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Abstract 

Response surface methodology (RSM) and Artificial neural network (ANN) 
were used for the simulation and optimization of galena dissolution in hy-
drochloric acid. The galena ore was characterized for structure elucidation 
using FTIR, SEM and X-ray diffraction spectroscopic techniques and the re-
sults indicate that the galena ore exists mainly as lead sulphide (PbS). A 
feed-forward neural network model with Leverberg-Marquardt back propa-
gating training algorithm was used to predict the response (lead yield). The 
leaching temperature, acid concentration, solid/liquid ratio, stirring rate and 
leaching time were defined as input variables, while the percentage yield of 
lead was labelled as output variable. The multilayer perceptron with architec-
ture of 5-9-1 provided the best performance. All the process variables were 
found to have significant impact on the response with p-values of <0.0001. The 
performance of the RSM and ANN model showed adequate prediction of the 
response, with AAD of 0.750% and 0.295%, and R2 of 0.991 and 1.00, respec-
tively. A non-dominated optimal response of 85.25% yield of lead at 343.96 K 
leaching temperature, 3.11 M hydrochloric acid concentration, 0.021 g/ml 
solid/liquid ratio, 362.27 rpm stirring speed and 87.37 min leaching time was es-
tablished as a viable route for reduced material and operating cost using RSM. 
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1. Introduction 

Lead is a naturally occurring metallic element usually associated with other ore 
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minerals such as pyrite, sphalerite, quartz and barite. Trace amounts of other 
elements including gold are sometimes found with lead ore. The most common 
ore mineral of lead is galena (PbS) also known as lead sulphide. Lead’s high den-
sity, atomic number, and formability form the basis for use of lead as a barrier 
that absorbs sound, vibration, and radiation. Lead has no natural resonance fre-
quencies; as a result, sheet-lead is used as a sound deadening layer in the walls, 
floors, and ceilings of sound studies. Organ pipes are often made from a lead 
alloy, mixed with various amounts of tin to control the tone of each pipe. Lead 
is an established shielding material from radiation in nuclear science and in 
X-ray rooms due to its denseness and high attenuation coefficient. Molten lead 
has been used as a coolant for lead-cooled fast reactors [1]. The single most 
important commercial use of lead is in the manufacture of lead-acid storage 
batteries. 

Response surface methodology (RSM) was developed by Box and Wilson [2] 
to enable the improvement of manufacturing processes in the chemical industry. 
It focused on optimizing chemical reactions in order to obtain, e.g., high yield 
and purity at low costs. This was accomplished through the use of sequential 
experimentation, involving factors such as temperature, pressure, duration of 
reaction, and proportion of reactants. The same methodology can be applied to 
model or optimize any response that is affected by the levels of one or more 
quantitative factors. 

The most popular RSM is the central composite design (CCD). A CCD has 
three groups of design points: 1) two-level factorial or fractional factorial design 
points, 2) axial points (sometimes called star points), and 3) centre points. CCDs 
are designed to estimate the coefficient of a quadratic model. All point descrip-
tion is in terms of coded values of the factors. 

Artificial Neural Network (ANN) is an empirical tool, which is analogous to 
the behavior of biological neural structures [3]. Neural networks are powerful 
tools that have the abilities to identify underlying highly complex relationships 
from input-output data only [4]. For the past two decades, artificial neural net-
works (ANNs), and, in particular, feed-forward artificial neural networks 
(FANNs), have been extensively studied to present process models, and their use 
in industry has been rapidly growing [5]. 

Although response surface methodology (RSM) and artificial neural network 
(ANN) have been applied in several areas, there hasn’t been any reported work, 
to the best of our knowledge, of their application on lead dissolution from Nige-
rian galena ore. The present work therefore intends to identify the most signifi-
cant factors and their possible interactions which influence the overall efficiency 
of the dissolution of lead from galena; analyze their effects and predict the possi-
ble route(s) to the desired optimal; evaluate and compare the dissolution effi-
ciency of the galena ore using RSM and ANN, thus, establishing a faster and 
cost-effective means of extracting lead from galena ore for possible industrial 
applications. 
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2. Materials and Methods 

2.1. Material 

Sample Mining and Preparation 
The galena ore used for this study was collected from Abakaliki, Enyigba mining 
site in Ebonyi State of Nigeria. The galena ore was finely pulverized and sieved 
with a 75 µm size sieve. All experiments were performed with the 75 µm frac-
tion. HCl solutions were prepared from analytical grade reagents with deionized 
water. 

2.2. Methods 

2.2.1. Spectrophotometric Analysis 
The X-ray fluorometer (XRF), X-supreme 600 oxford instruments was used for 
the elemental analysis of the ore. The mineralogical analysis of the ore was done 
using ARL X’TRA X-ray Diffractometer, Thermoscientific with the serial num-
ber 197492086 with CuKα (1.54 Å) radiation generated and 40 mA and 45 kV. 
This unit comprises of a single compact cabinet. The cabinet houses a high 
speed, high precision Goniometer; high efficiency generator (X-ray) and an au-
tomatic sample loading facility. 

The petrographic slides of galena ore were prepared using Epoxy and Lakeside 
70 media according to the method of Hutchison [6]. 

2.2.2. FTIR and SEM Analysis 
FTIR analysis was carried out using Buck Scientific M530 Infrared Spectropho-
tometer. SEM analysis was carried out using Q250 by FEI model from the Neth-
erlands. 

2.2.3. Experimental Procedure 
Leaching experiments were performed in a 500 ml glass reactor fitted with a 
condenser to prevent losses through evaporation. The two major variables (heat 
and stirring rate) necessary for accelerating the rate of chemical reaction was 
provided by the aid of a magnetically-stirred hot plate (Model 78HW-1). For 
every leaching experiment, the solution mixture was freshly prepared by dis-
solving the required mass of the ore sample in the acid solution at the required 
temperature. At the end of each reaction time, the undissolved materials in the 
suspension was allowed to settle and separated by filtration. The resulting solu-
tions were diluted and analyzed for lead using atomic absorption spectrophoto-
meter (AAS).  

The mole fraction of lead passing into the solution from galena was calculated 
by the formula given in Equation (1), where x designates quantity dissolution. 

Amount of Pb passing into the solution
Amount of Pb in original sample

x =              (1) 

2.2.4. Design of Experiment 
The process variables affecting the dissolution of galena in hydrochloric acid 
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were investigated using RSM combined with five-level, five factor fractional fac-
torial design as established by Design Expert software (10.0 rented version). The 
process variables were leaching temperature, acid concentration, solid/liquid ra-
tio, stirring rate and leaching time. The response variable was chosen as% yield 
of lead. The factor levels were coded as −α, −1, 0, +1 and +α. The range and le-
vels are shown in Table 1. 

A total of 32 runs were carried out to optimize the process variables and expe-
riments were performed according to the actual experimental design matrix 
shown in Table 2. The experiments were performed randomly to avoid systemic 
error. The results were analyzed using the analysis of variance (ANOVA), con-
tour, and response surface plots. In RSM, the most widely used second-order 
polynomial equation (Equation (2)) developed to fit the experimental data and 
identify the relevant model terms may be written as: 

 2
0

1 1

k k

i i ij i j ii i
i i j i

Y x x x xβ β β β ε
= < =

= + + + +∑ ∑∑ ∑              (2) 

where Y is the predicted response variable which is the% yield of lead in this 
study, 0β  is the constant coefficient, iβ  is the ith linear coefficient of the input 
variable ix , iiβ  is the ith quadratic coefficient of the input variable ix , ijβ  is 
the different interaction coefficients between the input variables ix  and jx  
and ε is the error of the model. 

3. Results and Discussion 

3.1. Results of Characterization Studies 

3.1.1. Elemental Composition by XRF 
The results of the elemental composition of galena by X-ray fluorescence tech-
nique showed that the galena mineral exist mainly as PbS with metals such as 
Na, Mg, Al, Ca, Fe and Zn occurring as minor elements, and K, Cr, and Sr as 
traces. The elemental analysis gave Pb (60.01%), S (14.66%), Fe (4.32%), Na 
(3.78%), Si (7.69%), Mg (1.21%), Al (1.94%), P (1.37%), Cl (1.19%), K (0.09%), 
Ca (1.99%), Cr (0.01%), Mn (0.49%), Zn (1.22%), and Sr (0.04%).  

3.1.2. Phase Studies by XRD 
The analysis of galena by X-ray diffraction gives a better description in terms of  

 
Table 1. Levels of independent variables for CCD experimental design. 

Independent variable Unit Symbol 
Coded variable levels 

−α −1 0 +1 +α 

Leaching temperature K X1 308 323 338 353 368 

Acid concentration M X2 0.25 1.5 2.75 4.0 5.25 

Solid/liquid ratio min X3 0.01 0.02 0.03 0.04 0.05 

Stirring rate g/ml X4 75 230 385 540 695 

Leaching time rpm X5 30 60 90 120 150 
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the mineral phases present in the ore. Table 2 present the results of the X-ray 
diffractogram of the ore and shows that the ore exist mainly as lead sulphide 
(PbS). 

The galena ore gave three major peaks at 2.96, 3.42, and 2.09 Å, respectively as 
shown in Figure 1. All these supported the results of the elemental analysis by 
XRF. 

 
Table 2. The X-ray diffraction data of the galena ore showing the angle 2θ and d-values of 
the compounds identified, with their relative intensity (%). 

2θ d-Value (Å) Compound Intensity (%) JCPDS file No. 

26.03 3.42 Galena (PbS) 93.99 01-078-1056 

30.15 2.96 Galena (PbS) 100.00 01-078-1056 

43.16 2.09 Galena (PbS) 65.77 01-078-1056 

51.10 1.79 Galena (PbS) 38.14 01-078-1056 

53.55 1.71 Galena (PbS) 20.72 01-078-1056 

62.68 1.48 Galena (PbS) 8.71 01-078-1056 

69.06 1.36 Galena (PbS) 12.91 01-078-1056 

JCPDS File No.: Joint Committee on Power Diffraction Standards File Number. 
 

 
Figure 1. X-ray diffraction pattern of galena ore. 

3.1.3. FTIR Analysis of Galena 
The FTIR spectra of galena ore is shown in Figure 2. The spectrum of the ore 
exhibit absorption bands at 3821 cm−1, 3652 cm−1, 3353 cm−1, 2958 cm−1, and 
2564 cm−1. These are attributed to O-H stretching. The band at 1410 cm−1 is  
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Figure 2. FTIR spectrum of galena ore. 
 

attributed to O-H bending. The bands at 3519 cm−1, 3353 cm−1 and 2564 cm−1 
are attributed to N-H stretching. The band at 2564 cm−1 which is attributed to 
S-H stretching confirms the presence of sulphur in the ore. The band at 1634 
cm−1 is attributed to Si-O and Al-O stretching while the band at 1634 cm−1 is also 
attributed to Al-O-H stretching. 

The FTIR result is in agreement with XRF and XRD results which confirmed 
the presence of the minerals detected. 

3.1.4. SEM Analysis of Galena 
The scanning electron micrograph (SEM) of galena ore was obtained with mag-
nifications of 240×, 520×, 1000×, and 1500× respectively as shown in Figure 3. 
The average cell diameter of the ore ranges from 8 to 62 µm while the average 
cell density ranges from 0.0042 to 1.13 cells/mm. The results indicate that the ore 
particles are very cohesive, forming an aggregate mass that appeared to have 
been formed by several flaky particles stacked together in form of agglomerates 
[7]. The particles have irregular shapes with rough edges, and are highly crystal-
line due to the high level of purity of the ore. 
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(a)                                                            (b) 

  
(c)                                                             (d) 

Figure 3. SEM images of galena ore showing magnifications of 240× (a), 520× (b), 1000× (c), and 1500× (d) respectively. 
 

The central composite design (CCD) for the leaching of lead from galena us-
ing hydrochloric acid is shown in Table 3 with the experimental values. 

3.2. RSM Modelling 

The responses obtained from different experimental runs carried out by combi-
nation of five variables are tabulated in the response column of Table 3. The five  
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Table 3. Fractional central composite design for galena dissolution in hydrochloric acid 
(HCl). 

Run 
Temperature 

(K) 
Acid 

conc.(M) 
S/L ratio 
(g/ml) 

Stirring rate 
(rpm) 

Time (min) Yield (%) 

1 338 2.75 0.03 385 90 83.8 

2 353 1.5 0.04 540 60 70.8 

3 353 4 0.04 230 60 68.6 

4 338 2.75 0.03 695 90 82.3 

5 323 4 0.04 230 120 69.6 

6 353 4 0.02 540 60 82.8 

7 353 4 0.04 540 120 81.8 

8 323 4 0.02 230 60 68.5 

9 338 0.25 0.03 385 90 67.6 

10 323 1.5 0.02 230 120 70.1 

11 368 2.75 0.03 385 90 82.5 

12 338 2.75 0.03 385 90 84.2 

13 338 2.75 0.03 385 30 68.7 

14 338 2.75 0.03 385 90 84.8 

15 353 1.5 0.02 230 60 69.5 

16 338 2.75 0.03 75 90 67.8 

17 323 4 0.02 540 120 81.7 

18 308 2.75 0.03 385 90 67.8 

19 338 2.75 0.05 385 90 67.7 

20 353 4 0.02 230 120 81.6 

21 338 2.75 0.03 385 90 82.7 

22 353 1.5 0.04 230 120 69.6 

23 338 2.75 0.03 385 90 82.2 

24 323 1.5 0.04 230 60 52.3 

25 338 5.25 0.03 385 90 82.6 

26 353 1.5 0.02 540 120 81.7 

27 338 2.75 0.03 385 90 82.3 

28 338 2.75 0.03 385 150 83.8 

29 323 1.5 0.04 540 120 69.5 

30 338 2.75 0.01 385 90 83.9 

31 323 1.5 0.02 540 60 70.6 

32 323 4 0.04 540 60 70.9 

 
experimental variables gave a total of 32 experimental runs comprising of 26 in-
dividual runs and 6 similar runs. The responses obtained from various experi-
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mental runs were quite unique, indicating that each of the factors have consid-
erable effect on the response.  

3.3. Statistical Analysis 

To determine the adequacy of the models depicting the removal of lead by the 
dissolution of galena in hydrochloric acid, two different tests, i.e. the lack of fit 
test and the model summary statistics, were conducted. From the lack of fit test, 
the highest order polynomial with non-significant p-value and is not aliased 
would normally be chosen. This test is used in the numerator in an F-test of the 
null hypothesis and indicates whether a proposed model fits well or not. It com-
pares the variation around the model with pure variation within replicated ob-
servations and measures the adequacy of the model based on response surface 
analysis [8]. The results from the lack of fit test indicated that the 2FI, linear and 
the cubic model (aliased) did not provide a good description of the experimental 
data. The results are tabulated in Table 4. From the model summary statistics, it 
can be seen that the R-squared, adjusted R-squared and the predicted R-squared 
values for the quadratic model (0.9916, 0.9762, and 0.8565) showed a better cor-
relation when compared with the cubic model (0.9948, 0.9732 and −1.4789) and 
the linear model (0.7281, 0.6758 and 0.6545) as shown in Table 5. The measure 
of how efficient the variability in the actual response values can be explained by 
the experimental variables and their interactions is given by the R-squared value. 
If the R-squared predicted and adjusted are too far from each other, there may 
be a problem with either the data or the model [8]. The results are tabulated in 
Table 5. The afore-mentioned results indicate that the quadratic model provided 
an excellent explanation for the relationship between the independent variables 
and the corresponding response. With respect to these results, the effect of each  

 
Table 4. Lack of fit tests. 

Source Sum of squares df Mean Square F Value p-value Remarks 

Linear 545.26 21 25.96 22.10 0.0014 Inadequate 

2FI 523.36 11 47.58 40.50 0.0004 Inadequate 

Quadratic 11.22 6 1.87 1.59 0.3132 Adequate 

Cubic 4.62 1 4.62 3.93 0.1041 Aliased 

df = degree of freedom.  
 

Table 5. Model summary statistics. 

Source Std. Dev. R-Squared Adjusted R-Squared Predicted R-Squared PRESS 

Linear 4.60 0.7281 0.6758 0.6545 700.34 

2FI 5.75 0.7389 0.4942 −3.0651 8240.35 

Quadratic 1.25 0.9916 0.9762 0.8565 290.93 

Cubic 1.32 0.9948 0.9732 −1.4789 5024.90 

PRESS = Predicted residual sum of squares. 
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parameter was evaluated using the quadratic model as shown in Table 6. 
The second-order model tested at the 95% confidence level obtained for ex-

traction of lead from galena is shown in Equation (3):  

1 2 3 4 5 1 2

1 3 1 4 1 5 2 3 2 4

2 5 3 4 3 5 4 5
2
1

2 2 2 2
2 3 4 5

Yield 83.52 3.44 3.39 3.57 3.71 3.41 0.31
0.24 0.28 0.35 0.37 0.14

0.24 0.36 0.26 0.77 2.23

2.25 2.07 2.26 1.96

X X X X X X X
X X X X X X X X X X

X X X X X X X

X X

X X

X X

= + + − + + −

+ − − + −

− + − − −

− − − −

 (3) 

The results were analyzed by using the analysis of variance (ANOVA) suitable 
for experimental design used and shown in Table 6. The ANOVA of the quad-
ratic regression model indicates that the model is significant. The model F-value 
of 64.67 implied the model to be significant and there is only 0.01% chance that 
an F-value this large could occur due to noise. The F-value of the independent 
variables X1, X2, X3, X4, and X5 were estimated as 182.94, 177.66, 197.39, 212.39 
and 179.41 respectively, showing that the effects of most independent variables 
on the dependent variable were significantly high. Model F-value was calculated 
as ratio of Adj. mean square of the regression and Adj. mean square of the re-
sidual. The model P-value (Prob. > F) is very low which shows that the model is 
significant. The P-values were used as a tool to check the significance of each of 
the model coefficients. The smaller the P-value the more significant is the cor-
responding coefficient. Values of P < 0.05 indicate the model terms to be sig-
nificant. The values of P for the coefficients estimated indicate that among the  

 
Table 6. ANOVA for Response surface reduced quadratic model. 

Source Sum of squares df Mean Square F Value p-value Remarks 

Model 2009.99 20 100.5 64.67 <0.0001 significant 

X1-Leaching temp. 284.28 1 284.28 182.94 <0.0001  

X2-Acid conc. 276.08 1 276.08 177.66 <0.0001  

X3-S/L ratio 306.73 1 306.73 197.39 <0.0001  

X4-Stirring rate 330.04 1 330.04 212.39 <0.0001  

X5-Leaching time 278.80 1 278.80 179.41 <0.0001  

4 5X X
 9.61 1 9.61 6.18 <0.0302  

2
1X

 146.26 1 146.26 94.12 <0.0001  
2
2X

 147.90 1 147.26 95.18 <0.0001  
2
3X

 125.75 1 125.75 80.92 <0.0001  
2
4X

 149.55 1 149.55 96.24 <0.0001  
2
5X

 112.45 1 112.45 72.36 <0.0001  

Residual 17.09 11 1.55    

Lack of fit 11.22 6 1.87 1.59 0.3132 not significant 

Pure error 5.87 5 1.17    

Cor total 2027.08 31     
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tested variables used in the design, X1, X2, X3, X4, X5, X4X5, 2
1X , 2

2X , 2
3X , 2

4X , 
2
5X  (where X1 = leaching temperature, X2 = acid concentration, X3 = 

solid/liquid ratio, X4 = stirring rate, and X5 = leaching time) are significant 
model terms. The “Lack of Fit F-value” of 1.59 implies that the Lack of Fit is not 
significant relative to the pure error. There is a 31.32% chance that a “Lack of Fit 
F-value” this large could occur due to noise. Non-significant lack of fit is good 
because it indicates that the model is well fitted. Since many insignificant model 
terms have been eliminated, the improved model can be used to predict effec-
tively, the responses of the percentage recovery of lead from galena. The model 
equation with the significant coefficient is shown in Equation (4). 

1 2 3 4 5 4 5
2 2 2 2 2
1 2 3 4 5

Yield 83.52 3.44 3.39 3.57 3.71 3.41 0.77

2.23 2.25 2.07 2.26 1.96

X X X X X X X

X X X X X

= + + − + + −

− − − − −
   (4) 

In terms of the actual factors the model equation (Equation (5)) is as follows:  

2

Yield 1244.09 7.05 Leaching temperature 16.19 Acid concentration
98.32 Solid / Liquid ratio 0.15 Stirring rate
0.82 Leaching time 1.67E 004 Stirring rate Leaching time

9.92E 003 Leaching temperature 1

= − + ∗ + ∗
+ ∗ + ∗
+ ∗ − − ∗ ∗

− − ∗ − 2

2 2

2

.44 Acid concentration

– 20704.55 Solid / Liquid ratio 9.40E 005 Stirring rate

– 2.18E 003 Leaching time

∗

∗ − − ∗

− ∗

 (5) 

The CV called coefficient of variation which is defined as the ratio of the 
standard deviation of estimate to the mean value of the observed response is in-
dependent of the unit. It is also a measure of reproducibility and repeatability of 
the models [9] [10]. The results indicated the CV value of 1.65% which illus-
trated that the model can be considered reasonably reproducible [9]. The signal 
to noise ratio which is given as the value of the adequate precision is 31.307 as 
shown in Table 7. This indicates that an adequate relationship of signal to noise 
ratio exists. The result shows that the model can be used to navigate the design 
space.  

The data were also analyzed to check the correlation between the experimental 
and predicted dissolution yield (Y%), as shown in Figure 4. The experimental 
values were the measured response data for the runs designed by the CCD 
model, while the predicted values were obtained by calculation from the quad-
ratic equation. It can be seen from Figure 4 that the data points on the plot were 
reasonably distributed near to the straight line (R2 = 0.9916), indicating a good 
relationship between the experimental and predicted values of the response. This  

 
Table 7. Summary of regression values. 

Std. dev. 1.25 R-squared 0.9916 

Mean 75.45 Adj. R-Squared 0.9762 

C.V.% 1.65 Pred. R-Squared 0.8565 

PRESS 290.93 Adeq. Precision 31.307 
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Figure 4. Plot of predicted values versus experimental values. 

 
shows that the model chosen is appropriate and that the central composite de-
sign (CCD) can be used to perform the optimization operation of the process. 

3.4. Combined Effects of Operating Parameters on the Response 

The dissolution process for the extraction of lead from galena was analyzed 
based on the various solutions obtained at possible reaction conditions from the 
model predictive Equation (2). RSM was considered appropriate owing to its 
flexibility in navigating the design space. The model equations were solved for 
the various interaction effects on lead yield considering at any instance the in-
teraction between two factors only, assuming the other variables are set at their 
mean coded value of zero (0). The combined effects of adjusting the process 
variables within the design space were monitored using the 3D surface plots and 
contour plots.  

As the leaching temperature is increased from 326 K to 342 K, the percentage 
recovery of lead increased from 75% to 85% as seen in Figure 5. This linear rela-
tionship is as a result of increase in kinetic energy with higher temperature 
which allows the solvent molecules to more effectively break apart the solute 
molecules that are held together by intermolecular attractions, hence increasing 
the diffusion rate from the solid bulk phase into the solvent region. The same 
trend was observed in Figures 6-8. The results obtained here are in agreement 
with the results of statistical analyses shown in Table 6 which reveals that the 
quadratic effect of temperature (X1 squared) on the response is significant within 
the factor range of the experiment with a p-value of <0.0001. This is in line with  
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Figure 5. 3D and contour plots on the effect of leaching temperature and acid concentration on % yield. 
 

 

Figure 6. 3D and contour plot of the effect of leaching temperature and solid/liquid ratio on % yield. 
 

 

Figure 7. 3D and contour plot of the effect of stirring rate and leaching temperature on % yield. 
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Figure 8. 3D and contour plot of the effect of leaching time and leaching temperature on % yield. 
 

the report of several researchers [11] [12] [13] who agree that increase in tem-
perature substantially increases the dissolution rate of solutes. 

As the acid concentration is increased from 1.8 M to 3.18 M, the percentage 
recovery of lead increased from 75% to 85% as seen in Figure 5. This is attrib-
uted to the increase in the diffusion rates of Pb2+ from the solid to the solution as 
the concentration and diffusion of hydronium ion rises. The same trend was ob-
served in Figures 9-11. 

A plot for the combined interactive effects of reaction temperature and 
solid/liquid ratio on the recovery of lead is shown in Figure 6. As the 
solid/liquid ratio is decreased from 0.039 to 0.028 g/ml, the percentage recovery 
of lead increased from 75% to 85%. This could be attributed to the decrease in 
the fluid reactant per unit weight of the solid [11]. The same trend was observed 
in Figure 9, Figure 12 and Figure 13. 

The plot for the combined effects of leaching temperature and stirring rate on 
the recovery of lead is shown in Figure 7. As the stirring rate is increased from 
270.4 rpm to 429.5 rpm, the percentage recovery of lead increased from 75% to 
85%. This could be attributed to the decrease in the thickness of the film layer as 
the stirring rate is increased [11]. The same trend was observed in Figure 10, 
Figure 12 and Figure 14. 

As the leaching time is increased from 65 min to 93.2 min, the percentage re-
covery of lead increased from 74% to 84% as seen in Figure 8. The same trend 
was observed in Figure 11, Figure 13 and Figure 14. The results obtained above 
also indicate that the quadratic effects of acid concentration, solid/liquid ratio, 
stirring rate and leaching time on response are also very significant within the 
factor range of the experiment with p-values of <0.0001.  

3.5. ANN Modeling 

Artificial neural networks (ANNs) are machine-based computational techniques  

https://doi.org/10.4236/jmmce.2018.63021


I. A. Nnanwube et al. 
 

 

DOI: 10.4236/jmmce.2018.63021 308 J. Minerals and Materials Characterization and Engineering 

 

 
Figure 9. 3D and contour plot of the effect of solid/liquid ratio and acid concentration on % yield. 
 

 

Figure 10. 3D and contour plot of the effect of stirring rate and acid concentration on % yield. 
 

 

Figure 11. 3D and contour plot of the effect of leaching time and acid concentration on % yield. 
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Figure 12. 3D and contour plot of the effect of stirring rate and solid/liquid ratio on % yield. 
 

 

Figure 13. 3D and contour plot of the effect of leaching time and solid/liquid ratio on % yield. 
 

 

Figure 14. 3D and contour plot of the effect of leaching time and stirring rate on % yield. 
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which attempt to simulate some of the neurological processing abilities of the 
human brain [14]. They can be considered as a nonlinear regression tool for 
making a relationship between input and output variables. Multilayer percep-
tron, radial basis function networks, linear networks, Bayesian networks (gene-
ralized regression), and Kohonen networks (probabilistic regression) are the 
most well-known ANN types.  

Multilayer perceptrons (MLP) is perhaps the most popular network architec-
ture in use today [15]. Neurons perform a weighed sum of their inputs and pass 
it through a transfer function f to produce their output. The MLP model used in 
this work was developed in MATLAB (The math works Inc. 2007b). For galena 
dissolution in HCl, the selected MLP model had three layers, where the first 
had five input units representing the process independent variables (tempera-
ture, acid concentration, solid/liquid ratio, stirring rate and leaching time), the 
second layer had nine hidden units, and the third layer had one output unit 
representing the percentage yield of lead. The MLP architecture is shown in 
Figure 15.  

3.5.1. Network Training 
In order to reduce the deviations of predictions from experimental values, a trial 
and error technique was employed to determine the adequate number of neu-
rons required in the hidden layer. 70% of experimental results was used to train 
the network, 20% was used to validate the training while the remaining 10% was 
used for testing. After the selection of the hidden number of neurons, a number 
of runs were performed to get the best possible weights in error back propaga-
tion and the final selected network architecture was trained for 9 iterations. The 
mean square error of the trained network is 1.36847e−1 with a regression coeffi-
cient of 0.998520. The performance plots of the trained network as well as the 
regression plots for the training and validation are shown in the Figure 16 and 
Figure 17 respectively. 

 

 
Figure 15. ANN architecture for galena dissolution showing 5 input units, 9 hidden units 
and 1 output unit. 
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Figure 16. Performance plot for galena dissolution in HCl ANN model. 
 

 
Figure 17. Regression plots for the training (a) and validation (b) for galena dissolution in HCl ANN model using 5 input va-
riables, 9 processing elements in the hidden layer and 1 output variable. 

3.5.2. Comparison of RSM and ANN 
A comparison between Artificial Neural Network (ANN) and Response Surface 
Methodology was carried out using the Absolute average deviation (AAD) and 
Coefficient of determination observed for both models. The AAD observed for 
both models gives an indication of how accurate the model predictions can be 
[16]. 

https://doi.org/10.4236/jmmce.2018.63021


I. A. Nnanwube et al. 
 

 

DOI: 10.4236/jmmce.2018.63021 312 J. Minerals and Materials Characterization and Engineering 

 

( ) artpred artexp

1 artexp

1AAD % 100
n

i

R R
n R=

  −  = ×     
∑               (6) 

where n is the number of sample points, artpredR  is the predicted value of lead 
dissolution and artexpR  is the experimentally determined value for lead dissolu-
tion [16]. 

The linear fit model (Y =((1.0) * T + (0.22)) generated by the trained outputs 
vs target plots shown in Figure 17 was used to predict the ANN model values. 
Where Y = the ANN model value, T (Target) = the experimental value used to 
generate the corresponding ANN value. The graph of the correlation between 
the experimental values and the predictions by RSM and ANN is shown in Fig-
ure 18. 

From the AAD estimation, RSM gave an AAD of 0.750% and ANN model 
gave an AAD of 0.295%. From the graph in Figure 18, the coefficient of deter-
mination for the RSM model is 0.991, while that of ANN is 1.0. These values are 
a measure of how close the predicted value of the response is to the actual expe-
rimental values. The closer each of these values is to 1, the better the prediction. 
Since the value of COD for both RSM and ANN are approximately equal to 1, it 
is evident that both models could efficiently predict the recovery of lead from 
galena [13]. RSM was then adopted for the optimization studies. 

3.6. Process Optimization Using CCD 

The optimization exercise for the dissolution process was conducted separately 
using the flexibility of the design expert tool function. Equation (4) was solved 
for the best solutions such that the responses (Yn) are maximized within the de-
sign space. No unique solutions were possible. A usual approach, which involves 
selecting the best solution based on economic considerations, was adopted and  

 

 
Figure 18. Plot for RSM and ANN model appraisal.  
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the chosen optimal solutions are presented in Table 8. The selection of desired 
optimum solution of Table 8 was mainly influenced by the cost of reagents and 
energy. By using the numerical optimization technique which is a feature of 
CCD in the design expert software, a combination of factors that concurrently 
satisfy the requirements placed on each of the responses and factors could be 
determined by the software [13]. In choosing the goal for each of the factors for 
the numerical optimisation, a number of considerations were made. The signifi-
cance of each of the factors on the final response was the most important con-
sideration. The response was set at maximum goal, all other factors were kept in 
range apart from the reaction time which was set to a minimum goal target. 
Based on these, the software predicted optimum reaction conditions with a de-
sirability of 1.00 tabulated in Table 8. 

In order to confirm the accuracy of this model, an experimental run was con-
ducted under these optimal conditions. The experimentally obtained value for 
the% yield of lead was 84.54% and this was in reasonable agreement with that of 
CCD model of design expert (85.25%) as shown in Table 9. A non-dominated 
optimal response of 85.25% yield of lead at 343.96 K leaching temperature, 3.11 
M hydrochloric acid concentration, 0.021 g/ml solid/liquid ratio, 362.27 rpm 
stirring speed and 87.37 min leaching time was established as a viable route for 
reduced material and operating cost using RSM. 

4. Conclusion 

The optimum conditions for the extraction of lead from galena were investigated 
in this work. Response surface methodology (RSM) and Artificial neural net-
work (ANN) were used for the modeling and optimization of process parame-
ters. The performances of the models were estimated on the basis of correlation 
coefficients, absolute average deviation (AAD) and mean square error (MSE). 
The experimental data for the central composite design (CCD) of RSM were fit-
ted using the second-order polynomial equation. The best multilayer perceptron 
(MLP) model of ANN had nine neurons and a logistic sigmoid activation func-
tion in the hidden layer. CCD and ANN regression coefficients were obtained to 
be 0.991 and 1.00 respectively showing good agreement with the experimental  

 
Table 8. CCD optimum predicted condition. 

Leaching 
temperature 

Acid 
concentration 

Solid/Liquid 
ratio 

Stirring rate Leaching time % Yield 

343.96 K 3.11 M 0.021 g/ml 363.27 rpm 87.37 min 85.25% 

 
Table 9. Results of validation experiments. 

Leaching 
temperature 

Acid 
concentration 

Solid/Liquid 
ratio 

Stirring rate Leaching time % Yield 

343.96 K 3.11 M 0.021 g/ml 363.27 rpm 87.37 min 84.47% 

343.96 K 3.11 M 0.021 g/ml 363.27 rpm 87.37 min 84.61% 
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data. The absolute average deviation (AAD) for RSM and ANN was obtained as 
0.750% and 0.295% respectively. Both methodologies proved to be quick and 
useful tools for the optimization of lead recovery from galena. The higher value 
of the correlation coefficient and lower values of AAD and MSE for the MLP 
model indicate that the MLP of ANN provides better prediction of experimental 
data than the CCD model. 
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