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Abstract 

We have studied the Hoyle-Narlikar C-field cosmology with Kasner [1,2] space-time. Using methods of Nar-
likar and Padmanabhan [3], the solutions have been studied when the creation field C is a function of time t 
only. The geometrical and physical properties of the models, thus obtained, are also studied. 
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1. Introduction 

The three important observations in astronomy viz., the 
phenomenon of expanding universe, primordial nucleon- 
synthesis and the observed isotropy of cosmic micro-
wave background radiation (CMBR) were supposed to 
be successfully explained by big-bang cosmology which 
is based on Einstein’s field equations. However, Smoot 
et al. [4] revealed that the earlier predictions of the 
Friedman-Robertson-Walker types of models do not al-
ways exactly meet our expectations. Some puzzling re-
sults regarding the red shifts from the extra galactic ob-
jects continue to contradict the theoretical explanations 
given from the big bang type of the models. Also, 
CMBR discovery did not prove it to be an out come of 
big bang theory. Infact, Narlikar et al. [5] proved the 
possibility of non-relic interpretation of CMBR. To ex-
plain such phenomenon, many alternative theories have 
been proposed from time to time. Hoyle [6], Bondi and 
Gold [7] proposed steady state theory in which the uni-
verse does not have singular beginning nor an end on the 
cosmic time scale. Moreover, they have shown that the 
statistical properties of the large scale features of the 
universe do not change. Further, the constancy of the 
mass density has been accounted by continuous creation 
of matter going on in contrast to the one time infinite and 
explosive creation of matter at t = 0 as in the earlier 
standard models. But, the principle of conservation of 
matter was violated in this formalism. To overcome this 
difficulty, Hoyle and Narlikar [8] adopted a field theo-
retic approach by introducing a massless and chargeless 
scalar field C in the Einstein-Hilbert action to account for 
the matter creation. In the C-field theory introduced by 
Hoyle and Narlikar there is no big bag type of singularity 
as in the steady state theory of Bondi and Gold [7].  

The solutions of Einstein’s field equations admitting 
radiation with negative energy mass less scalar creation 
field C was obtained by Narlikar and Padmanabhan [3]. 
The study of Hoyle and Narlikar theory [9,10] and [8] to 
the space-time of dimensions more than four was carried 
out by Chatterjee and Banerjee [11]. RajBali and Tikekar 
[12] studied C-field cosmology with variable G in the flat 
Friedmann-Robertson-Walker model. Whereas, C-field 
cosmological models with variable G in FRW space-time 
has been studied by RajBali and Kumawat [13]. Singh 
and Chaubey [14] studied various Bianchi types models 
and Kantowski-Sach model in creation field cosmology. 

The way in which the Kasner [1,2] metric has played a 
central role in the elucidation of the existence and struc-
ture of anisotropic cosmological models and their singu-
larities in general relativity motivates the authors to stu- 
dy this problem. The Kasner metric is one of the more 
widely studied metric. Its usefulness for the construction 
of cosmological models and its utility for certain studies 
of elementary particles have made it particularly attrac-
tive for exploitation. Because of its simplicity it has been 
“rediscovered” many times and is itself very closely re-
lated to metrics given several years earlier by Weyl, 
Levi-Civita and Wilson. The form in which Kasner pre-
sented it has been virtually forgotten in favor of the dy-
namic form of the synchronous Bianchi I metric. Here, 
we have considered a spatially homogeneous and anisot-
ropic Kasner form of Bianchi type-I metric in Hoyle and 
Narlikar C-field cosmology. We have assumed that the 
creation field C is a function of time t only i.e.  ,C x t  

 C t .  

2. Hoyle and Narlikar C-Field Cosmology 

Introducing a massless scalar field called as creation 
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field viz. C-field, Einstein’s field equations are modified. 
Einstein’s field equations modified by Hoyle and Nar-
likar [8-10] are  

 1
8

2
m c

ij ij ij ijR g R T T               (1)  

where m
ijT  is matter tensor of Einstein theory and c

ijT  

is matter tensor due to the C-field which is given by  

1

2
c k

ij i j ij kT f C C g C C
    
 

          (2) 

where 0f   and i i

C
C

x





 . 

Because of the negative value of  00 00 0T T  , the 

C-field has negative energy density producing repulsive 
gravitational field which causes the expansion of the 
universe. Hence, the energy conservation equation re-
duces to 

; ; ;
m ij c ij i j

j j jT T fC C           (3) 

i.e. matter creation through non-zero left hand side is 
possible while conserving the over all energy and mo-
mentum.  

[Here semicolon (;) denotes covariant derivative]. 
Above equation is similar to 

0
i

ij j

dx
mg C

ds
                (4) 

Which implies that the 4-momentum of the created 
particle is compensated by the 4-momentum of the 
C-field. In order to maintain the balance, the C-field 
must have negative energy. Further, the C-field satisfy 

the source equation ; ;
i i

i if C J  and 
i

i idx
J v

ds
   , 

where   is homogeneous mass density. 

 
3. Metric and Field Equations 
 
We consider an anisotropic [Bianchi type-I] metric in 
Kasner form as 

31 2 22 22 2 2 2qq qds dt t dx t dy t dz           (5) 

where 1q , 2q  and 3q are three parameters that we shall 

require to be constants. 
We have assumed that creation field C is function of 

time t only i.e.    ,C x t C t and 

 , , ,m i
jT diag p p p               (6) 

We have also assumed that velocity of light and gravi-
tational constant are equal to one unit. 

We first find the components of Ricci tensor Rij.  

Assuming the metric (5), the non vanishing compo-
nents of Christoffel’s symbols are 

2 10 iq
ii iq t   , 0

i i
i

q

t
   , i=1, 2, 3 . 

Hence, we calculate 

  2 2
1 2 3 1 iq

ii iR q q q q t      , i=1, 2, 3. 

   2 2 2 2
00 1 2 3 1 2 3R q q q q q q t         . 

Let 1 2 3S q q q    and 2 2 2
1 2 3q q q     , we get 

 2 22R S S t   
 

Now, the Hoyle-Narlikar field Equations (1) for metric 
(5) with the help of Equations (2), (3) and (6) can be 
written as 

   2 2 2
1

1 1
1 2 8

2 2
q S S S t p fC              

  (7) 

   2 2 2
2

1 1
1 2 8

2 2
q S S S t p fC              

  (8) 

   2 2 2
3

1 1
1 2 8

2 2
q S S S t p fC              

  (9) 

   2 2 21 1
2 8

2 2
S S S t fC                

  (10) 

 S S
p fC C C

t t
       

 
            (11) 

Now, we assume that  

 1 2 3q q q SV t t                (12) 

Above Equation (12) can be written in the form 

     d d
V p fC V VC V

dV dV
     

        (13) 

In order to obtain a unique solution, one has to satisfy 
the rate of creation of matter-energy (at the expense of 
the negative energy of the C-field). 

Without loss of generality, we assume that the rate of 
creation of matter energy density is proportional to the 
strength of the existing C-field energy-density per unit 
proper-volume. 

This is given by  

   2 2 2 2d
V p C g V

dV
           (14) 

where   is proportionality constant . 

Let us define that    C V g V  . 

Substituting it in (13), we get  

     d d
V p fg V Vg

dV dV
           (15) 

Comparing right hand sides of (13) and (14), we get 
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2

2d
g V gV g V

dV f


 .       (16) 

On integrating which gives  

 
2

1

1

f
g V AV

 
  
               (17) 

where 1A  is arbitrary constant of integration. 

We consider the equation of state of matter as 

p  , 0 1              (18) 

Substituting Equations (17) and (18) in the equation 
(14), we get 

 
2

2 1
2 2 fd

V A V
dV



  
 
  
         (19) 

which further yields 
2

2 2 2 1
1

2

2 1

fA
V

f





 

 
  
 

 
  

 

         (20) 

Subtracting Equation (7) from Equation (8), we get  

   2
2 1 1 0q q S t              (21) 

Equation (21) can be written as  

1 2 1 2 0
q q q qd S

dt t t t t t
         
   

 

Now, using Equation (12), the above equation be-
comes 

1 2 1 2 0
q q q qd V

dt t t t t V
         
   


       (22) 

This on integration gives 

1
1

2 1

dtq x
V

q

t
d e

t


 , 1 1;d const x const     (23) 

Subtracting Equation (9) from Equation (8), we get  

   2
2 3 1 0q q S t              (24) 

Equation (24) can be written as  

3 32 2 0
q qq qd S

dt t t t t t
         
   

 

Now, using Equations (12) the above equation be-
comes 

3 32 2 0
q qq qd V

dt t t t t V
         
   


. 

This on integration gives 

2
2

3 2

dtq x
V

q

t
d e

t


 ; 2 2;d const x const     (25) 

Subtracting Equation (9) from Equation (7), we get  

    2
1 3 1 0q q S t             (26) 

Equation (26) can be written as  

3 31 1 0
q qq qd S

dt t t t t t
         
   

 

Now, using Equations (12) the above equation be-
comes 

3 31 1 0
q qq qd V

dt t t t t V
         
   


 

This on integration gives 

1
3

3 3

dtq x
V

q

t
d e

t


  3 3;d const x const     (27) 

where 3 1 2 3 1 2;d d d x x x   .  

Using Equations (23), (25) and (27), the values of 
1 2,q qt t and 3qt  can be explicitly written as, 

1 1 3
1 1expq dt

t D V X
V

   
          (28) 

2 1 3
2 2expq dt

t D V X
V

   
          (29) 







  V

dt
XVDt q

3
31

3 exp3         (30) 

where the relations 1 2 3 1D D D   and 1 2 3 0X X X    

are satisfied by  1, 2,3iD i   and  1, 2,3iX i  . 

Adding Equations (7)-(9) and subtracting from three 
times Equation (10), we get 

   21 12S S t p            (31) 

From Equation (12) and (18), we get 

 12 1
V

V
   


             (32) 

Substituting Equation (21) in Equation (32), we get 

 
2

2 2 2 1
1

2

12 1

2 1

fAV
V

V

f


  

 

 
  
 




 
  

 


       (33) 

This further gives 

   
 

2

2

1 2

2
1 2

12 1

2

f

f f

fV A f t
f f



 


 




      

     

 (34) 

Substituting Equation (34) in Equation (17), we get  

 
 

 

1 2

2 2

12 11 1

2
g

tf f f

 

  


 
 
    

     (35) 

Also, from equation    C V g V , we get 
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1 2

2 2

12 11
log

2
C t

f f f

 

  


 
 
    

   (36) 

Substituting Equation (34) in Equation (21), the ho-
mogeneous mass density becomes  

  
2

2 22

1

12 1

f

tf


  


 

        (37) 

Using Equation (18), pressure becomes  

  
2

2 22

1

12 1

f
p

tf

 

  


 
         (38) 

From Equations (37) and (38), it is observed that:  
When time t  , we get, density and pressure tend-

ing to zero i.e. the model reduces to vacuum. Also from 
Equation (31), we can verify that [p = 0 and ρ = 0 gives] 
S = 1. Which is consistent with the Kasner’s condition 
for vacuum i.e. S ≡ 1 2 3q q q  = 1. 

When 2f  , there is singularity in density and pres-

sure. 
There is also singularity in density and pressure 

for 1  . 

From Equation (18), for 1  , we get p   which 

further gives [using Equation (31)] S = 1. In this case, we 
can interpret this result as “an anisotropic Kasner type 
universe can be considered to be filled with an ideal 
(non-viscous) fluid which has equation of state p   

[stiff matter: the velocity of sound coincides with the 
speed of light]. 

Using Equation (34) in Equations (28)-(30) we get 

 
2

2 2
1

31 3 1
1 2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

   (39) 

 
2

2 2
2

31 3 2
2 2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

   (40) 

 
2

2 2
3

31 3 3
3 2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

   (41) 

where    
 

21 2

2
1 2

12 1

2

f

f

K A f
f f


 


 

      
     

and 

1D , 2D , 3D  and 1X , 2X , 3X  are constants of in-

tegration, satisfying the relations 1 2 3 1D D D   and 

1 2 3 0X X X   . 

4. Physical Properties 
 

We define  31 2

1

3qq qa t t t  as the average scale factor so 

that the Hubble’s parameter in our anisotropic models 
may be defined as  

3

1

1

3 i
i

a
H H

a 

  


, where i
i

i

a
H

a



 are directional 

Hubble’s factors in the direction of ix s respectively. 
The expansion scalar   is given by  

3H 
2

1f

tf 
 

   
             (42) 

The mean anisotropy parameter is given by 
23

1

1

3
i

i

H
A

H

   
 

  

2

2
22 2 2

2

3 fX f
A t

fK




 
 
   

  
 

      (43) 

The shear scalar 2  is given by  
3

2 2 2 2

1

1 3
3

2 2i
i

H H AH


    
 
  

2
2 2

22

f

fX
t

K


 
 
                 (44) 

The deceleration parameter is given by 

1
1

d
q

dt H
   
 

 

23
2q

f


  ,              (45) 

where 2 2 2 2
1 2 3X X X X    

If 2f  then for large t , the model tends to iso-

tropic case. 
Case I : 0   (Dust Universe) : 

In this case, we obtain the values of various parame-
ters as  

  1 2
2

2

21 1

12

f
g

tf





 
 

   
 

  1 2
2

2

21
log

12

f
C t

f





 
 

   
 

 
2

2 22

1

12

f

tf


 




, 
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2

2 2
1

31 3 1
1 1 2

1

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

 
2

2 2
2

31 3 2
2 1 2

1

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

 
2

2 2
3

31 3 3
3 1 2

1

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

where    

21 2

2
1 2

12

2

f

f

K A f
f






      
    

 

Here 1D , 2D , 3D  and 1X , 2X , 3X  are con-

stants of integration, satisfying the relations 1 2 3 1D D D   

and 1 2 3 0X X X    . 

In this case, the expansion scalar  is given by  

2

1f

tf



 

   
, 

The mean anisotropy parameter is given by 
2

2
22 2 2

2
1

3 fX f
A t

fK




 
 
   

  
 

 

The shear scalar 2  is given by 

2
2 2

2
2

12

f

fX
t

K

 
     

The deceleration parameter is given by 
23

2q
f


  , 

where 2 2 2 2
1 2 3X X X X    

If 2f  , this model also tends to isotropy for large 

t . 

Case II : 
1

3
   (Disordered Radiation Universe)   

In this case, we obtain the values of various parame-
ters as  

  1 2
2

2

31 1

12

f
g

tf





 
 

   
 

  1 2
2

2

31
log

12

f
C t

f





 
 

   
 

 
2

2 22

3 1

24

f

tf


 




, 

 
2

2 22

1

24

f
p

tf



 



 

 
2

2 2
1

31 3 1
1 2 2

2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 
2

2 2
2

31 3 2
2 2 2

2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

 
2

2 2
3

31 3 3
3 2 2

2

exp 1

f

fq fX f
t D K t t

K


 


 

 
      

 

 

where    

21 2

2
2 1 2

12

f

f

K A f
f






      
    

 . 

Here 1D , 2D , 3D  and 1X , 2X , 3X  are constants of 

integration, satisfying the relations 1 2 3 1D D D   and 

1 2 3 0X X X    . 

In this case, the expansion scalar   is given by  

2

1f

tf



 

   
 . 

The mean anisotropy parameter is given by 
2

2
22 2 2

2
2

3 fX f
A t

fK



 
 
   

  
 

 

The shear scalar 2  is given by  

2
2 2

2
2

22

f

fX
t

K

 
     

The deceleration parameter is given by 
23

2q
f


   

where 2 2 2 2
1 2 3X X X X    or 2f  , this model also 

tends to isotropy for large t . 
 
5. Discussion 
 
1) In both cases for 2f   , we get negative decelera-

tion parameter indicating that the universe is accelerating. 
This observation is consistent with the present day ob-
servation. 

2) The expansion scalar   starts with an infinite 
value at t = 0, further gradually decreases & the expan-
sion halts when t = ∞. 

3) For 2f  , we get lim 0
t



 . Therefore, the mod-

els are isotropic for large value of t. 
4) Also, we have noticed that matter density is in-

versely proportional to square of time t. When t →0, we 
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get ρ→∞ and when t →∞, we get ρ→0.  
These are all physically valid results indicating that 

there is a situation where Kasner type C-field cosmology 
starts from infinite mass density. 

5) In general, we have observed that the creation field 
C is proportional to time t. That is, the creation of matter 
increases as time increases. 
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