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Abstract 

In this paper, we propose a general framework of optimal investment and a 
collection of trading ideas, which combine probability and statistical theory 
with, potentially, machine learning techniques, e.g., machine learning regres-
sion, classification and reinforcement learning. The trading ideas are easy to 
implement and their validity is justified by full mathematical rigor. The 
framework is model-free and can, in principle, incorporate all categories of 
trading ideas into it. Simulation and backtesting studies show good perfor-
mance of selected trading strategies under the proposed framework. Sharpe 
ratios are above 8.00 in simulation study and Sortino ratios are above 4.00 in 
backtesting, with very limited drawdowns, using 20 years of monthly data of 
US equities (NASDAQ, NYSE and AMEX from 1999.1 to 2018.12) and 17 
years of monthly data of China A-Share equities (Shanghai and Shenzhen 
Stock Exchange from 2002.1 to 2018.8). 
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1. Introduction 

In this paper, we propose a general framework, under which optimal portfolio 
construction or investment activities can be carried out, along with a number of 
trading strategies. This paper adds to the knowledge of the investment manage-
ment literature by introducing the following ideas. First, we recognize the time 
varying property of asset return distributions1, develop and call for new methods, 
potentially based on machine learning and panel regression, to conduct the 
model inference and portfolio optimization. Second, in order to build the in-
vestment management framework, we propose to use machine learning method 

 

 

1This means that asset returns at different time might be sampled from different distributions.  
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to handle big data input and the dynamic programming problems, which might 
arise when we try to model the market uncertainty and formulate a dynamic op-
timal investment problem. Third, most importantly, we propose a completely 
different way to look at the randomness of the financial market. Previous work 
focuses on forecasting-type investment management techniques and tries to 
build various types of models to predict the uncertainties. Technical analysis is 
inevitably used. The authors of this paper, however, do not rely on the serial 
correlations of asset returns or analysis based on technical indicators. Instead, 
we effectively use the information from the cross-sectional data of asset returns 
and try to build various statistics, i.e., the crystal balls, that enable us to observe 
the future realizations of the market uncertainty in an aggregate or portfolio lev-
el. Investment strategies that are accurate at certain confidence levels are pro-
posed and tested via simulation and backtesting studies. The analysis in this pa-
per, for the first time in the financial literature, utilizes the cross sectional data of 
financial assets to infer their aggregate time series behavior. The proposed theo-
ries prove to be effective in both simulations, in an artificial environment, and 
backtesting studies with real market data. Last, but not least, we propose a com-
bination of brute-force model-free approach, such as machine learning (rein-
forcement learning or Q-learning) in financial analysis, which can be found in 
[1]-[6], and purely theoretical approaches such as no arbitrage pricing, hedging 
and dynamic stochastic general equilibrium (DSGE) studies. We try to find a 
balance between those methodologies, in order to yield better results, i.e., in-
vestment frameworks, investment management strategies and portfolio con-
struction methodologies with good empirical performance. For example, we 
suggest using reinforcement learning (RL) to solve, potentially, the dynamic 
portfolio optimization problems, with minimal assumption on the underlying 
asset return dynamics. Moreover, we argue that, the underlying asset dynamics, 
often modeled via an Itô process in the stochastic analysis literature, can be 
combined with artificial neural network to yield better fits to the market data, 
meantime without losing the theoretical ground2. 

Throughout the history of financial analysis, researchers and practitioners 
strive to build investment or trading strategies with short, medium or long term 
to benefit from the economic and market movements. However, inevitably in 
the literature, all the work focus on predicting future market movement with the 
information available from the past. For example, popular methods include, but 
are not limited to, trend following, mean-reversion or long-short strategies. 
Taking the class of trend following strategies as an example, some source of lite-
rature review can be found in [7], where the methods identifying the trend of 
market movements and benefiting from riding that trend are surveyed. A loss 
will occur when market reverts and oscillates. More descriptions can also be 
found in [8], [9] and [10], as an incomplete list. On the other hand, mean rever-
sion strategies build on the belief that the market variables will revert to their 

 

 

2For example, let the diffusion coefficients be an ANN function-form.  
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long run equilibrium levels, with short term adjustments or fluctuations, where 
trading opportunities appear. Work in this category includes [11], [12] and [13], 
among others. However, this investment method will suffer greatly if the spread 
between the two sets of chosen assets widens. Therefore, both classes of invest-
ment strategies incur losses with advert market movements. The root cause is 
that, information from the past might not be a good indicator of future market 
movements or at least it can only predict or explain a limited fraction of future 
volatility. 

Moreover, current practice estimates model parameters directly using histori-
cal time-series data, which, potentially, introduces some problems. First, the dis-
tributions of economic or financial time series might be time varying, therefore a 
brute-force inference using historical data might result in significant estimation 
bias. Second, imposing additional model structure on the historical data series 
introduces further model risks. 

All those facts encourage the authors of this paper to search for a new frame-
work, under which portfolio management and trading activities are conducted. 
Ideally, first, this framework should be model-free such that it is able to incor-
porate and accommodate all the approaches, either model dependent or model 
independent, static or dynamic, into it. Second, this framework should allow ef-
ficient and accurate parameter inference that captures time dependent feature of 
the coefficients involved. 

In addition to the proposal of a general framework, we work with a large class 
of optimal investment strategies based on a rotation of the original asset space. 
For some of the strategies, we do not try to predict the market movements from 
the past data directly, which we only utilize to get model parameter estimates. 
Here all the mentioned parameters are theoretically current time measurable and 
do not involve prediction. Instead, we try to identify, orthogonalize and isolate 
the random sources in the market and diversify away the randomness (asymp-
totically or exactly). Moreover, we do not try to model the serial correlation 
structure of the asset returns and mainly focus on the cross-sectional properties 
of them. Simulation and backtesting studies show good applicability of the in-
vestment models that we have developed. To the best of our knowledge, this pa-
per is the first to discuss such orthogonalization and diversification, in the lite-
rature of investment and portfolio management. 

In the end, numerical experiments are carried out. We find consistently good 
performance under both simulation and backtesting studies, which coincides 
with the basic intuition that if we get good parameter estimates, performance 
will be guaranteed by mathematical and probability laws. In spite of the good 
performance, limitations of the testing approach and remediation are discussed. 

The organization of this paper is as follows. Section 2 describes the main in-
vestment framework. Section 3 introduces concrete investment strategies under 
the proposed framework. Section 4 performs simulation studies to test the mod-
els proposed, Section 5 backtests the models using equity data in the US and 
China markets and Section 6 concludes. Readers who are only interested in the 
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investment strategies can skip Section 2, which contains the rigorous mathemat-
ical derivations, and directly start from Section 3. 

2. The Optimal Investment Framework 

This section contains the mathematical description and construction of the op-
timal investment framework. We first introduce the necessary probability space 
and tools required for further analysis. Next, we propose a rotated asset space 
which we will be working with instead of the original asset space. Afterwards, we 
write down the general formulation of the optimization problem and propose an 
investment framework to jointly solve the optimization problem and meantime 
perform parameter inference via machine learning (ML). Readers can directly 
start from Section 3 for concrete trading models, with the understanding that 
skipping this section does not prevent them from understanding the investment 
strategies. 

2.1. Mathematical Setup 

Assume that the randomness in the financial economic system under considera-
tion is modeled by a filtered probability space ( )( ), , ,⋅Ω F , where Ω  
represents the sample space, modeling the entire collection of possible outcomes 
of the system, F  represents all the information in the system and 

( ) { } 0
: t t⋅ ≥
= F  is the information filtration with 0

: tt≥
=


F F , satisfying the 
usual conditions, and   is the historical probability measure on F . There are 
M financial assets in the economic system, whose rate of return processes are 
denoted by an M-vector { } 0t t

R
≥

. Suppose that ( )2
t tR L∈ F , meaning that tR  

has finite variance-covariance structure for all 0t ≥ . Obviously we have the 
following (trivial) decomposition  
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         (1) 

Here process ˆ M
tU ∈  is an M-vector generating the randomness, all the 

quantities are defined with proper dimensions, and it is obvious that 

( )0
ˆ

t tUσ →=F , i.e., Û  generates all the information in the financial economic 
system. The last line of the above equation tries to impose some model struc-
tures on µ  and σ , which can be of any functional form. Û  can be modeled 
by, for example, a joint Lévy process, a system of stochastic differential equations, 
a linear or nonlinear time series or even a collection of artificial neural networks. 
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A detailed explanation of Equation (1) is postponed to the next section. 

2.2. Economic Settings and Financial Market 

Following Section 2.1, we assume that the source of randomness in the economy 
and the financial market can be represented by an N-dimensional (1 N≤ ≤ ∞ ) 
jointly independent and identically distributed (i.i.d.)3 stochastic process  

{ }
1

Nj
t t j

U U
=

=  (conditional on t h−F ) with zero mean and ( ) ,COV ,i j
t t h t h i jU U δ+ + = ,  

for any 0t ≥  and 0h > , where ,i jδ  is the Kronecker Delta and h is the smal-
lest time increment under our consideration. Information filtration { } 0t t≥

F  is 
generated by U. Recall that, there are M primary financial assets traded in the 
market, whose rate of returns are denoted by an M-vector { }

1

Mm
t t m

R R
=

= . Sup-
pose that we have the conditional decomposition4 (conditional on t h−F )  

t t h t h tR Uµ σ− −= +                         (2) 

where t h t hµ − −∈F  is an 1M ×  vector and t h t hσ − −∈F  is an M N×  matrix, 
which can both be estimated at some precision and accuracy at time t h− . Then, 
we know that [ ]t h t t hR µ− −= 5 and [ ]COVt h t t h t h t hR µ σ σ− − − −− =  6. 

Note that, this setting is very general as h +∈  can be 1-second, 1-day, 
1-week or 1-year and it encompasses all the possible time frequencies. 

( ),t h t hµ σ− −  can be any stochastic process materialized at time t h− , for every 
( ) 2,t h +∈ . ( ),µ σ  also helps to model the cross-sectional and time series cor-
relation structure of R. When 0h → + , we can consider the limiting case of 
Equation (2) as a system of stochastic differential equations with jumps (SDEJ), 
when ( ), ,t h t h t ht h U Rµ µ− − −= −  and ( ), ,t h t h t ht h U Rσ σ− − −= − , i.e., they are 
functions of random sources t hU −  and t hR −  at time t h− . Equation (2) de-
fines a general semi-martingale R when proper technical conditions are satisfied.  

Remark 1 (On M, N and Factor Structure). If M N≥ , i.e., the number of 
financial assets R is larger than the number of random sources U, we are in an 
effectively complete market. As some ( M N− , to be accurate) assets are redun-
dant, we can choose N linearly independent assets in this case. However, if 
M N< , the market is incomplete. For the sake of generality, we study the case 
where N = ∞ . Consider an orthonormal basis { }

1

n
t n

e
∞

=
 and decompose m

tR  as  

1
,m m n n

t ttn
R R e e

∞

=

= ∑                        (3) 

 

 

3The requirement of being identically distributed for U can actually be relaxed under Lyapunov cen-
tral limit theorem (L-CLT), which will cause a slight variation in our discussions later. However, this 
will not impact the algorithms to be introduced in Section 3. 
4Actually, the conditionally joint independence of U can be replaced by being jointly uncorrelated 
under strong law of large numbers (S-LLN). 
5Sometimes we write [ ] [ ]: |t t⋅ = ⋅  F . 
6Equation (2) can be justified as an approximate relationship due to the infinite orthogonal basis ex-
pansion of R in the conditional Hilbert space of ( )2

tL F  random variables at each time t, see Re-

mark 1. ( ),µ σ  can be any stochastic process. Of course, they are market, asset class and regime 
dependent, meaning that different situations might result in different modeling practice for them. 
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where , t⋅ ⋅  is the canonical inner product in ( )2
tL F , i.e., the Hilbert space of 

all the stochastic processes that have finite second order moments at time t, and 
m runs from 1 to M. Equation (3) defines an infinite series expansion of m

tR  
and we truncate the first M elements and write  

,

1
, .

M
m m n n m M
t t ttn

R R e e ϕ
=

= +∑                    (4) 

Here ,
1: ,m M m n n

t tn M t
R e eϕ ∞

= +
= ∑  is considered to be the residual term. Then, 

if we denote ( ) ( ),

, ,
: : ,m n m n

t t tm n m n
R eθΘ = = , ( )1, , M

t t te e=e  , likewise for tR  

and ( )1, ,, ,M M M M
t t tφ ϕ ϕ=  , we will have  

1 1 .M
t t t t tφ
− −Θ = +ΘR e                        (5) 

Clearly, our analysis is asymptotic in nature under the assumption that  

11 0M
M t tM

φ−⋅Θ ≅1  

where M1  is an M-vector with entries all equal to 1. The above description jus-
tifies the analysis in this paper, the asymptotic investment framework and re-
lated strategies to be proposed in Section 3.  

Remark 2 (More on Factor Structure). Mapping Equation (2) to the popular 
factor representation of asset returns R, we have  

t t h t h t t h tR F τα β σ ε− − − −= + ⋅ +                    (6) 

where τ  can be 0 or h. Equation (2) can be viewed as an equivalent form of 
Equation (6) after a proper Gram-Schmidt orthogonalization process on ( ),F ε . 
The validity of a factor representation is justified in Remark 1. Moreover, the 
determination of the factor space F requires a thorough theoretical and empiri-
cal study. For example, one choice of the factors is VIX index, studied in [14]. A 
deep insight of linear factor models can be found in [15]. Classical results can 
also be found in [16], [17], and references therein.  

2.3. The Optimal Investment Asset Space 

2.3.1. The Optimal Rotation 
We illustrate ideas under the discrete-time setting, with the understanding that 
to solve continuous time models, time discretization is inevitable, which essen-
tially reduces a continuous time problem to a discrete time one. We are seeking 
a rotation matrix t hλ −  and a portfolio weight vector t hw −  of appropriate di-
mensions, such that the w-weighted average of the rotated asset space  

random at time deterministic at time 0

t h t h t t h t h t h t h t h t h t

t h t h

w R w w Uλ λ µ λ σ− − − − − − − −

− − ≅

⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅
  

          (7) 

is what we want to work with. 
An Example of the Rotation 
Rewrite Equation (2) as  
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1

1

ˆ
t t h t h t h t

t h t h t h t h t

t h t

R R

U

U

σ σ σ

σ σ σ µ

θ

−

− − −

−

− − − −

−

 =  

 = + 
= +

 

                    (8) 

assuming that t h t hσ σ− −
  is of full-rank. Define the rotated assets as 

1ˆ
t t h t h t h tR Rσ σ σ

−

− − − =  
  , with the Moore-Penrose inverse 

1
:t h t h t h t hλ σ σ σ

−

− − − − =  
   

defining the rotation7. Note that, conditional on the information filtration t h−F , 
i.e., all the public or private information available at time t h− , ˆ

tR  is mutually 
orthogonal. Our goal is to find optimal portfolio weights  

( )1 2, , , N
t h t h t h t hw w w w− − − −=  , on the rotated asset space ˆ

tR , for all ( ) 2,t h +∈  
and t h≥ . The optimally realized return at time t is therefore  

ˆ ˆw
t t h tR w R−= ⋅                         (9) 

t h t h t h tw w Uθ− − −= ⋅ + ⋅                    (10) 

and  

ˆ .w
t h t t h t hR w θ− − −

  = ⋅                     (11) 

With the rotated assets ˆ
tR , we can do the following optimization, i.e., to mi-

nimize the impact of the error term t h tw U− ⋅  on the investment strategies that 
we try to develop. In the sequel, we will always assume M N= , without loss of 
generality, unless we want to discuss the cases with incomplete market. 

The Pricing Kernel 
After the rotation stated in the previous section, we can define the stochastic 

discount factor in the rotated asset space, projected onto the space spanned by 
the assets R̂ , as 1

Nf n
t t t tnM R U ξ

=
= +∑ , where f

tR  is the (locally) risk-free rate 
and ˆ

t tRξ ⊥ , meaning that tξ  lies in the orthogonal space of ˆ
tR  in ( )2

tL F . A 
linear transformation can bring the pricing kernel back to the original asset 
space. 

2.3.2. Parameter Estimation via Regression Techniques 
The General No Arbitrage Asset Pricing Formula. The classic asset pricing 

relation reads, under no arbitrage condition  

[ ]|t t h t h tP m P+ +=  F                     (12) 

where h is the smallest time increment, tP  denotes the asset price at time t, tm  
is the stochastic discount factor evaluated at time t and F  is the information 
filtration. Simple algebra transforms the above equation to  

( ) | 0f
t h t h t h tm R R+ + +

 − =  F                (13) 

where f
t h tR + ∈F  is the return of the locally risk-free asset. Of course, stochastic 

discount factor m depends on the information filtration F , which is assumed 
to be generated by an r-dimensional process X. Further assume that 

( )0, , , ,t h tm g t X X X= 
. 

 

 

7Here we define rotation as a linear transformation. 
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Suppose that the asset span is denoted by   and the corresponding return 
process is ( )2

t tR L∈ F , i.e., MR∈  is square-integrable. Equation (13) is 
equivalent to  

( ) ,cov , 0.f f
t t h t h t h t t h t t h t hm R R B R R+ + + + + + − + − =           (14) 

Here ,t t hB +  denotes the t-price of a zero-coupon bond with maturity time 
t h+ . Because we have ( )t tRσ ⊆   and ( ) ( )Span SpanR X⊆ 8, we can, with-
out loss of generality, assume that 1t h t t hm Rω+ += + ⋅ . Then, we have  

, 0f
t t t t h t t h t hB R Rω + + + Σ + ⋅ − =                 (15) 

where Σ  is the conditional variance-covariance matrix and therefore  
1

, .f
t t t h t t h t h tB R Rω −

+ + + = − ⋅ − ⋅Σ                 (16) 

Once we obtain the weight process ω , we can price any asset in the span  . 
Therefore, the problem is to compute [ ]t t hR +  and i j

t t h t hR R+ + ⋅   for any 
( ),i j  pair. Alternative method to compute the weight process can be found in 
[6]. Suppose that the asset returns depend on a set of state variables, aforemen-
tioned and denoted by X. Here we separate X into ( ),Y Z , where Y is not asset 
specific and serves as a general factor process, but Z is asset specific, i.e., 
sub-vector i

tZ  corresponds to asset i
tR  and ( )1, , nZ Z Z=  . 

Time-Series Regression. For most of the papers in the literature, time-series 
regression is utilized to find the relation  

( )0 ,, , , , .t h t t h t t hR f t X X X+ − += +               (17) 

This, of course, can serve as an option in our analysis. Functional form f can 
be represented by a basis function expansion or a deep artificial neural network. 
To obtain the values of i j

t t h t hR R+ + ⋅  , we can run a time-series regression of 
i j
t h t hR R+ +⋅  on ( ), ,t t hX X − 

. This means we can utilize regression technique to 
compute the volatility estimates. 

Panel Regression. In this paper, we emphasize the methodology using the 
panel regression technique. Following the notation above, we have common risk 
factors Y, asset specific risk factors ( )1, , nZ Z Z=   and ( ),X Y Z= . We can 
run a panel regression of the following form  

( ) ( ) ,, , , , , , .t h t h t t t kh t kh t t hR X p t R X R X+ + − − += +          (18) 

Then, we have  

( ) ( ), , , , , , .t t h t h t t t kh t khR X p t R X R X+ + − −  =           (19) 

The benefit of doing so is three-fold. First, it can make use of the entire 
cross-section of asset return data. Second, it can give estimations of future risk 
factor returns X. Third, it generates more observations and can reduce the re-
liance on the past historical data series, i.e., k can be a small integer. To obtain 
the values of i j

t t h t hR R+ + ⋅  , we can run a panel regression of i j
t h t hR R+ +⋅  on 

 

 

8 ( )σ ξ  is the information sigma-algebra generated by ξ  and ( )Span R  is the linear space 
spanned by R.  
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ˆ
tX , where ˆ

tX  is the new risk factor process adjusted for the dimensions of the 
variance-covariance matrix. In order to achieve better precision in function ap-
proximation via machine learning, we can interpolate the cross-sectional asset 
returns and formulate a cross-sectional curve to get as many samples as possible 
at any granularity and then perform the regression functional approximation via 
machine learning. For a meaningful interpolation we can first sort the 
cross-sectional asset returns and then interpolate the resulted curve via any in-
terpolation technique, for example, linear, polynomial interpolation or even an 
artificial neural network. The detailed interpolation should be done as following. 
First sort t hR +  and the related sorted return series is [ ] [ ]( )1 , , M

t h t hR R+ + . Also do 
the same for X and denote [ ] [ ]( )1 , , M

t h t hX X+ +  as the sorted series. Suppose the re-
gressor variable is ( )1, , M

. We interpolate p points between [ ] [ ]( )1,i i
t h t hR R +
+ + . 

Assume that [ ] [ ]( )1,i ik k
t h t hX X +
+ +  pair corresponds to [ ] [ ]( )1,i i

t h t hR R +
+ + . We choose p  

equal distance points from the interpolated sequence for [ ] [ ]( )1 , , M
t h t hX X+ +  and 

the goal is achieved. 
General Discussions. Time-series regression seeks the same functional rela-

tion between the dependent and independent variables across time, while the 
functional relations can be time-varying via panel regression. However, the de-
pendency on risk factors of each asset in the universe can be different for 
time-series regression while for panel regression the functional dependency is 
the same across assets. Moreover, in time-series regression, we need more sam-
ples than the number of factors. However, in panel regression, we can incorpo-
rate asset specific factors, for example, earnings-per-share or book to market ra-
tio, into the regression framework. If the asset span contains 7000 assets, we use 
10 different asset specific risk factors and look back 2 periods in time, in panel 
regression there will be 7000 observations and 20 independent variables. As dis-
cussed previously, we can also interpolate the 7000 asset returns to get more 
samples, potentially, infinity, to run the regression. The reasons for the prefe-
rence on panel regression over time-series regression are as follows. First, the 
functional dependency of asset returns on state variables, i.e., factors, might be 
time varying. Therefore, using long historical data series might be inappropriate. 
Second, according to derivatives pricing theory, the functional form of asset re-
turns on the state variables is the same across different assets, which means a 
panel regression is suitable. 

2.4. The General Optimization Problem 

Consider the following dynamic portfolio optimization problem in a stochasti-
cally varying financial environment  

( ) [ ], 0,
sup w

w T
D Gτ τ

τ
ϕ

∈ ×
  

 
                   (20) 

where τ  is a stopping time and [ ]0,T  is a subspace of all the stopping times 
between [ ]0,T . tD  is the discount factor under the physical measure and w

tG  
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is the cumulative payoff measure of the investment portfolio process tw  ad-
justed by the risk, which can be path-dependent, where tw ∈ , a proper space 
of optimal portfolio weights. ( )ϕ ⋅  is an appropriate measure of performance, 
which can be conditional expectation, conditional quantile or other metrics. 
Note that, Equation (20) relates the investment portfolio choice practice to a 
dynamic problem with optimal stopping. Therefore the optimal exercise boun-
dary can be computed. Specifically, G can be Sharpe ratio, Sortino ratio, max 
drawdown, or any other risk adjusted performance measure. Function G can 
depend on realized values of state variables, or conditional expected values that 
require us to use ANNs to predict. The ultimate output of the above optimiza-
tion problem is a set of portfolio weights at each time t. Note that ω  can be 
modeled also via ANNs, according to [6]. 

2.5. A New Investment Framework Incorporating Reinforcement  
Learning 

2.5.1. The Big Picture 
In [4], [18]-[23], reinforcement learning (RL) is introduced to solve dynamic 
hedging, portfolio optimization and asset pricing problems. The ability to handle 
dynamic programming makes RL suitable for those three types of problems, 
which are essentially the optimization of a target function (or functional) under 
dynamic constraints on control variables, where the state of the nature might 
evolve in a stochastic manner. The technical advantages and the ability to 
process huge amounts of data and high dimensional computations enable re-
searchers to consider more complicated problems under realistic assumptions, 
for example, the consideration of market frictions, information asymmetry, sto-
chastic differential games (that arise in the pricing practice of some types of eq-
uity swaps), market making and therefore mean-field games. Contrary to the 
traditional approach to relate those problems to BSDEs (backward stochastic 
differential equations) and solve them using machine learning methods, which is 
documented in [24] and [25] as an incomplete list, the RL approach seeks to 
solve the aforementioned problems in a more direct and brute-force manner, 
under the theoretical economic framework, therefore resulting in a model-free 
solution. 

Back to our framework of investment, we propose to work under the rotated 
asset space R̂  and use Equation (20) as our main optimization problem. We 
call for a general methodology to combine the steps of model estimation and 
dynamic optimization. The reason is that, under the observation that the distri-
butions of asset returns are time varying, it introduces bias to estimate the model 
parameters ( ),t tµ σ  at time t directly using the data prior to it. However, RL 
makes it possible to optimize the portfolio weights in a model-free manner. Eq-
uation (20) is more general than mean-variance optimization because G can be 
functional of past or future trajectories of ( ), , ,U Rµ σ , which results in a dy-
namic stochastic optimal control problem. Dynamic portfolio optimization takes 
into account the market regime changes. As [26] illustrates, there are two addi-
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tional hedging terms that account for stochastic varying interest rate and market 
price of risk processes in the portfolio decomposition formula. 

To summarize, the authors of this paper propose a new way of practice in 
both pricing and trading, to eliminate model dependence9, while maintaining the 
general economic or finance framework. This calls for the development of more 
advanced Artificial Neural Network (ANN) and RL techniques10. 

2.5.2. Factor Construction 
The first step to create the general investment framework is data processing and 
factor construction. Basically, factors represent the risk decomposition of any 
asset return in the universe and by bearing the risks, investors get rewarded in 
the financial market. Factors, which can be both qualitative and quantitative, 
should fall into the following categories. First, political environment and policies 
made by government and other authorities should be included. Second, ma-
croeconomic factors, such as economic cycle, GDP, inflation, monetary policies 
and fiscal policies, should be included. Third, micro-economic and financial 
factors, such as market returns, yield to maturity for bonds, are helpful. Fourth, 
fundamental factors, such as earnings per share, book to market ratios, are cru-
cial to equities. Fifth, technical indicator factors, such as the output from other 
predictive or trading models, namely, the resulted portfolio weights or predic-
tions, stock market technical indicators and indicators from behavioral finance 
theories, i.e., market sentiment, real time news from natural language processing, 
should also be included. Please note that, there might be factors that do not fall 
into the above categories, such as weather conditions, as long as they are helpful 
in identifying the risk characteristics of an asset, we should include them. To 
summarize, this module processes raw market data and formulates different 
factors, for a meaningful risk decomposition of asset returns. Moreover, differ-
ent factors might have different observation frequencies, sometimes, interpola-
tion, in time dimension, is needed for granularity considerations. 

2.5.3. Variables Prediction 
After the factors are constructed, we can use the methodologies outlined in Sec-
tion 2.3.2 to compute the conditional expected values for asset returns and factor 
returns. The predictions can be made at any time frequency, e.g., a second, an 
hour, a day, a week, or even a quarter. It would be helpful to mention that the 
frequency of factor input should match the frequency of prediction. Instead of 
using calendar as a measure of time flow, we can use trading volume or volatility 
as the metric. For example, we divide the data into small blocks by equal trading 
volumes or the accumulation of volatility. If reinforcement learning technique is 
used, this step will be merged into the next one: Portfolio Construction. 

2.5.4. Portfolio Construction 
After we obtain the predicted asset and factor returns, we can compute the port-

 

 

9Eliminating model dependence introduces data dependence. 
10One reference on this topic is [34].  
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folio weights based on them as inputs. The first candidate is mean-variance 
frontier or Black-Litterman model. As a second choice, we can utilize machine 
learning classification techniques, e.g., k-means method, to categorize the asset 
universe into small groups based on the predicted and realized values and make 
long-short decisions accordingly. Moreover, Bayesian constrained deep rein-
forcement learning can be used to formulate the dynamic optimal portfolios. We 
emphasize that, outputs from other investment models can be used as inputs to 
our framework either by formulating them as factors or via ensemble method, 
which is quite popular in machine learning literature and practice. 

2.5.5. Risk Management and Attribution 
There are many risk management techniques available in the literature. We 
mention two of them. First, dynamic portfolio insurance techniques can be used 
to reduce the max-drawdown of the constructed portfolio. Second, we can set 
stop-gain or stop-loss threshold to formulate a more prudent strategy. The last 
step is to perform a sensitivity and risk-attribution analysis to better understand 
the strategy performance. 

3. Investment Strategies under the General Framework 

3.1. A Brute Force Mean-Variance or Dynamic Portfolio  
Optimization 

We refer the interested readers to [27], [28] and [29] for an introduction to 
mean-variance optimization, a Bayesian approach that builds on [27] and an il-
lustration of a typical dynamic portfolio optimization problem. Machine learn-
ing based methods to perform dynamic portfolio optimization are introduced in 
[19] and [23]. Applications of reinforcement learning on portfolio management 
can be found in [18], [21], [22], [30] and [31]. Please note that, now we are 
working with the rotated asset returns R̂ 11. All of the above analysis can be ap-
plied to the rotated asset space under the proposed framework. 

3.2. Quantile Investing 

With Equation (9), we can build a trading model which is profitable at some 
confidence level. To do this, we need to assume a joint distribution for U12 in 
order to compute its quantile values13. Taking joint Gaussian distribution as an 
example, denote the top α-quantile of t h tw U− ⋅  as ( )q tα

+  and the bottom 
α-quantile of t h tw U− ⋅  as ( )q tα

− . Then, if ( )t h t hw q tαθ +
− −⋅ > , we long ˆ

t h tw R− ⋅  
and if ( )t h t hw q tαθ −

− −⋅ < , we short ˆ
t h tw R− ⋅ . This method applies at portfolio 

level or individual asset level. 

 

 

11According to [26], as long as ( )2 1

1lim 0M m
M t h tm

R
M→∞ − =

=∑VAR , we will have  

1 1

1 1lim M Mm m
M t t h tm m

R R
M M→∞ −= =

=   ∑ ∑   in probability. Therefore, in this situation, it is fine to assign 

equal weights to the original asset space. 
12Alternatively, the joint distribution of U can be recovered directly from historical data. 
13Otherwise empirical quantiles have to be used.  
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3.3. Long-Short Portfolio 

Long-short portfolio method means that we can score each asset, e.g., based on 
the past values and predictions of its returns or other variables, in the universe, 
and rank the cross section. Long the top (bottom) and short the bottom (top) 
quantiles of the asset span and formulate a trend following (contrarian) strategy. 
The classification of different groups of assets can be done via machine learning 
classification methods based on the realized and predicted values, i.e., the com-
puted conditional expectations. Please note that, the financial market can be a 
perfect blend of momentum effect and mean-reversion effect. For example, the 
stocks that perform well might continue to perform well. However, the stocks 
with worst performance in the past might tend to perform better in the next pe-
riod. This leads us to ask, whether, in the long run, mean-reversion effect is sig-
nificant and, in short run, momentum effect is dominating or the opposite? 
Careful empirical investigations should be carried out to answer this question. 

3.4. Eliminating the Randomness Asymptotically 

3.4.1. The Case with Short-Selling 
As a third attempt, we try to utilize strong law of large numbers (S-LLN hereaf-
ter) to eliminate the randomness represented by tU  at time t h− , if M is  

large enough. Let 1j
t hw

M− ≡  and we have  

ˆ
.M t M t h M tR U

M M M
θ −⋅ ⋅ ⋅

≡ +
1 1 1

                 (21) 

Here ( )1,1, ,1M = 1  is an M-vector. But note that, as U is jointly indepen-
dent (or uncorrelated), when M (and therefore N) is large, we have  

0M tU
M
⋅

→
1

 in probability or almost surely, according to the (strong) LLN. 

Therefore, we have, approximately  

ˆ
.M t M t hR

M M
θ −⋅ ⋅

≅
1 1

                   (22) 

Equation (22) is extremely powerful. It equates the realization of a future 
random variable at time t to a variable which is known currently at t h− . If  

M t h

M
θ

λ−
+

⋅
>

1
, we can long the asset 

ˆ
M tR
M
⋅1

 and when M t h

M
θ

λ−
−

⋅
<

1
, we short 

ˆ
M tR
M
⋅1

. Here 0λ+ ≥  and 0λ− ≤  are two threshold values that trigger the al-

gorithm, which can be time dependent or even stochastic. 

3.4.2. The Case without Short-Selling 
For countries or regions that do not permit short-selling or this activity is costly, 
we can use futures contract to continue our analysis. Consider the asset space 

tR  and g futures contracts ,
g

t TF ∈  which start at time t with maturity time 
T14. Consider the following M-factor regression  

 

 

14T is a g-vector. 

https://doi.org/10.4236/jmf.2019.93028


L. L. Zhang 
 

 

DOI: 10.4236/jmf.2019.93028 548 Journal of Mathematical Finance 

 

, ,t T t t TF a bR Uγ= + + ⋅                     (23) 

where ( )1
, , ,: , , g

t T t T t TU U U=   is an i.i.d. sequence and γ  describes the cova-
riance structure. Because, we have  

:t t h t h tR Uµ σ− −= +                       (24) 

then 

[ ], ,, ,t T t h t h t t TF a b b U Uµ σ γ− −  = + +                 (25) 

,
ˆ .t h t h t TUθ υ− −= +                            (26) 

Here 

, ,
ˆ ,t T t t TU U U =  GS  

where GS denotes Gram-Schmidt orthogonalization under the canonical 
( )2

tL F -norm. Then, perform similar transformation  
1 1

, ,
ˆ .t h t h t h t T t h t h t h t h t TF Uυ υ υ υ υ υ θ

− −

− − − − − − −   ⋅ = ⋅ +   
             (27) 

Same analysis follows from Equation (27). As we can see from the above algo-
rithm, regression (23) has a large number of factors, which is difficult to imple-
ment in practice with limited computation power. Therefore, we do not test this 
algorithm in this paper. 

3.4.3. The Impact of Estimation Error 
In this section, we study the impact of estimation errors on the proposed optim-
al trading strategy in Section 3.4. First, assume that t hµ −  is estimated with a 
zero-mean error ˆt h t h t hµ µ ι− − −= + , where t hι −  is the error term with 

[ ] 0t h t hι− − = . Then, we have  

( ) ( )ˆ :t t h t h t h t t h t hR Uσ σµ ι ι− − − − −= + + −P P              (28) 

where 
1

:t h t h t h t h
σ σ σ σ

−

− − − − =  
 P . It can be seen that when M N=  is sufficiently 

large, we will have  

( )M
t h t h t hM
σ µ ι− − −⋅ +

1
P                        (29) 

truevalue errorterm

.M M
t h t h t hM M

σθ ι− − −= ⋅ + ⋅
 

1 1
P                    (30) 

Because t h t h
σ ι− −P  has zero mean, according to [32], as M →∞ , we will have 

convergence in probability 0M
t h t hM
σ ι− −⋅ →

1
P , under mild technical conditions. 

Therefore, the error term will not impact the estimation of the true value of 

M
t hM
θ −⋅

1
 if M is large, based on the assumption that [ ] 0t h t hι− − = . 

The next step is to estimate the impact of estimation error of volatility matrix 
on the algorithm given that the drift term µ  is estimated correctly. Suppose we 
have  

( ) ( )ˆ
t t h t h t h t h tR Uσ µ ε− − − −= + + +IP                   (31) 
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( ) ( )
estimation errortrueestimator

.t h t h t t h t h t h tU Uσ µ µ ε− − − − −= + + +




P              (32) 

Here ( ),ε  are estimation error terms which are uncorrelated with U, with 
[ ] 0t h t hε− − =  and [ ] 0t h t hε− − = . A similar argument shows that the impact of 

the error terms will vanish if M is sufficiently large. The discussion of joint im-
pact of estimation errors from both drift µ  and volatility term σ  is analog-
ous with only more complicated formula. 

3.5. Eliminating the Randomness Completely 

Following Equations (6) and (7), we can write  

t h t t h t h t h t h t t h t h tR Fλ λ α λ β λ σ ε− − − − − − −⋅ = ⋅ + ⋅ ⋅ + ⋅ ⋅          (33) 

.t h t h t h t h tλ α λ− − − −= ⋅ + ⋅Φ ⋅ϒ                     (34) 

Let us remind the readers that M
tR ∈ , J M

t hλ ×
− ∈ , M M

t hσ ×
− ∈  and 

M M
tε

×∈ , where J is the number of rotated assets chosen to formulate the op-
timal portfolio. We denote [ ]: , M NF ε ×ϒ = ∈  and [ ]: , M Nβ σ ×Φ = ∈ . In this 
section, we assume that the market is incomplete with M N<  and J N M≤ − . 
The null  space of matrix t h−Φ  is denoted by ( )t h−ΦKer  and its  

dimension is N M− . Further denote { }
1

Jn
t h n

v − =
 as a set of linearly independent 

vectors in ( )t h−ΦKer . Taking { }
1

Jn
t h n

v − =
 as portfolio weights, we have  

ˆ .n n n
t t h t t h t hR v R v α− − −= ⋅ = ⋅                     (35) 

Therefore, we have J rotated assets { }
1

ˆ ˆ:
Jn

t t n
R R

=
= , which are conditional de-

terministic. We can perform mean-variance optimization or simply assign equal 
weights to ˆ

tR , based on the signs15 of { }
1

Jn
t h t h n

v α− − =
⋅ . 

3.6. Constructing Factor Mimicking Portfolios 

From the decomposition Formula (2), we can derive the equations to construct 
the factor mimicking portfolios. Suppose we have  

t t tR Fα β= + +                         (36) 

where tR  is 1N × , α  is 1N × , β  is N K× , tF  is 1K ×  and t  is of 
1N ×  dimension. A simple multiplication of both sides of Equation (36) by the 

Moore-Penrose inverse of ( ), Iγ β=  yields  

( ) ( ) ( )
1

, .t t tF Rγ γ γ α
−

≅ −                   (37) 

We can construct indexes of F by constructing portfolios of R according to 
Equation (37). 

4. Simulation Study 

4.1. Methodology 

4.1.1. Direct Simulation 
For direct simulation approach, We assume that ( ),t h t hµ σ− −  is estimated cor-

 

 

15It is also interesting to find vectors { } ( )
1

Jn
t h t hn

v − −=
∈ ΦKer  such that { }

1

Jn
t h t h n

v α− − =
⋅  achieves maxi-

mum.  
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rectly and Equation (8) is already obtained. It is justifiable to use independent 
draws for daily realizations of t hθ −  across time, as our methods do not try to 
forecast future values based on serial correlations, which is the main difference 
between the proposed trading models and almost all the other methods in the 
existing literature. Of course, simulating directly the market price of risk vector 

t hθ −  avoids the estimations of model parameters based on historical data, which 
eliminates some estimation errors. Transaction cost is simplified to be 5.00% per 
year and subtracted from the realized strategy return at each month. The real 
backtesting study is postponed to Section 5. Note that, for risk management 
purposes, in real-world backtesting in the US equity market, we can mix our 
portfolio with some percentage of VIX index or add risk management to the 
current methodologies. 

4.1.2. Calibration and Simulation 1 
Next, we work with a more realistic setting in order to illustrate how calibration 
impacts the model performance. The data generating process (DGP) of asset re-
turns R is assumed to be a Gaussian process ( ),m m m

t t tR µ σ≅ N , where 
ˆm m m

t tµ µ= +   is a combination of a trend term ˆ mµ  plus a noise m
t  which 

also follows a joint normal distribution ( )0,ΣN  at each time t. { }
1

Mm
t m

σ
=

 is 
again sampled from a joint Gaussian distribution ( ), σσ ΣN  at each time t. 
The covariance structure of the DGP is modeled through ( ), σΣ Σ . 

We first determine the number of assets M and the time scope T, which are 
set to be 200 and 240-months. Then, we simulate one trajectory of the M assets 
with T months into the future and perform the model calibration for ( ),t tµ σ  
in Equation (2) and optimization analysis. For realistic values of ( )ˆ , , , σµ σ Σ Σ , 
we record the Sharpe and Sortino ratios of the strategies under equal weight as-
sumption, scaled weight assumption and risk parity assumption, which are do-
cumented in Section 4.1.1. 

4.1.3. Calibration and Simulation 2 
The simulation study in this section compares the simple NAV curve produced 
by a naive trend following model and our equal-weight model. The trend fol-
lowing model proceeds as follows. Compute the T-period moving average of as-
set returns for each stock and thus formulate a vector of moving averages tR  at 
time t. Long the cross section with equal weights if 0M tR⋅ >1  and short oth-
erwise. The DGP of the simulation study in this section is an 
ARMA(1,1)-GARCH model with realistic coefficients, simulated using ugar-
chpath function offered by rugarch package in R programming language. 

4.1.4. Calibration and Simulation 3 
In this section, we try to test a long only strategy based on the computed condi-
tional expectations via simulation study. The study proceeds as following. First, 
simulate asset-specific factor processes M TH R ×∈  and M TB R ×∈  as indepen-
dent draws from random normal variables, where M is the number of assets in 
the cross-section and T is the number of periods for our consideration. Then 
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transform the processes H and B by the following logic: replace the i-th column 
by the average of ( )1i − -th and i-th column for each H and B. This step adds 
some serial correlations across time for ( ),H B . Suppose that the asset return 
process follows 25R H H H B= × + − × . We compute [ ] ( ), ,t t h t tR t H Bφ+ =  
via machine learning regression. Then, we sort the conditional expected returns 
computed, long the top 100 assets and record the performance. We set 

1000M =  and 500T =  days in this simulation study. Another two possible 
strategies that serve as the extensions of the one introduced in Section 3.4 are as 
follows. First, compute the mean value of the conditional expected returns and if 
it is positive, long the asset universe. We go short the asset universe otherwise. 
The asset span is rotated as proposed in Section 2.3.1. Second, find the maxi-
mum expected rotated asset return at each time t, and long this asset when the 
expected value is positive, hold to the next period and we go short otherwise. 

4.2. Numerical Results 

4.2.1. Simulation Study 1 
In this simulation study, we test the methods outlined in Sections 2.4, 3.4 and 
4.1.1. Specifically, we generate 36 months of Sharpe ratios θ  of the M assets, 
perform optimization at each month and record the net asset value curve (NAV 
curve). After obtaining the values of θ , we generate U and therefore R̂ . We 
generate t h tw U− ⋅  randomly at each month and add to the realized returns to 
account for the remaining randomness of the market. We assume that θ  is 
sampled from a Gaussian distribution with mean 0.95 and standard deviation 
1.40, annualized. Those values are estimated from S&P500 historical data from 
1990/01/01 to 2018/02/27. The frequency of data is set to be monthly. After  

obtaining the time series of R̂ , we estimate 1
1 0

1 ˆ: T
t T t jj R

T
θ −

+ − +=
= ∑ . Table 1 

shows the results in various cases. Figure 1 shows the net asset value (NAV) 
curves. 

4.2.2. Simulation Study 2 
In this simulation study, we test the methods outlined in Sections 2.4, 3.4 and 
4.1.1. Table 2 shows the results in various cases. Figure 2 shows the net asset 
value (NAV) curves. 
 
Table 1. Sharpe ratios of different strategies. 

Strategy 
Information 

Equal 
Weights 

Scaled 
Unconstrained Weights 

Unit 
Weights 

M = 50 3.05 4.20 2.28 

M = 150 3.82 5.14 3.96 

M = 200 5.08 6.12 4.56 

M = 250 5.15 7.73 4.72 

M = 300 6.41 8.38 5.94 
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Figure 1. Net asset value curves of simulation study 1 for unit and equal weights with M = 300. 
 

 
Figure 2. Net asset value curves of simulation study 1 for unit and equal weights and M = 300. 
 

Table 2. Sharpe ratios of different strategies. 

Strategy Information Equal Weights Scaled Unconstrained Weights Unit Weights 

M = 50 2.45 3.49 1.36 

M = 150 3.20 6.86 3.78 

M = 200 4.32 7.32 5.01 

M = 250 5.05 7.98 5.79 

M = 300 6.09 8.49 6.84 

4.2.3. Simulation Study 3 
Simulation Study 3 corresponds to the ideas presented in Sections 2.4, 3.4 and 
4.1.2. The methodology is as follows. First, simulate the market rate of returns R 
using the DGP specified in Section 4.1.2. Second, with the realized time series of 

=1{ }K
t tR , use a moving window of T periods to compute  

1

1
0

1ˆ :
T

t T t j
j

R
T

µ
−

+ − +
=

= ∑                       (38) 

( )1 1 1 1ˆ ˆ : , , , .t T t T t t t TR R Rσ σ+ − + − + + −= 

 COV            (39) 

Third, compute 
1

1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ:t T t T t T t T t Tθ σ σ σ µ

−

+ − + − + − + − + − =  
  . Fourth, U can be recov-

ered by applying 
1

1 1 1 1 1 1
ˆˆ ˆ ˆ ˆ:t T t T t T t T t T t TU Rσ σ σ θ

−

− + + − + − + − + − + − = − 
  . We report the 

Sharpe ratios in Table 3 and NAV curves are shown in Figure 3. We use a 
moving window of 12 months to estimate the joint variance-covariance matrix 

t t tσ σΣ =   via cov.shrink function in R language and follow the rule below to 
decompose t t tB BΣ =  , where t t t tB V Vλ=  , tV  is the orthogonal matrix of  
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Figure 3. Net asset value curves of simulation study 3 for scaled, equal and rotated weights. 

 
Table 3. Sharpe ratios of different strategies in simulation study 3. 

Strategy Information Equal Weights Scaled Unconstrained Weights Equal Risk Contribution 

DGP joint Calibration 4.29 6.02 5.19 

 
eigenvectors of tΣ  and tλ  is a diagonal matrix collecting the square-root of 
eigenvalues of tΣ . 

4.2.4. Simulation Study 4 
This experiment corresponds to Section 4.1.3. The NAV curves are displayed in 
Figure 4. We set 6T =  and ( )25,50,250M =  for this study.  

4.2.5. Simulation Study 5 
The simulation study in this section corresponds to the method documented in 
Section 4.1.4. NAV plot for long only strategy is on the left, and the NAV for law 
of large numbers based strategy is on the right (Figure 5).  

5. Backtesting 

5.1. US Equity Market 

5.1.1. The Market Data 
We use monthly US stock return data downloaded from the CRSP database pro-
vided by WRDS. The data span from January of 1999 to December of 2018. After 
excluding missing return data, there are 1,521,909 security-month observations. 
The data set is comprised of various publicly traded securities, of which com-
mon stock is the major type, accounting for 81.00% of the sample. Returns are 
winsorized at the 1st and 99th percentile within each share code-month group to 
mitigate the effect of outliers or simply truncated at %±ϒ -level for some chosen 
ϒ . 

5.1.2. The Testing Methodologies 
For US equities, we apply the methodology introduced in Section 2.3.2 to esti-
mate the conditional expected asset returns and shrinkage for va-
riance-covariance matrix using a T-day moving average window. Two scenarios 
are considered. For the first scenario, we aim at testing the claim that as long as 
the conditional expected asset returns can be correctly estimated, the model 
performance is guaranteed by S-LLN. Therefore, we assume an imperfect fore-
sight for one period ahead: meaning that at each time t, we can use the returns 
materialized at time t h+  to infer the conditional expectations of asset returns  
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Figure 4. Net asset value curves of simulation study 4 for naive trend following and equal weights strategy with (25, 50, 250) as-
sets. 
 

 
Figure 5. Net asset value curves of simulation study 5. 

 

[ ]t t hR + , where the estimation methodology and R are described in Section 
2.3.2. The factor process is chosen also to be R, i.e., we let the cross-sectional re-
turns to explain their own behavior. If the average of the cross-sectional of the 
expected returns is positive, we go long the entire universe with equal weights. 
We short the equally-weighted universe if the aforementioned quantity is nega-
tive. The second scenario tries to infer the conditional expected asset returns in 
the same way and obtain variance-covariance matrix through shrinkage method, 
using cov.shrink function in R. Under the rotated asset space R̂ , we compute 
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the conditional expected returns and rank them, long the top θ-percentage and 
short the bottom θ-percentage. The performance is evaluated quarterly. We do 
not account for transaction cost in this backtesting study. A preliminary test 
shows that a 30 bps cost per unit of portfolio weight change does not affect the 
testing results. Nor does the restriction of asset space to domestic US common 
shares affect the outcome. Our tests are robust in this sense. 

5.1.3. Testing Results 
For the first scenario, we get 100% positive quarterly returns and a Sharpe ratio 
of 1.87. Sortino ratio is therefore ∞ . The result of the second scenario is sum-
marized in Table 4, where 4T = . Figure 6 shows the same methodology (Sce-
nario 2) applied monthly. Annual Sortino ratio is again ∞ . 

5.2. China A-Shares 

5.2.1. The Market Data 
In addition to the US equity market, we test our algorithm with China A-shares. 
The monthly return data are downloaded from Wind terminal and span from  
 
Table 4. US equity performance with 500 stocks randomly selected at the beginning of 
each quarter and performing the long-short strategy on the rotated asset space. Results 
are stable for different random draws. Sortino ratio is above 9.00. 

Year Q1 Q2 Q3 Q4 Annual SP500 Excess Return 

2000 22.55% 4.85% 7.58% 8.00% 42.98% −9.32% 52.30% 

2001 −3.72% 11.52% −5.82% −6.86% −4.88% −12.07% 7.19% 

2002 22.13% −1.81% 8.41% −6.79% 21.94% −24.35% 46.29% 

2003 −0.43% 2.12% 26.63% 17.14% 45.46% 24.22% 21.24% 

2004 6.12% 0.54% 0.79% 3.39% 10.83% 8.88% 1.95% 

2005 5.00% 4.45% 1.94% 3.02% 14.41% 3.24% 11.17% 

2006 8.73% 0.99% −2.12% 2.99% 10.60% 12.98% −2.38% 

2007 6.77% 4.45% −1.43% 5.32% 15.01% 3.90% 11.11% 

2008 2.99% 2.99% −2.97% 4.39% 7.39% −45.45% 52.84% 

2009 10.32% −9.44% 14.46% 9.60% 24.93% 23.58% 1.35% 

2010 8.38% −7.04% −2.57% 4.36% 3.13% 13.80% −10.67% 

2011 11.13% 1.87% −12.02% −3.72% −2.76% 1.15% −3.91% 

2012 23.32% −5.11% −11.99% 1.32% 7.54% 13.16% −6.62% 

2013 13.39% 3.06% 3.09% 8.55% 28.09% 26.54% 1.55% 

2014 2.51% 3.35% −3.64% −5.27% −3.04% 11.14% −14.18% 

2015 4.66% 1.56% 3.60% −1.50% 8.31% 0.11% 8.20% 

2016 1.97% −2.96% 6.64% 6.90% 12.55% 9.62% 2.39% 

2017 4.70% 2.97% −2.37% 4.40% 9.70% 17.96% −8.26% 

2018 4.27% 1.77% −0.08% 5.77% 11.70% −5.32% 17.02% 
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Figure 6. Net asset value curve of scenario 2, applied monthly. 

 
January of 2002 to August of 2018. We consider Shanghai and Shenzhen A-share 
markets. HS300 index data are also downloaded from Wind. Returns are winso-
rized as following. For positive returns, we apply a cap of 99.00% and for nega-
tive returns, a floor of −99.00% is imposed. 

5.2.2. The Testing Methodology 
We test the algorithm introduced in Section 3.4.1 with equally-weighted portfo-
lios in the original asset space. The methodology is as follows. We compute the 
T-quarter moving average of past returns for each of the stocks in the A-share 
universe. Then, apply equal weights on the vector of the moving averages. If this 
number is positive, we long the equal-weight portfolio and if this number is 
negative, we short the equal-weight portfolio. 

5.2.3. Testing Results 
The net asset value curve (NAV curve) is shown in Figure 7. Annualized Sortino 
ratio is 4.67. Percentage of positive annual returns is 81.25%. 

5.3. Limitations and Challenges 

Theoretically sound, our general investment framework does rely heavily on the 
quality of parameter estimates for ( ), ,µ σ θ  and 

1
σ σ

−
  

 , as illustrated by 
both simulation and backtesting studies. Better estimates result in better strategy 
performance. However, under the observations that the distributions of asset 
price returns are time varying, it becomes very hard to estimate the accurate 
values of the model parameters based merely on the time-series data as each 
point in the time series is sampled from a different distribution. Also, the time 
varying property might be different under various sample frequencies. Our gen-
eral framework posts two challenges to the field of parameter estimation. First, 
find the right time frequency such that the model parameters can be estimated  
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Figure 7. Net asset value curve of backtesting using equal weights with moving window 4 
quarters and 3101 stocks in the universe of China A-share market. The figure corres-
ponds to long-short portfolios. Time ranges from 2003-8 to 2018-8. 
 
accurately. Second, find the correct estimation method to minimize the numeri-
cal errors.  

6. Conclusions and Future Research 

In this paper, we outline a general framework of optimal investment and discuss 
several concrete investment strategies under this framework. The basic idea of 
the proposed investment methodologies is proper diversification and the elimi-
nation of the future market randomness. Simulation studies and backtesting 
show good performance of the proposed methods under this framework. Note 
that, the same ideas apply to all categories of investment strategies, i.e., trend 
following, mean-reversion, long-short, etc.. For example, the long-short strategy 
tries to score the assets and long or short certain classes of assets whose scores 
fall in predetermined sets. We can apply this type of analysis on the rotated asset 
space. The integration of the proposed investment framework with other classes 
of strategies is also interesting, which we leave to future research. 

Moreover, the real market environment is, of course, much more complicated 
than the data generating processes we consider in the simulation study. The re-
search for more advanced model parameter estimation techniques, when there is 
model uncertainty, time changing parameters and measurement errors, is highly 
important and necessary. Examples can be found in [33] and [1]. Moreover, 
similar to [22], our framework can be combined with deep reinforcement learn-
ing techniques to simultaneously estimate the model parameters and meantime 
perform portfolio optimization. In [34], a flexible stochastic volatility model 
framework is proposed based on neural network, which might also be a future 
direction to impose flexible model structures on ( ),µ σ  and perform parame-
ter estimation. We leave the open questions in estimation to future research and 
meantime direct the interested readers to the relevant literature for more infor-
mation. 

Last, but not least, the simulation studies and backtesting in this paper focus 
on equity data. However, the methodologies can be applied to any asset class, for 
which the rate of return can be defined and computed. 
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