
Journal of Minerals and Materials Characterization and Engineering, 2015, 3, 409-419 
Published Online September 2015 in SciRes. http://www.scirp.org/journal/jmmce 
http://dx.doi.org/10.4236/jmmce.2015.35043  

How to cite this paper: Jedli, H., Hedfi, H., Jbara, A., Bouzgarrou, S. and Slimi, K. (2015) Mineralogical and Geochemical 
Characteristics of Caprock Formations Used for Storage and Sequestration of Carbon Dioxide. Journal of Minerals and Ma-
terials Characterization and Engineering, 3, 409-419. http://dx.doi.org/10.4236/jmmce.2015.35043  

 
 

Mineralogical and Geochemical  
Characteristics of Caprock Formations  
Used for Storage and Sequestration  
of Carbon Dioxide 
Hedi Jedli1*, Hachem Hedfi1, Abdessalem Jbara2, Souhail Bouzgarrou3, Khalifa Slimi4 
1National Engineering School of Monastir University, Monastir, Tunisia  
2Higher Institute for Sciences and Energy Technology, Gafsa University, Gafsa, Tunisia  
3National Engineering School of Tunis, Tunis El Manar University, Tunis, Tunisia  
4Higher Institute for Transport and Logistics, Sousse University, Sousse, Tunisia  
Email: *jedli.hedi@yahoo.com  

 
Received 5 July 2015; accepted 23 August 2015; published 26 August 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The main objective of the present study is to characterize cap rock formation used for geological 
storage of carbon dioxide (CO2). The petrophysical properties of several rocks were studied before 
CO2 injection. This step is necessary for an understanding of CO2-brine-rock interactions. The mi-
neralogical composition of several clay samples collected from real storage sites located in the 
south of Tunisia was determined by X-ray diffraction (XRD) and Scanning Electron Microscopy 
(SEM) coupled to a probe EDS, infrared spectroscopy, thermal analysis and fluorescence spectra. 
The obtained experimental results reveal that illite, calcite and quartz are the dominant clay min-
erals. Dolomite and albite are also present. Besides, SEM analysis shows laminated structure for 
these samples which suggests low crystallinity. This sample contains a higher content of Fe, Cl, Ca 
and O. The clay cover may also be useful in storage process by immobilizing the migration of CO2 
outer of the geological site and activating the process of mineral sequestration. 
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1. Introduction 
The development of carbon capture and storage (CCS) technique aims to reduce the atmospheric concentration 
of greenhouse gases emitted by industrial activities [1]. The carbon dioxide (CO2) captured from large stationary 
sources can be safely injected and stored in appropriate geological formations, such as deep saline formations 
and depleted oil and gas reservoirs [2]. These geological formations are considered as the most stable in the CO2 
storage process on long term scale [3]. Four trapping and storing mechanisms are widely discussed in the CCS 
literature: residual, structural, mineral trapping and hydrodynamic [4]. After CO2 injection, the cover rocks con-
stitute the first barrier preventing the migration of CO2 outer the geological reservoir. Generally, the most effec-
tive caprocks are siliciclastics (clay), evaporites (gypsum, anhydrites, halites) and organic-rich rocks [5]. The 
long-term confinement of CO2 injected in the deep reservoir will be crucially dependent on cap rock and CO2 
interaction. The reaction between CO2 and two-caprock samples of carbonate and clay-types has been studied in 
a laboratory reactor under the conditions of geological storage [6]. It has been shown a change in mineralogical 
compositions for the two samples. Using gravimetric method, the sorption capacity and kinetics of CO2 have 
been measured among the clay minerals (montmorillonite, illite, and sepiolite) [7]. A thermodynamic study of 
CO2 adsorption has been performed on different adsorbents (Clay, Jurassic evaporates and Triassic sandstone) 
[8]. This study evaluated the best material able to absorb the maximum of CO2 and therefore to optimize the 
choice of the storage site. The CO2-brine-rock interaction can also generate some new mineral precipitation so 
as to change the properties of the reservoir. The properties change can influence the physical and chemical re-
tention mechanisms of CO2 (drainage and imbibitions) [9]. Pressure and temperature effects on the reactivity of 
the host rock minerals with supercritical CO2 have been studied by Regnault et al. [10]. The authors have dis-
cussed CO2 storage capacity, mechanical reservoir behavior and chemical alteration. Other experimental studies 
and theoretical methods have been interested in the forsterite dissolution and magnesite precipitation at geologi-
cal storage conditions [11]. Their experiments offer insights into the effects of relevant temperature and CO2 
pressure levels on mineral dissolution and carbonate precipitation. The chemical modification of the solid phase 
has been observed by scanning electron microscopy (SEM), infrared spectroscopy (IR), and X-ray diffraction 
techniques. 

The clay cover rock was used to determine the change in electrical and capillary forces between clay, CO2 and 
water [12]. This change leads to chemo-hydro-mechanical phenomena that could facilitate CO2 break and ad-
vection through porosity cap rocks. Computational models [13] offer a means of comparing and selecting sto-
rage reservoirs (storage capacity, escape potential, risk analysis escape routes and storage). These models re-
quire an understanding of minerals clay effects on scales variety. Therefore, it is crucial to understand the cover 
rocks nature in order to assess the reactivity of these minerals with respect to CO2.  

The main objective of the present experimental study is to examine the characteristics of some geological cap 
rocks from real site located in southern region of Tunisia. It aims to identify common features that may impact 
long-term CO2 storage. Four different simples of clay-type will be chosen for the experiments. Different tech-
niques will be used to characterize the physical and chemical properties at different observation scales.  

2. Materials and Methods 
The present study deals with chemico-mineralogical characterization and technological properties of clay min-
erals, raw material collected from real site located in the city of Gabes in southern Tunisia. The site from which 
the samples are taken is drawn in Figure 1 [14]. 

X-ray diffraction and infrared spectra allow us to describe the mineralogical compositions of the simples. The 
samples structure will be investigated using scanning electron microscope. While measurement of the mass 
change will be delineated by thermal analysis. However, the fluorescence measurement of the samples will be 
achieved by photoluminescence. 

X-ray diffraction analysis was carried out by a “Philips MPD1880-PW1710” diffractometer using CuKαλ  
radiation, in the 2˚ - 80˚ interval with a step size of 0.02˚ and counting time of 20 s/step. The quantification 
phase was performed on one sample by the Rietveld method (R-QPA), using a PANalytical X’Pert High-Score 
Plus program. The chemical analyses and composition of the rock samples and clay minerals were examined 
using a JEOL JSM 5600LV scanning electron microscope (SEM) coupled with an energy dispersive spectrome-
ter (EDS) (Bruker AXS Microanalysis). Infrared spectra were obtained using a Vertex 70-RAM II Bruker spec-
trometer (Bruker Analytical, Madison, WI). Differential and thermo gravimetric analyses were obtained using  
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Figure 1. Location of El Hamma region in the city of Gabes located in southern Tunisia from which samples of clay- 
type are collected.                                                                                           

 
an (ATG-DSC) STA 449C Netzsch instrument operating in helium atmosphere and heated at a rate of 20˚C from 
room temperature to 1500˚C. Photoluminescence (PL) measurements were collected on a Jobin-Yvon Fluorolog 
3 spectrometer using a Xenon lamp (500 W) at room temperature.  

3. Results and Discussion 
3.1. X-Ray Diffraction (XRD) 
The mineralogical profile of the clay sample can be examined using X-ray diffraction in order to identify the 
crystalline components present in the clays. The XRD patterns of the clay samples had similar mineral composi-
tions, consisting mainly of illite, calcite and quartz. 

Figure 2 shows the X-ray diffraction pattern of the clay samples. The following mineralogical phases were 
identified: calcite (3.85 Å, 3.03 Å, 3.55 Å), illite (9.79 Å and 9.79 Å) and quartz (4.26 Å and 3.35 Å) as the 
principal minerals. Other secondary mineral phases are also found in this clay such as dolomite (2.88 Å). The 
mineralogical compositions of raw materials obtained with XRD analysis summarized in Table 1, indicate that 
the mineral association is the same in all cases and corresponds to the mixture of Calcite, Illite, Quartz, Dolo-
mite and Albite. 

3.2. Scanning Electron Microscope (SEM)  
The surface topographies of different studied compounds are analyzed by scanning electron microscope (SEM) 
and energy dispersive X-ray spectroscopy (EDS) (Figure 3). The SEM imaging shows that clay occurs as crys-
tals of variable sizes of undefined outlines and edges. Then, the particle morphology is shown to be laminated. 
EDS analysis allows us to identify that the samples of clay-type are dominated by Si, Cl, Na, and O. 
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(d) 

Figure 2. XRD spectra of different samples. (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4.                               
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(c) 

 
(d) 

Figure 3. SEM image and with EDS analysis of different samples. (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4.           
 

Table 1. XRD mineralogy analysis (wt%) of different samples of clay-type.                                                 

Sample Quartz Calcite Illite Dolomite Albite Sum 

S1 31 23 46 - - 100 

S2 15 51 34 - - 100 

S3 8 47 32 12 - 100 

S4 30 43 24 - 3 100 

3.3. Infrared Spectroscopy 
Infrared technique has been frequently used for the identification of natural clay minerals, the minerals such as 
kaolinite, illite and quartz were identified by comparing the observed wave numbers with available literature [15] 
and [16]. The absorption profiles of the four chosen clay samples, S1-S4, are roughly similar, as depicted in 
Figure 4, showing the presence of OH-stretching bands in the vicinity of 3400 cm−1. The Si-O stretching bands 
near 1000 cm−1 indicate the presence of illite [17]. The characteristic band at 1428 cm−1 suggesting the presence 
of carbonate (calcite or dolomite) [15]. The appearance of intensity at 794 and 779 cm−1 in all spectra is consi-
dered an indication of quartz [16]. The bands at 669 cm−1 and 647 cm−1 confirmed the presence of plagioclase 
(albite or anorthite). However, the band at 1625 cm−1 is attributed to hydrogen bonded water and corresponds to 
the position of the water bending mode of liquid water [18]. Indeed, the stretching vibration of OH bonds at 
3630 cm−1 clearly indicate the presence of kaolinite [19].   
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Figure 4. Infrared spectra of different samples.                                                         

3.4. Thermal Analysis  
In accordance with related published papers [20] and [21], our results obtained with differential thermal analysis 
(DTA) and thermal gravimetric analysis (TGA) for simples of clay-types are illustrated in Figure 5. For all the 
selected samples, DTA curves reveal similarities in low-temperature range. Moreover, one can observe an en-
dothermic peak system at low temperatures (<200˚C) corresponding to the loss of hydration water. A strong en-
dothermic peak appears at the temperature range of 509˚C - 515˚C which is related to the departure of constitu-
tion water resulting from the dehydroxylation of clay minerals [21]. Another endothermic peak is observed at 
about 730˚C due to the decomposition of carbonates [22]. The mass loss associated to this peak is summarized 
in Table 2. 

3.5. Fluorescence Spectra 
Regarding preliminary experiments performed prior to CO2 storage, Figure 6 provides cartographies photolu-
minescence PL (excitation-emission) in false colors performed on the four chosen simples. For more clarity, 
cartography colors going from blue to red represent the increasing of the PL intensity depicting steady-state PL 
emission versus PL excitation (PLE). The emission patterns were varied among samples allowing their classifi-
cation. The response of the four samples is situated in the spectral region from 330 to 480 nm for an excitation 
wavelength range 220 - 280 nm. These cartographies show also that the intensity of emission is maximized at 
the spectral region varying from 440 to 470 nm (red color) for an excitation wavelength between 240 and 260 
nm. The prompt view of these maps shows qualitatively that the PL spectrum is broad in the case of S4 com-
pared to the other samples (S1, S2 and S3). 

4. Concluding Remarks 
The present experimental research aimed to examine the chemical characteristics of cap rock formations consi-
dered for CO2 storage process. Different characterization techniques have been used to characterize the cover 
rock. Experimental results obtained with DRX demonstrated the presence of quartz, illite, Calcite, and Dolomite 
for the different selected samples of clay-type. The presence of these minerals was also confirmed by IR analysis. 
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(a)                                                    (b) 

  
(c)                                                    (d) 

Figure 5. TG-DTA curves of different samples. (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4.                            
 

Table 2. The mass loss associated to the endothermic peak for different samples of clay-type at different temperature levels.            

Sample Temperature (˚C) Mass loss (%) 

S1 

119 9.68 

510 7.77 

727 0.71 

S2 

108 8.66 

500 4.08 

738 6.32 

S3 

110 7.69 

522 3.06 

782 12.41 

S4 
103 5.51 

510 510 
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(d) 

Figure 6. Cartographies PL spectra of different samples. (a) Sample 1; (b) 
Sample 2; (c) Sample 3; (d) Sample 4.                                              

 
EDX analyses justified that these clays were rich in Si, Cl, Na and O accompanied by a significant number of 
iron oxides. The DTA curves of clay samples revealed that three endothermic peaks were mainly due to the loss 
of H2O from clay minerals and from the carbonates decomposition. Florescence results indicated that the spec-
trum was broad in the case of sample S4. Moreover, the obtained experimental results offered us a means of 
evaluating, comparing, and selecting storage reservoirs on criteria such as ease of injection, storage capacity, 
migration, and escape of CO2 from a potential reservoir.  
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