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Abstract 

The quality assessment and prediction becomes one of the most critical re-
quirements for improving reliability, efficiency and safety of laser welding. 
Accurate and efficient model to perform non-destructive quality estimation is 
an essential part of this assessment. This paper presents a structured and com-
prehensive approach developed to design an effective artificial neural network 
based model for weld bead geometry prediction and control in laser welding of 
galvanized steel in butt joint configurations. The proposed approach examines 
laser welding parameters and conditions known to have an influence on geo-
metric characteristics of the welds and builds a weld quality prediction model 
step by step. The modelling procedure begins by examining, through structured 
experimental investigations and exhaustive 3D modelling and simulation ef-
forts, the direct and the interaction effects of laser welding parameters such as 
laser power, welding speed, fibre diameter and gap, on the weld bead geometry 
(i.e. depth of penetration and bead width). Using these results and various sta-
tistical tools, various neural network based prediction models are developed and 
evaluated. The results demonstrate that the proposed approach can effectively 
lead to a consistent model able to accurately and reliably provide an appropri-
ate prediction of weld bead geometry under variable welding conditions. 
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1. Introduction 

Laser welding (LW) is a joining technique used to join together two or more 
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parts of metals and alloys through the use of a laser beam. Frequently used in 
high volume, such as in the automotive industry, LW presents great and mul-
tiple benefits such as deep penetration, reduced heat affected zone, high welding 
rates and good precision. To exploit appropriately the benefits presented by LW, 
it is necessary to develop a comprehensive strategy to control the process in or-
der to produce the suitable weld characteristics without being forced to use the 
traditional and fastidious trial and error procedures. The traditional industrial 
practice consists to execute a number of experiments by varying one welding 
parameter at a time in order to evaluate their effects. The parameters that have 
the greatest effects are used to control the process. However, as the process pa-
rameters are interrelated by nonlinear relationships, this procedure cannot lead 
to convincing results despite the prohibitive number of experiments, which leads 
to excessive time and costs. These problems can be avoided if appropriate pre-
diction model is designed. For this reason, many studies are conducted using fi-
nite element method (FEM) models to predict the weld pool and to develop a 
better understanding of the process behaviour by offering the possibility to re-
veal what is happening inside the part. The multi-physical aspect of laser process 
is the main difficulty, as many phenomena are coupled and different scales of 
physics interact [1]. However, LW models become very sophisticated with a lot 
of phenomena to be considered. This inevitably requires increasing and exorbi-
tant computational times [2]. The most recent simulation models using fluid 
flow, plasma and vapour simulated have produced a good prediction of the key-
hole shape [3] [4] [5]. Nevertheless, despite the fact that LW process becomes 
more comprehensible with a lot of studies on related phenomena, it remains 
many phenomena to be studied and uncertainties to be overcome. 

The use of artificial neural network (ANN) in modelling LW has been the is-
sue of several studies. Sathiya et al. developed a model based on the ANN to pre-
dict weld geometry and tensile strength of the laser welded butt joints of AISI 
904L [6]. ANN was used for the establishing of the relationship between power, 
speed, and focal position as welding parameters, and the weld geometry with 
three different shielding gases (argon, helium and nitrogen). The proposed 
model was used for the optimization of the process parameters with genetic al-
gorithm. The modelling results indicated that the model was in good agreement 
with the experimental results. Olabi used an ANN to predict penetration depth, 
fused zone width and heat affected zone width for welding medium carbon steel 
with CO2 laser [7]. In this study, the ANN is used to provide additional data to 
complete an L9 Taguchi design with laser power, speed and focus position as 
parameters. Then the ANN model is used to simulate the optimal solution estab-
lished with the Taguchi method. Despite the proposed network is trained with 
only 14 data, the predictions are still in good agreements with targeted results. 
Iskander et al. studied the use of ANN to predict depth and width of weld pool 
for pulsed Nd:YAG LW of aluminium [2]. Welding speed, welding power, laser 
pulse energy and laser pulse duration are considered as process parameters. An 
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estimation procedure has also been developed to convert the dimension of the 
weld pool into a weld profile based on the actual experimental weld profile. In 
other studies, the capacity and the adaptability of the ANN based prediction 
models were evaluated in conduction mode welds and on keyhole mode weld 
[8]. However, the reliability of ANN was relatively limited. ANN model can ac-
curately predict significantly change in weld pool profiles like between conduc-
tion mode and keyhole mode only if trained with good and appropriate data 
sets. In his work Jeng used an ANN with learning vector quantization to try to 
predict laser power and welding speed according to the thickness and the gap 
[9]. The results demonstrated that the developed model predicted successfully 
the desired welding parameters giving the intended thickness and gap. The 
model also provides the weld quality by estimating the width, undercut and dis-
tortion. Chang applied a combined model of FEM and neural network to predict 
the weld bead shape with gap for overlap Nd:YAG LW of 304 stainless steel [10]. 
The FEM model is used to determine the bead dimensions of the part without 
gap and used them as inputs in the ANN to predict the bead dimensions with 
gap. Three different process parameters combinations are considered as inputs 
for the ANN in order to select the appropriate variables configuration. The type 
1 use all the parameters as inputs (focal length, energy, pulse time, sheet thick-
ness, gap size, penetration depth and nugget size without gap), the type 2 use 4 
inputs and the type 3 use only 3 inputs among the 4 of type 2. The learning is 
made with 100 experimental data. The results provide less than 10% error and 
shows that the mixture of FEM and ANN can be used to predict welds shape ac-
curately. The type 2 and type 3 models achieve slightly better results showing 
that more parameters is not always the best option. There are no other relevant 
studies evaluating the impact of each welding parameters on the accuracy and 
robustness of ANN based predictive modelling.  

Consequently, when prediction model is needed, ANN allows fast results and 
therefore offers many advantages especially in the case of computationally inten-
sive predictions and real-time applications where FEM based models are very 
slow and not adapted [11]. ANN models have been used with success to model 
many welding process including LW [11] [12]. But the application of ANN for 
laser process is relatively limited. Producing an accurate ANN model requires 
very large data to ensure an efficient ANN learning and validation processes 
[13]. Generation the needed data using experiment are rather long and expen-
sive. So when experimentally validated, a 3D FEM based simulation models can 
be used to generate acceptable and cost effective ANN learning data.  

The objective of this paper is to present a structured and comprehensive ap-
proach developed to design an effective ANN based model for predicting weld 
shape and dimensions (WSD) in LW of galvanized steel in butt joint configura-
tions using a 3 kW Nd:Yag LW system. The proposed approach examines LW 
parameters and conditions known to have an influence on geometric characte-
ristics of the welds and builds a quality prediction model step by step. The mod-
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elling procedure is based on a structured experimental investigation and exhaus-
tive 3D FEM simulation efforts in order to identify the possible relationships 
between LW parameters (laser power, welding speed, fibre diameter and gap) 
and the weld geometrical characteristics such as depth of penetration (DOP) and 
bead width (BDW), and the sensitivity of these relationships to the welding 
process conditions. Using experimental, 3D simulation and various statistical 
analysis results, several prediction models are developed and evaluated. In order 
to carry out the models building procedure, an efficient modelling planning 
method combining neural networks, a multi-criteria assessment and various sta-
tistical analysis tools is adopted. 

2. Proposed Modelling Strategy 

Welding operations are dynamic processes with various nonlinearities and sto-
chastic disturbances. The difficulty of building an effective prediction model lies 
in the selection of the appropriate modelling technique and the variables to be 
included in the model. These choices represent the basic and crucial ingredients 
of any modelling methodology. Selecting the model form and the modelling 
technique is not sufficient to produce the best model. Since deterministic models 
are typically valid only for a limited range of welding conditions, ANN present 
the best modelling alternative. While various neural techniques can be used in 
this approach, a multilayer network appears to be one of the most appropriate 
option for this type of application [14] [15]. In order to determine efficiently and 
economically the best combination of variables to be included in the model, a 
structured design of experiment is used as a base for the modelling procedure 
[16]. The selection of the best combination of variables is centered on comparing 
a complete model containing all variables and various models with a reduced 
number of variables. This process can be achieved by: 1) building a sufficient 
number of models, where each is designed with a subset of specifically selected 
variables, 2) evaluating the modeling and prediction performance of these mod-
els according to specific criteria, and finally, 3) estimating the effect of each 
modeling variable on the performance of the designed models in terms of varia-
ble contributions in reducing the modelling, validation and prediction errors by 
using appropriate statistical tools. 

Many criteria can be used to assess whether a reduced model adequately 
represents the relationship between WSD and the LW parameters under various 
welding conditions. Measuring the performance of fitted models is based on the 
principle of reducing several statistical criteria. These include the residual sum of 
squared errors (SSE), the residual mean square error (MSE), the total squared 
error (Mallow’s Cp), and the coefficient of determination (R2). For the majority 
of modelling techniques, the model is determined by minimizing the residual 
sum of squares (SSE). All of the criteria, MSE, Cp, and R2, are a linear function of 
the SSE. The combination of variables that minimizes the SSE creates MSE and 
Cp as the minimum and R2 as the maximum under a fixed number of variables. 
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Among these criteria, R2 does not have an extreme value and shows a gradual 
increasing trend when the number of variables in the model is increased. Thus, 
the use of R2 as a criterion for the selection of variables can allow some subjec-
tivity. If p variables among q variables are selected, the residual mean square is 
MSEp = SSEp/(n − p − 1), where n is the total number of observations. The terms 
SSEp and n − p both decrease with an increase in the number of independent va-
riables p. Therefore, MSEp have the ability to show an extreme value. In this 
study, the used criteria to evaluate the models consists in minimizing the train-
ing residual mean square error (MSEt) and the validation residual mean square 
error (MSEv) as well as the total residual mean square error (MSEtot) for each 
WSD attributes. 

In order to extract rapidly a cost-effective and optimized combination of va-
riables to be included in the WSD prediction model, an efficient experimental 
design method is used. Using full factorial design, an appropriate model can be 
designed by selecting the most sensitive group of variables that show high corre-
lation with WSD. The model building procedure can be summarized in the fol-
lowing steps: 1) Collect data to train and verify the models. All parameters and 
conditions that may influence the process must be identified and considered; 2) 
Select the modeling technique and the performance criteria; 3) Select the appro-
priate matrix design for the required number of models. Rows of the matrix 
correspond to models and columns represent the variables to be included in 
each model. Every entry in the matrix is a value of 1 or 0 indicating whether the 
variable is included or not in the model; 4) Train and test the generated models 
and evaluate their performances according to the selected criteria; 5) Determine 
the effect of each variable on every performance index. These effects can be con-
sidered as rates of reduction of MSE values when a variable is input to the fitted 
model or not. Using these results, variables that contribute significantly to the 
models improvement according to the errors reduction are selected otherwise 
they are rejected; 6) Determine the final model configuration. When the va-
riables providing the best information on the WSD are identified, the models 
can be built. 

2.1. Artificial Neural Network Modeling 

While various ANN models can be used in this approach, a multilayer 
feed-forward neural network seems to be one of the most appropriate choices 
because of its simplicity and flexibility. As shown in Figure 1, a neural network 
consists of N neurons, which are each connected to the neurons of the adjacent 
layers. A threshold value θj,l is associated with each neuron. The output of each 
neuron is determined by the level of the input signal in relation to the threshold 
value. These signals are modified by the connection weights Wi,j,c (also called 
synaptic strengths) between the neurons.  

Let Ij,l be the input to the jth neuron on layer l, then the output of this neuron 
is given by: 
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Figure 1. Simple computational elements of the multiplayer feed-forward neural network. 
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where Oi,l−1 is the output of the ith processing neuron of layer l − 1, nl−1 is the 
number of neurons on layer l − 1, and Wi,j,l is the weight of the connection be-
tween neuron i on layer l − 1 and neuron j on layer l. 

The ANN structure shown in Figure 1 provides a typical and useful example 
to illustrate the mechanism of the supervised learning process. In response to a 
pattern presented to the input layer, the ANN attempts to produce an associated 
pattern by its output layer. The hidden layers are employed to reject noises that 
are present in the input signals, so that the task of feature extraction can be per-
formed effectively. The exemplar values input in the network are linearly 
mapped between 0 and 1 range. The network outputs will allow values between 0 
and 1 which can be mapped back to full range. 

So far as the training of the multilayer feed-forward neural network is con-
cerned, the algorithm most widely used is known as error back-propagation. The 
ANN training by back propagation involves three stages: the feed forward of in-
put training pattern, the calculation and back propagation of the associated er-
ror, and the adjustments of the weights. After training, application of the net 
involves only the computations of the feed forward phase. The performance of 
the network is determined by the mean squared error. Lower MSE corresponds 
to better learnability and predictability. In this study the Levenberg-Marquardt 
algorithm is used as a training function for the back propagation. This method 
involves an iterative improvement to weight values in order to minimize the 
MSE of the training data. The Levenberg-Marquardt algorithm is presented as a 
combination of the gradient descent and the Gauss-Newton minimization me-
thods. This allows this algorithm to act like a gradient-descent method when the 
parameters are far from their optimal values and acts like Gauss-Newton me-
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thod when the parameters are close to their optimal values. 

2.2. Training and Validation Data 

In any empirical modelling method, the quality of the resulting model depends 
mainly on the quality, the abundance and the richness of data used in the model-
ling process. The best data are generally those obtained by experimentation and 
reflecting as much as possible the real attributes of the physical phenomenon to 
be modeled. However, in many cases, experimentations can require prohibitive 
efforts and excessive costs. The use of a mixture of data from 3D modelling, 3D 
simulation and experimentations can be considered as economical and reliable 
alternative. In the proposed approach, the used data is a mixture provided by 
experimentation and 3D simulation. The used welding process 3D modelling of 
is based on heat transfer equations and metallurgical transformations using 
temperature dependent material properties and the enthalpy method to investi-
gate the conduction and key-hole modes using surface and volumetric heat 
sources, respectively. Transition between the heat sources is carried out accord-
ing to the power density and interaction time. The simulations are carried out 
using 3D finite element model implemented on commercial software. Experi-
mental validation performed using low carbon galvanized steel in butt-joint con-
figurations on a 3 kW Nd:YAG laser source reveals that the 3D modelling ap-
proach can provide not only a consistent and accurate estimation of the weld 
characteristics under variable welding parameters and conditions but also a 
comprehensive and quantitative analysis of process parameters effects. The fac-
tors and levels used to generate the data for training and validation are presented 
in Table 1. These factors and levels are chosen based on structured experimental 
investigations [17] and exhaustive 3D modelling and simulation [18]. 

3. Application of the Proposed Strategy 

To appropriately exploit the benefits offered by LW, it is necessary to develop a 
comprehensive strategy to control the process variables in order to produce de-
sired WSD without being forced to use the traditional and fastidious trial and 
error procedures. The development of a strategy to predict the WSD is indis-
pensable. The success of building an effective prediction model is based on the 
careful choice of the appropriate modelling technique and the variables to be in-
cluded in the model.  

 
Table 1. Factors and levels for training and validation data. 

Modelling variables Levels for training Levels for validation 

Speed: S (mm/min) 3 4.5 6 7 9 3.75 5.25 6.75 7.25 

Power: P (kW) 2 2.5 3 - - 2.25 2.75 - - 

Diameter: D (mm) 0.34 0.43 0.52 - - 0.385 0.475 - - 

Gap: G (mm) 0 0.10 - - - 0 0.10 - - 
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To illustrate the proposed modelling approach, laser power, welding speed, 
fibre diameter and gap are considered as variables and potential candidate to be 
included in the model to predict depth of penetration and bead width of the 
weld. Before training the ANN models and executing the variables selection 
procedure, it is important to establish the size of the hidden layer and to optim-
ize the training performances especially as the number of variable varies from 
one model to another. The idea is to approximate the relationship between the 
size of the hidden layer, the number of input variables and the complexity of the 
output to be estimated. For all trained models, an average error of less than 1% is 
used, irrespective of the hidden layer size. Consequently, to avoid long training 
and overfitting that could affect the models accuracy, the [(i) × (2i + 1) × (o)] 
network structure is selected where (i) and (o) are the number of inputs and 
outputs respectively. On the other hand, the starting weights have an influence 
on the ANN optimal configuration. Multiple random starting weight are used to 
avoid getting stuck in a local minimum. The selection of the best three among 
ten networks with random sets of starting weights and then the average perfor-
mances of the three is used for further analysis in this study. 

As is illustrated in Table 2, a total of 16 networks with different inputs com-
bination are built following the full factorial design. The (1) and (0) numbers in-
dicate whether the variables are used as input to the model or not, respectively. 
The data structure used to produce the designed models is showed in Table 3 
and typical results representing the performances of the models as a function of 
the seven selection criteria are presented in Table 4. 

 
Table 2. Proposed design of experiments. 

Models Gap Speed Power Dimeter 

1 1 1 1 1 

2 1 1 1 0 

3 1 1 0 1 

4 1 0 1 1 

5 0 1 1 1 

6 1 1 0 0 

7 1 0 1 0 

8 0 1 1 0 

9 1 0 0 1 

10 0 1 0 1 

11 0 0 1 1 

12 0 0 0 1 

13 0 0 1 0 

14 0 1 0 0 

15 1 0 0 0 

16 0 0 0 0 
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Table 3. Typical training and testing data randomised sets for prediction model building. 

# G S P D 

Training sets 

# G S P D 

Validation sets 

DOP  
(μm) 

BDW  
(μm) 

DOP 
(μm) 

BDW 
(μm) 

1 0 3 3 0.52 1820 1460 1 0 8.25 2.75 0.385 1000 800 

2 0 7.5 2.5 0.52 930 840 2 0.1 3.75 2.75 0.385 1960 1150 

3 0.1 9 2.0 0.52 990 750 … … … … … … … 

…   …  … … … … … … … … … 

…   …  … … 31 1 8.25 2.75 0.475 1580 660 

…   …  …  32 0.0 6.75 2.75 0.475 1340 850 

…   …  … …        

89 0.1 7.5 3.0 0.43 1620 760        

90 0 6 2.0 0.52 552 985        

 
Table 4. Typical modelling performances using MSE values. 

Models  
DOP BDW 

G S P D MSEt MSEv MSEtot MSEt MSEv MSEtot 

1 1 1 1 1 0.001 0.013 0.014 0.012 0.034 0.046 

2 1 1 1 0 0.021 0.011 0.032 0.038 0.034 0.072 

… … … … … … … … … … … 

… … … … … … … … … … … 

… … … … … … … … … … … 

16 0 0 0 0 0.158 0.096 0.254 0.215 0.133 0.348 

 
Two statistical indices, derived from analysis of variance (ANOVA), are used 

to analyze the performance of the models: the percent (%) contributions and the 
average effects of variables included in each model. The % contribution of a va-
riable reflects the portion of the observed total variation attributed to this varia-
ble. Ideally, the total % contribution of all considered variables must add up to 
100. The difference from 100 represents the contribution of some other uncon-
trolled modeling variables and experimental errors. The graph of average effects 
is an interesting way to visualize and estimate approximately the effects of each 
variable on the modeling performances. As the modeling procedure is designed 
using a full factorial design, the estimates of the average effects will not be influ-
enced. Both statistical indices are applied to all modeling performance criteria. 

The modeling design reveals that a relatively accurate prediction models for 
DOP and BDW can be achieved using the selected ANN model architecture and 
shows that all models fitted the training and validation data relatively well as 
quantified by the mean square error values. For the sake of comparison, all the 
MSE values were calculated using normalized data. The results indicate that the 
DOP prediction errors are lower than on the BDW for all models. Remarkable 
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results are achieved using model with gap, speed and power as inputs. Its per-
formance is comparable to the model including the four variables. With only 
two inputs, the model with gap and speed produce good results. It is also possi-
ble to observe that with a power between 2 and 3 kW and diameter between 0.34 
µm and 0.52 µm, the DOP and BDW estimations can be achieved with an aver-
age error less than 4%. 

Using the modelling results, the average effects of each variable on the models 
performance are evaluated. Derived from ANOVA, Figure 2 shows the effects of 
the four variables on the training and validation MSE for DOP. These graphs 
demonstrate that tree variables have positive effects on the designed models. The 
most influential factor is the speed, followed by the gap then the power and fi-
nally the diameter. Also no interaction has been found for the DOP. The effect 
of diameter is negligible since it increases MSEv and at the same time decreases 
MSEt. 

These results are confirmed by the average effect of each variable in terms of 
percent contribution to improving model accuracy. Table 5 reveals that the va-
riable significantly reducing MSE values is the welding speed with about 75% 
contribution. Gap and power contribute by about 14% and 9% respectively. The 
F-values suggest that all the variables are significant. The results show also that 
the error contributions remain relatively low (under 1%). This implies that no 
important variable are omitted in the procedure. These results suggest that there 
are many options to consider in building an efficient prediction model for DOP. 
The contribution of power in decreasing MSEv is relatively low (about 2%). 
However, given the relationships that link power and speed added to the strong 
correlation between energy concentration and WSD, it is obviously required to 
consider power and speed in the proposed prediction model.  

 

 
Figure 2. Effects of welding parameters on MSE variations in modelling DOP for training and validation data. 
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Figure 3 presents the effects of the four variables on the training and valida-
tion MSE values for BDW. These graphs show that the effects of gap and power 
are less significant for BDW than it was for DOP. The welding speed is the most 
impacting factor for BDW. The gap and diameter have negative effects on MSEv 
but these effects remain small and insignificant. These results are confirmed by 
the average effect in terms of percent contribution reported in Table 6. The 
welding speed is the most dominate contributor in reducing the MSE values with 
about 95%. Together, Gap, power and speed contribute for less than 5%. Here 
again the F-values reveal that all the variables are significant and the error con-
tribution remains relatively low (1%) indicating that no important variables are 
omitted in the modelling procedure. Regarding MSEtot, the contributions of 
power and diameter are negligible. Speed and gap can be considered as relevant 
variables for the BDW model. 

Figure 4 represents interactions found between power, diameter and gap for 
validation data when modelling BDW. The presence of power or diameter reduce  

 
Table 5. % contributions of modelling variables in the performance of the designed mod-
els for DOP. 

Source 
MSEt MSEv MSEtot 

% C F-test % C F-test % C F-test 

Gap 13.58% 976.85 29.00% 214.12 19.37% 592.16 

Speed 74.95% 5392.76 66.92% 494.16 74.12% 2265.99 

Power 8.80% 632.95 1.85% 13.65 5.72% 174.75 

Diameter 2.52% 181.13 0.74% 5.48 0.44% 13.47 

Error 0.15%  1.49%  0.36%  

Total 100%  100%  100%  

 

 
Figure 3. Effects of welding parameters on MSE variations in modelling BDW for training and validation data. 
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Table 6. % contributions of modelling variables in the performance of the designed mod-
els for BDW. 

Source 
MSEt MSEv MSEtot 

%C F-test %C F-test %C F-test 

Gap 2.25% 230.14 0.50% 11.65 1.43% 196.5 

Speed 94.87% 9718.41 98.91% 2312.87 97.69% 13,457.13 

Power 0.76% 78.19 0.08% 1.95 0.18% 24.15 

Diameter 2.01% 206.4 0.03% 0.78 0.63% 86.88 

Error 0.11%  0.47% 0.47% 0.08%  

Total 100.00%  100.00% 100.00% 100.00%  

 

 
Figure 4. Interaction plot of the MSEv for BDW between gap, power and diameter. 

 
the positive effect of the gap and the presence of diameter reduce the positive ef-
fect of power. All the interactions of the diameter remain below 0.003. The inte-
raction between gap and power is more significant. 

Assuming 5%, 2% and 1% as limit levels for the% contribution coefficients of 
various variables regarding MSEt, MSEv and MSEtot suggest three various confi-
gurations for DOP and BDW prediction models as presented in Table 7. These 
models are achieved by setting the variables at levels that minimizes the MSE 
values. Figure 5 and Figure 6 present training and validation results for the se-
lected models. Figure 5 shows that the validation and training data are relatively 
well distributed for the three DOP prediction modes. MDOP1 present the best re-
sults as expected. MDOP2 show nearly the same performance for training and va-
lidation data but less accurate than MDOP1. The use of only three variables affects 
slightly the training performance. The prediction error on MDOP3 is compara-
tively higher for both validation and training than the two other models. MDOP1 
is the best model but MDOP2 is clearly a good compromise between number of 
inputs and prediction performances. 
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Table 7. Variables selection for predictive modelling of DOP and BDW. 

Variables 
DOP BDW 

MDOP1 MDOP2 MDOP3 MBDW1 MBDW2 MBDW3 

Gap √ √ √ √ √ √ 

Speed √ √ √ √ √ √ 

Power √ √ - √ - - 

Diameter √ - - √ √ - 

 

 
Figure 5. Comparison of predicted and measured depth of penetration for the 3 selected 
models. 
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Figure 6. Comparison of predicted and measured bead width for the 3 selected models. 

 
The predicted and measured BDW for selected models with different inputs 

combination is represented in Figure 6. It can be seen that the validation and 
training data cover effectively and largely the range of BDW variation. The best 
modelling result is achieved using MBDW1 but it is not as good as for MDOP1. The 
three models show similar results for validation data. MBDW2 presents similar er-
ror for training and validation. This model is certainly more adapted to predict 
BDW. MDOP3 give an interesting approximation of BDW but having higher pre-
diction error, it is less appropriate than the others models for prediction BDW 
accurately and effectively. 
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Table 8. Correlation between predicted and measured WSD attributes using various data 
sets. 

 
MDOP1 MBDW1 MDOP2 MBDW2 MDOP3 MBDW3 

Training data 99.83% 95.95% 93.30% 93.21% 83.60% 87.30% 

Validation data 92.37% 86.14% 94.06% 87.33% 86.42% 88.48% 

Complete data 98.25% 93.50% 93.33% 91.64% 84.05% 87.35% 

 
These concluding observations are confirmed by the produced correlation 

analysis between the predicted and the measured WSD attributes. Correlation 
analysis results presented in Table 8 demonstrate the superiority of MDOP1 and 
MBDW1. Globally, these models present good agreement between measured and 
predicted DOP and BDW in training phase with more 99% and 95% and in va-
lidation phases with more than 92% and 86%. When considering all the data the 
MDOP1 and MBDW1 models present more than 98% and 93% as correlation coeffi-
cient respectively. Accordingly, the achieved results demonstrates that the ANN 
based prediction models present excellent performances and can effectively pre-
dict the weld shape and dimensions in LW of galvanized steel in butt joint con-
figurations with an average errors less than 2% and 7% for DOP and BDW re-
spectively. With 7% and 9% as average errors, MDOP2 and MBDW2 can be used as 
alternative prediction model. With more than 12% as average errors, MDOP3 and 
MBDW3 appear less appropriate as prediction models. 

4. Conclusion 

An artificial neural network based model is developed to predict the weld shape 
and dimensions in laser welding of galvanized steel in butt joint configurations. 
The models building procedure is based on a fused data provided by a structured 
experimental investigation and exhaustive 3D finite element method simulation. 
The possible relationships between welding parameters such as laser power, 
welding speed, fibre diameter and gap, and geometric characteristics of the welds 
specifically depth of penetration and bead width are analyzed and their sensitiv-
ity to the welding conditions evaluated using relevant statistical tools. Based on 
these result, various options for the prediction model building are established 
and evaluated using seven improved statistical criteria. The achieved results 
demonstrate that the resulting models present excellent performances and can 
effectively predict the weld shape and dimensions in laser welding with an aver-
age predicting errors less than 10%. These results demonstrate that the proposed 
ANN based prediction approach can effectively lead to a consistent model able 
to accurately and reliably provide an appropriate prediction of weld bead geo-
metry and shape under variable welding parameters and conditions.  
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