broken line) 
[7]. 

al energy is lower than that of the traveling 
wave, whereas the potential energy of  ρ   is higher 
than that of the ling wave. If energy difference be-
tween  ρ   and  ρ   is equal to gE , th an energy 
gap of width becomes 

en 

gE  Assuming that the potential  
energy lectron in the crystal at the point x could be 
expressed by  

 in e

   cos 2U x U x a  , 

the energy difference between two sta ing wave states 
is  

nd

      
1

2 2
dE xU x       

0
g 

  2 22 d cos 2 cos sinxU x a x a x a U     . 

It is found that the gap is equal to the Fourier comp ent 
of the crystal potential, which is the off-diagonal term in 

on

the matrix  ijS  in the secular Equation (4) and can 
cause an insulator, a metal, a semimetal etc in the above. 
In DTXD, by use of og  k k g , the amplitudes of the 
Bloch waves in the section 2 [5] could be given by 

     exp expo o g gi i     d r d k r d k r  

    exp expo g oi i     d d g r k . r

From this, the intensity of the wave-field can b given by  e 

  2 2 2
o 1 2 cosI d d R RC    g r ,     (16) 

in which the amplitude ratio is represented by 

g o go g gR d d CK CK           (17) 

where     2
o o oα 2 1 oK k χ   k k  

and 

    22 1g g gα K k χ   k k  g

from off-diagonal term in the matrix  ijS

g r

. For simplic-

wave field inten-


ity, instead of pile up of electrons, the 
sity is modulated by the factor cos  in Equation 

(16), which has maxima at n g r . It corresponds to an 

atomic plane and minima at  2 1 2g r n    with in-

tegral n. Therefore, by givi fferent reading r in-
stead of x in Figure 4(b), the m ima of the 
standing wave occur at or halfway between the atomic 
planes. Including a role of the polarization factor C, it is 
important to stress that all of the off-diagonal terms in 
Equation (2) are transparent to X-rays as aforementioned 
and never construct the forbidden energy gaps in Figure 
1 by splitting of the energy bands. The existence of the 
off-diagonal terms in Equation (2) could give energy 

ng a di
axima and min

dispersive X-ray diffraction depending on the ratios from 
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transmission to absorption due to the photoelectric effect. 
For example, in the 200 reflection in NaCl, the structure 
factor gF

 
is positive. Hence, gχ is negative and the 

wave-field in branch 2 is absorbed more strongly than 
that in branch 1shown in Figure 5. The effect is well 
known as the Borrmann effect [5]
 

6. Results and Discussion 

. 

sion
be c

 
In DTXD, the asymmetric disper
solid line in Figure 1 that could 

 surfaces shown by 
omposed of hyper-

olic ch and elliptic arcs have been aggressively b bran
camouflaged with the gappy dispersion surfaces devised 
from the crude approximation beyond the fundamental 
algebra and geometry in Equation (13b) mentioned 
mainly the Sections 3 and 4 in which they have been 
constructed out of the quadratics crumbled from the 
bi-quadratic equation based upon the crude approximated 
relation in Equation (12). It means that these surfaces 
have been lacking fundamental consistency based upon 
the physical necessity. Therefore, the branch 2 has not 
the intrinsic asymptotes, because the root is from a part 
of the vertex of the ellipse. Hence, the previously wide-
spread analyses in DTXD by use of Equation (13b) 
should be reexamined based upon the new gapless dis-
persion surfaces in Figure 3(a) in Equation (7).  

From Equation (14), another canonical form of the 
hyperbola in Equation (13b) could be represented as fol-
lows, 

   
2

2 2 2 22
cos θ sin θ 1 0 θ π 2 .k k ,

KC

 
     


 y B x B



 (1  
racteristic that the in  of the factor in the 

 large 
value a entioned in the se 3 and the disp
te

B

verse
quation (18) is equal to very

ction 

g

It is cha
first parentheses E

s m

8)

ersive 
rms in the second factors consisting of two terns in 

parentheses are remarkably modulated by the sine 
squared Bθ  plus cosine squared Bθ  in Figure 6. In the 
region of B0 π 4θ  , the gradients of the hyperbola 
are steep and the intersectional angles of the asymptotes 
are the ac e angles. And the majo axis of the reference 

ellipse curve of 2 2
y B Bcos sin 1θ θ k  is parallel to the 

ky-axis. When

ut  r 
2

B π 4θ  , it becomes the rectangular hy-  

perbola and the r rcle. Moreover, in eference curve is a ci

Bπ 4 π 2θ ,   ntersectional angles become the 
obtuse angles. he offered ellipse for reference is 

those i
That of t

Whereas, from
parallel to the kx-axis. 

 Equation (9), the canonical form of the 
hyperbola and ellipse in Equation (8) could be repre-
sented as 

 
Figure 5. Intensity of the two wave-fields at the exact Bragg 
condition in the 200 refection. Note that branch 1 and 2 
waves imum intensity and a m  at th  

ig

 have a min aximum one e
atomic positions, which are analogous to the electrons in 
Figure 4(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F ure 6. The main part of the dispersion surfaces of 

2 2 2 2cos sin 1k k θ θy B x B  in Equation (18), together with the
pses of 2 2 2 2cos sin 1k k

 
elli  Bθ θy B x  as a reference. The Bragg 
angles from (1) 10 to 8 (80) in every ten degree should be 

slope hyperbola to the gentry slope one 
in order. 
 

assigned to the steep 

 
2 2

yk k 
2

1 0 2 .
2

x

g g

, g k
K C K Cχ g

 
     

     
 (19) 

The major axis of ellipse in Equation (19) can b
stantly parallel to the ky-axis because it is constant
ger than the minor axis like 



e con-
ly lar- 

22 χ g gK C g K C   

since K g  in the order of magnitude in the region of 

0 2g k  , which could corresp  onds to the region of the

Bragg angles of 0 2B    in Figure 2. It is consid-

ered that ppearance of the scattering vector  a g  only in 

the parameter a in Equation (9) could be appropriate. 
Further the gradie ymptotes of the hyperbola nt of the as
in Equation (19) can be represented as follows,  

-6 -4 -2 2 4 6
x

-6 

-4 

-2 

2

4

6
y (1)   (2)   (3)    (4)    

(5) 

(6) 

) 

 
 

 
(7
 
(8) 

BRANCH 1 BRANCH 2
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  2
b a sin B

gC



   . 

If the Bragg angle B  is larger than 0 5.  by a r
estimation of the a  expression, t intersectional
angles of the asymptotes could be the acute angle and 
reasonable.  
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