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Abstract 
 
We describe a computational method for simulating the time dependent quantum mechanical system inter-
acting with external field. In this method the Schrödinger equation is solved by expanding the wave function 
in the basis set of unperturbed Hamiltonian. The expansion yields a set of coupled first order differential 
equation. For expansion coefficients, the coupled channel method is applied to a particle in a box interacting 
with external field in the form of chirped laser pulse. The pulse shape is taken as Gaussian. We study the ef-
fect of different pulse parameters i.e. chirp rate, intensity, center frequency, box length and laser duration on 
the dynamics of the particle. Many interesting results are obtained and explained. 
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1. Introduction 
 
Quantum mechanics [1,2] is the fundamental base for sev-
eral branches in Physics and particle in a box is one of the 
fundamental problems of quantum mechanics. In this paper, 
we have studied dynamics of a particle in a box in time 
varying external field/potential. This time varying field is 
achieved using a chirped laser pulse. Wang and Cham-
pagne [3] have studied the interaction of Gaussian laser 
pulse with the particle in a box. In their study they found 
that by using laser centre frequency to be resonant with the 
transition between first two states i.e. n = 1 and n = 2, tran-
sition probability of n = 2 state is appreciable and all other 
higher state have non zero but negligible probability. Here, 
we are presenting numerical simulation of the system. We 
numerically solve the coupled differential equations ob-
tained for a particle in a box, in the presence of a chirped 
laser pulse. It is shown that high-efficiency population 
transfer is possible for several values of chirp rate and box 
length. We also explore the dependence of population 
transfer on chirp rate. The results indicate that we can have 
large transition probabilities for higher states also with the 
help of chirped laser pulse. 

With the development in laser technology [4-6] in recent 
years, various techniques have been developed to modulate 
and even shape the laser pulse. The most exploited feature 
of modulated pulse is the chirp which describes the varia-
tion of carrier frequency with time. If the frequency in-

creases with the time, the pulse is positively chirped and if 
the frequency decreases with time, it is negatively chirped. 
Ruhman and Kosloff [7] used negatively chirped pulse to 
achieve large amplitude of vibrational motion in higher 
vibrational states of the ground electronic surface of CsI 
through an effective intra pulse pump dump mechanism. 
Cao et al. [8] have studied that a positively chirped pulse is 
very efficient in population inversion. So both positive and 
negative chirps are important and can be used as per re-
quirement of the problem or the system. The selection also 
depends on the system with which the laser pulse is inter-
acting and other parameters of pulse e.g. intensity, center 
frequency, pulse width etc. No work for such type of prob-
lem has been published earlier. Recently coherent control 
for box potential with laser fields has been studied by Imre 
F. Barna and PéterDombi [9]. 

In this paper we have used numerical method and com-
puter simulation to express all results. In Section 2, we 
have described a general coupled channel method to solve 
the Schrödinger equation under time dependent perturba-
tion condition. The Schrödinger equation is reduced to a set 
of first order coupled differential equations which are 
solved using efficient and commonly used fourth order 
Runge-Kutta method. Section 3 briefly describe particle in 
a box and its interaction with chirped laser pulse. We apply 
the coupled channel method to find the solution. In Section 
4, we briefly describe the computer simulation work. Fi-
nally in Section 5, we describe the numerical results for the 
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transition probabilities for different states as a function of 
time, chirp rate, box length and laser center frequency. Par-
ticularly, effect of linear chirp is examined in detail. In 
Section 6, we conclude the paper. 
 
2. The Coupled Channel Method 
 
The coupled channel method [10,11] is used to solve the 
time dependent Schrödinger equation. Consider a quan-
tum mechanical system having unperturbed Hamiltonian 

0Ĥ
 

for a eigen state n  with eigen energy values 
 which satisfy the equation nE

0
ˆ

n n nH E                 (1) 

Here n  forms a complete orthogonal set of eigen 
vectors i.e. 

| 1,  n n n n mn              (2) 

Considering the wave function as 

     0 expn n
n

t a iE t n           (3) 

Without perturbation wave function will have usual 
time dependence but coefficient n  is independent of 
time. Let us consider that perturbation is turned on in-
stantaneously at t = 0. Then the full Hamiltonian will be 
described as  

a

 
0

ˆ ˆH H V t                  (4) 

  0
ˆ ˆ

nH H V t

V(t) is the perturbation part (which is a function of 
time) having condition 

( ) 0 0

( ) 0 0

V t t

V t t

 
 

            (6) 

Now the time dependent Schrödinger equation is (as 
explained in Section 5, box units are used throughout the 
paper) 

 
 ˆt

i H
t








 t            (7) 

The solution of “(7)” can be written as 

     expn n
n

t a t iE t n            (8) 

Here n  (probability amplitudes) acquire time de-
pendence. In the absence of external perturbation, if sys-
tem is in one of the eigen state of 0

a

Ĥ , then it will re-
main in that state forever. However by the presence of a 
small perturbation, the system makes transition between 
its unperturbed eigen states. So with the perturbation, the 
probability of finding the system in nth state at any time t 
will vary with time and Pn(t) is given by  

    2

n nP t a t                (9) 

Using “(4)” in “(7)” 

 
    

0
ˆt

i H V t
t





 


 t        (10) 

Using “(1)” and “(8)” in “(10)”, we get the following 
equation 

n                (5) 

 
     

       

exp exp

exp exp

n
n n n n n

n

n n n n n n
n n

a t
i iE t E a t iE t

t

a t iE t E a t iE t V



n 

  
   

 
   



 

  

 
                      (11) 

Or  

 
     exp expn

n n n n
n n

a t
i iE t a t iE t

t nV 


  
                          (12) 

Operating it with k  from left, we get 

 
     exp | expn

n k n n n k
n n

a t
i iE t a t iE t

t nV   


  
                     (13)

 

 
     exp expk

n n n k
n

a t
i iE t a t iE t

t nV 


  
                         (14) 

 
Let the transition matrix element be  

kn k nV V                   (15) 

The transition matrix element Vkn may be either zero or 
non-zero depending upon the selection rules. Consider- 
ing transition frequency as , Equation kn k nE E   
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(14) will become 
 

   expk
n kn

n

a t
i a t i

t





  knt V

  




      (16) 

Thus matrix differential equation for co-efficientsan is 

 
 

1 111 12 12

2 221 21 22

exp

exp

n nnn

a aV V i t

a aV i t V
i

a aV




   
                 
             








 

(17) 

And by solving this set of coupled differential equa-
tions we get value of an(t) for different states and hence 
probability of finding the system in any particular state at 
any time t. We can write 

     
n n na t R t iI t             (18) 

where Rn(t) and In(t) are real and imaginary part of an(t) 
respectively. Using (18) in (16) we can have 

   

         cos sin

k k

n n kn kn kn
n

R t I t
i i

t t

R t iI t t i t V 

   
    
 


 (19) 

Separating real and imaginary parts of an(t) we get fol-
lowing equations 

 
       sin cosk

n kn kn n kn kn
n

R t
R t t V I t t V

t
 


 

   

(20) 
 

       cos sink
n kn kn n kn kn

n

I t
R t t V I t t V

t



  

     

(21) 
Equation (20) and (21) can be solved by using nu-

merical methods e.g. Runge-Kutta Method. 
 
3. Particle in a Box in Chirped Laser Field 
 
Consider a particle i.e. electron in a deep potential well 
from which it cannot escape and loses no energy when it 
collide with walls. So the potential is defined as 

( ) 0 0

( ) 0,  

V x x L

V x x x L

  
   

           (22) 

Now the Schrödinger equation becomes 

 
 

2 2

22

x
E x

m x

 
 




            (23) 

By solving this equation, the unperturbed eigen func-
tion and the eigen energy value are 

  2
sin /n

and 

 2 2 2 22nE n m  L

0

           (25) 

where L is the length of the box and n = 1, 2, 3, , and 
n ≠ 0 as it will give probability of finding the particle 
everywhere equal to zero, which is not possible. Consider 
that the system is interacted with chirped laser pulse [12]. 
Here the laser field is defined as 



    2
0 sin / cosE t E t t t          (26) 

Here E0, τ, ω0 and β are the amplitude, laser duration, 
laser center frequency and the chirp rate respectively. The 
laser interaction with the particle (i.e. electron) is defined 
as 

   , . 2V x t e E t x L            (27) 

Here ‘e’ is electron charge and zero point potential is 
chosen at L/2. Now the transition matrix Vkn can be writ-
ten as 

        

      

 

*

*

2

         2

         

kn k n

k n

kn

V t eE t x x L x dx

eE t x x L x dx

eE t D

 

 

 

 




      (28) 

where 
0knD   if k = n or k + n is even,  

 22 2 2
nkD 8Lk  n k n   if k + n is odd 

Using this transition matrix Vkn in Equation (20) and 
(21), we can find excitation/transition probability of any 
state at any time t under chirped laser field. By using lin-
ear chirp, we will get some exciting new results which is 
unexpected by simple laser pulse. These are described in 
the results section. 
 
4. Computational Analysis 
 
The determination of coefficients an(t) of different states 
allows us to calculate the transition probability for vari-
ous laser pulse parameters. For the present calculations, 
we have studied the system with n = 10 levels. Further, 
we have checked the convergence by variation in number 
of levels, and have obtained excellent convergence with 
n = 10 levels. 

For making the calculations traceable we have sepa-
rated the real and imaginary parts of the coefficients an(t) 
[see (18-21)]. Thus we obtain 20 real coupled differential 
equations to be solved. Any time propagator scheme can 
be used to solve these equations. For solving these equa-
tions we have used the efficient fourth order Runge- 
Kutta method by assuming that the system is initially in 
the ground state. x nx L

L
             (24) 

In next section, we discuss the results thus obtained. 
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5. Results Figure 1 shows that transition probability of n = 2 
state is sufficiently large but there is some probability 
flow to higher states also and even there is probability 
flow to n = 10 state. At the end of the pulse the transition 
probabilities becomes constant. It is clear from figure 
that the variations in transition probabilities are com-
pressed and stretched with the help of chirp. The transi-
tion probabilities show oscillatory behavior during the 
pulse. The higher states shows more oscillatory behavior 
as compared to n = 1, 2 or 3 state. 

 
It is worth mentioning, here, that we have used the box 
units throughout the paper. In this system of unit, the unit 
of mass is electron mass (me), unit of length is 10−10 m, 
unit of time is 1.75 × 10−17 s, unit of electric field is 3.75 
× 1011 V/m and unit of energy is ground state energy of 
electron in box of length 10−10 m i.e. 37.5 eV . Consider 
that initially the particle is in ground state i.e. P1(0) = 1.0. 
A plot of transition probability of particle in a box of 
length 2 box units as a function of time in optical cycle 
i.e. t/τ is shown in fig.1 for zero chirp, positive chirp and 
negative chirp rates. Here laser center frequency is set at 
ω0 = 3/4 i.e. resonant frequency between n = 1 and n = 2 
state, the laser field strength i.e. E0 is 1/8 and laser dura-
tion i.e. τ is 40.0. 

In Figure 2 we have presented the variation of transi-
tion probability for different states as a function of laser 
chirp. The results here are taken at the end of the pulse. 
In this case central frequency ω0 has been taken as 1/8 
for a, b and 3/8 for c, d. Also laser duration τ is 40.0 for 
a, d and 80.0 for b, c subfigures. This is useful in com- 

 

 

Figure 1. Transition probability of particle in a box in laser field as a function of time in optical cycle. Box width is 2 × 10−10 
m. Laser center frequency is 3/4, laser duration τ = 40 and field amplitude E0 = 1/8. In Figure 1 (a, b, c) β = 0.0, Figure 1 (d, e, 
f) β = + 1.0 × 10−2 and Figure 1 (g, h, i) β = −1.0 × 10−2. Here, the key used explains that n1-n5 are for a, d, g and n6-n10 are 
for b, e, h subfigures. Subfigures c, f, i refers to the corresponding fields. 
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Figure 2. Transition probability for a particle in a box in chirped laser field as a function of chirp rate. Field strength E0 = 
1/2 and box length = 2.0. The centre frequency ω0 = 1/8 for a, b and ω0 = 3/8 for c, d subfigures. While the pulse width τ = 
40.0 for a, d and τ = 80.0 for b, c subfigures. The results are taken at the end of the pulse. 

 
paring the results for variation of transition probability of 
different states as a function of chirp rate (β) for two 
different frequencies and laser durations simultaneously. 
As it can be seen from figure that transition probabilities 
of n = 3 state is higher for negative chirp than positive 
chirp for τ = 40.0 but it changes behviour for τ = 80.0, 
although transition probability for n = 1 and n = 2 states 
increases as frequency ω0 changes from 1/8 to 3/8 and 
transition probability remains greater for positive chirp 
than negative chirp. This change in probability shows 
that probability also depends on exposer time. Further, 
Figure 2 also shows that almost complete population 
inversion can be achieved by chirped laser pulses. There 
is substantial population transfer to higher states also. 

Figure 3 represents the transition probability of 5 
states as a function of box length. The results are taken at 
the end of the pulse. It is clear from the figure that nega-
tively chirped pulse connects higher states more effect- 
tively as compared to non-chirped pulse for the variation 

in box length. Also (d) part shows that transition prob-
ability of different states changes drastically for the ex-
posed time. 

In Figure 4, we compare the transition probability for 
5 states as a function of laser frequency. The results are 
taken at the end of the pulse. In part (b) the resonance 
between n = 1 and n = 2 states occurs at their natural 
frequency but in part (a) the chirp shifts the resonance 
and also it connects the higher order terms more effi-
ciently. 
 
6. Conclusions 
 
The effect of chirped laser pulse on particle in a box has 
been studied and we have come to the conclusion that 
frequency modulated laser pulse is an effective approach 
to get system in excited state. The transition probability 
of different states as a function of different pulse pa-
rameters and the box length have been studied. The sys- 
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Figure 3. Transition probability of 5 states for particle in a box in chirped laser field as a function of box length. Chirp 
rate β = −5.0 × 10−2 (except for (a) where β is zero), laser duration τ = 40 (except for (d) where τ is 80) and field ampli-
tude E0 = 1/2 (except for (b) where E0 is 1/4).The results are taken at the end of the pulse. 

 

 

Figure 4. Transition probability of 5 states for particle in a box in chirped laser field as a function of central frequency. 
Chirp rate in part (a) is β = −5.0 × 10−2 and zero in part (b). Laser duration is τ = 40, box length is 2.0 and field ampli-
tude E0 = 1/2.The results are taken at the end of the pulse. 
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tem is not merely two level shifting but with the help of 
chirped laser pulse we can shift the system to higher 
states, even n = 10 state has some transition probability 
(whatever small, it may be). The main result of the study 
is the variation in the dynamics due to time varying ex-
ternal potential and large transition probabilities for 
higher states in the presence of chirped laser pulse which 
can’t be achieved with non-chirped pulse. The system 
remains in higher state for appreciable time that may 
help in many physical and chemical aspects. 
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