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Abstract 
The extrema of Wiener processes are relevant to the pricing of so-called exot-
ic options, which have many financial applications. The probability densities 
of such extrema are well known for one dimensional Wiener processes. We 
employ elementary methods to derive analytical expressions for the densities 
for multidimensional Wiener processes, with multiple extrema. These take 
the form of (possibly infinite) series expansions of Gaussian densities. This is 
undertaken using the characterization of the Wiener process by the heat equ-
ation, a well known connection in mathematical physics.  
 

Keywords 
Wiener Process, Exotic Options, Method of Images, Heat Equation 

 

1. Background 

It is natural to model many financial variables as Wiener processes: examples 
may be found in asset returns, interest rates, bond yields as well as inflation and 
commodity prices. In fact, any stationary variable (and any variable integrated of 
order zero ( )0I ) is amenable to such modelling. The markets relating to such 
variables reflect their various characteristics in terms of long run behaviour, 
volatility and higher order moments. 

Exotic derivatives are designed to exploit the higher order characteristics 
through their dependence on the evolution of variables over finite time periods. 
This is where the behaviour of extrema of Wiener processes becomes relevant 
and important. 

There are well known results for the extrema for a one dimensional Wiener 
processes. For such a process, the extrema are either the maximum or minimum. 
But in practice financial variables cannot be viewed to operate in isolation, and it 
is the interplay between several variables that leads to complexity and richness in 
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financial modelling. 
For example we may wish to model: 

 the behaviour of the asset returns involved in an overall portfolio; 
 the interplay between bond yields and interest rates in a fixed interest 

market; 
 the dependence of asset behaviour on economic variables such as inflation, 

employment and wage growth.  
Multidimensional Wiener processes are the natural framework for such model- 

ling. However the extrema processes in 2 or higher dimension are richer and 
more varied than in the one dimensional case. The purpose of this paper is to 
study the distribution of these extrema. 

2. Heat Equation 

Thee relationship between the Wiener process and the heat equation was first 
studied extensively by [1], who approached the solution of a Dirichlet problem 
for the heat equation with methods using probabilistic expectations. In this 
paper, we do the reverse, that is we solve the probabilistic problem of the 
distribution of extrema by expressing it as a Dirichlet problem and then using 
elementary methods for partial differential equations (PDEs). 

By focussing on the Wiener process, rather than the Black Scholes PDE 
(which are logically interrelated), we obtain simplifications in the analysis that 
obviate the practical issues found in [2]. Once the distributions of extrema are 
found, they may be applied directly and intuitively to the pricing of exotic 
options. 

3. Characterisation of Extrema 

The simplest way of viewing the role of extrema is in discrete time, with a 
random walk in D dimensions. Such a walk starts at 0  and proceeds in steps of 

1±  in one of the 2D possible directions, all with equal probability. 
Thus after n periods there are ( )2 nD  possible paths. After n steps a point 

D
n ∈x   is reached, and a path is denoted ( )1 2, , ,=x 0 x x �  
In general we wish to restrict the possible paths by imposing m linear 

constraints of the form T
i i≤a x y  where 1, 2, ,i m= �  and , D

i i ∈a y   are 
specified vectors. 

The set of admissible points is denoted { }= ≤U x | Ax y  where [ ]T1 2, ,=A a a �  
and [ ]T1 2, ,=y y y � . We suppose that A  is of full row rank, so there is no 
redundancy in the constraints. Without loss of generality we may also take 

1i =a  for all i. Clearly U is a closed convex set, though possibly infinite, and 
its boundary is denoted { }U∂ = =x | Ax y . 

Denote by ( )nf x  the probability of reaching D∈x   after n steps under a 
path wholly contained in U. It is clear from the evolution of paths that 

( )
( )11 2 n i

in

D f
f

− ± ∈= 
 ∉

∑ x e x U
x

0 x U
               (1) 
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where ie  are the unit vectors in the ith direction in D . This recurrence relation 
defines ( )nf x  completely, starting with ( )0 1f =0 . 

It is well known that the limit as n →∞  of the random walk is the Wiener 
process in D dimensions [3]. We exploit this property to establish the 
characterisation of the constrained Wiener process in continuous time. However 
the random walk must be scaled for this to occur; as the standard random walk 
produces a variance of n/D after n steps, we need to employ a scaling factor of 

n D  in measuring the level attained after n steps. 
For a given period t in continuous time, we thus consider nt steps to reach a 

level of n Dx . (The values of n must be chosen to give this meaning—that is, 
n/D must be a perfect square and nt must be an integer. However all this is 
possible since we consider only the behaviour as n →∞ .) Then the probability 
distribution ( ) ( )24 D

ntn D f n Dx  might be considered to converge to a density, 
with the factor ( ) 24 Dn D  being required to allow for the discrete spacing  

2n D  across each dimension of x . All levels, including the constraints y  
need to be so scaled. 

The following operators are used:  
T

1 2

, , ,
mx x x

 ∂ ∂ ∂ ∂
= =  ∂ ∂ ∂ ∂ x

�∇  

( )
1 2 m

tr
x x x
∂ ∂ ∂

= = + + +
∂ ∂ ∂

div �∇  

( )
2 2 2

2
2 2 2
1 2 D

tr
x x x
∂ ∂ ∂

∆ = = + + +
∂ ∂ ∂

�∇  

The discrete time problem in (1) converges to the heat PDE as follows. 
Proposition 1. Suppose that the probability distribution converges to a con- 

tinuous time density. Then that density is of the constrained Wiener process 
( ),tϕ x  at time t, given by the solution of the PDE 

1 2tϕ ϕ= ∆  

with the boundary conditions 0ϕ =  on U∂ .  
Proof. Though the result is well known, its proof is very technical and not 

fully provided in the literature. Hence it is set out in Appendix A. The problem 
with the spatial boundary conditions is known as a Dirichlet problem.  

Remark. The convergence for the one dimensional case is guaranteed by the  

De Moivre-Laplace lemma, in which case ( ) 2
2

n
n

n
f x

n x
−  

=  + 
 and the limit is 

provided by 

( ) ( )21 22 π e 1x
nf x n o n−= +  

uniformly over compact sets of x. This leads directly to the Gaussian density for 

( )2 ntn f x n . In higher dimensions the limit may be derived by considering 
the Fourier transform 

( ) ( )T
1 1 1 1 2 2 2 2e = 1 2 e e e e

ni x i x i x i xi DE θ θ θ θ− −+ + + +x �θ  

https://doi.org/10.4236/jmf.2018.84043


A. Leung 
 

 

DOI: 10.4236/jmf.2018.84043 693 Journal of Mathematical Finance 
 

which is tantamount to proving the central limit theorem in D dimensions 
(Dym).  

Remark. The appeal to the discrete time case as given above provides the 
intuition to the link with the heat equation. In fact a direct derivation is possible. 
If ( ), ,tϕ x y  denotes the constrained density under a D dimensional Wiener 
process, then it must satisfy the functional relationship 

( ) ( ) ( ), , , , , , d .s t t sϕ ϕ ϕ+ = − −∫x y z y x z y z z  

Taking the later density ( ), ,sϕ − −x z y z  for a small time interval ds t=  
leads to the heat equation.  

Solving the Heat Equation Using Random Walks 

The above result suggests that Dirichlet problems for the heat equation may be 
solved numerically with a sufficient number of steps of a random walk. This is 
an efficient alternative to finite difference methods for numerical solution. 

An example is for the constraints 

1 2

2

1
0.5

x x
x
+ ≤ 

 ≤ 
 

as set out in Figure 1. 
In fact the constraints need not be linear; the same process applies to 

exponential constraints of the form 
1 2e e 3x x+ ≤  

as depicted in Figure 2. 
 

 
Figure 1. Two constraints. 
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Figure 2. Exponential constraints. 

4. Solution of the Heat Equation 

The equation for the constrained Wiener process may be seen as a Dirichlet 
problem for the heat equation, with linear boundary conditions. This may be 
solved by transforming the boundary conditions into initial conditions (that is, 
at time 0t = ), using the technique known in the literature as Kelvin’s method of 
images (or heat poles [4]). 

The analogy with the heat equation is more than superficial. It is well known 
that the unconstrained heat equation 1 2tϕ ϕ= ∆  has as its unique solution the 
Gaussian distribution ( )

2 21 2e 2π Dt tϕ −= x  with a single heat source (i.e. initial 
condition) ( ) ( )0,ϕ δ=x x  where the right hand side is the Dirac delta func- 
tion. 

To formalise the solution, the density for the constrained Wiener process 
satisfies the Dirichlet (boundary) problem  

1 2tϕ ϕ∂ ∂ = ∆  with boundary conditions 0ϕ =  on U∂      (2) 

4.1. Uniqueness 

Proposition 2. If ϕ  is a solution of the heat equation, then it is the unique 
solution. 

Suppose that 1ϕ  and 2ϕ  are two such solutions, and let 1 2ψ ϕ ϕ= − , which 
also satisfies the heat equation and is zero on the boundary. Then consider the 
energy integral 2d

U

ψ∫ x . This must be finite as ψ  is continuous and absolutely 
integrable, and has the time derivative 

2d 2 d d .
U U U

t tψ ψ ψ ψ ψ∂ ∂ = ∂ ∂ = ∆∫ ∫ ∫x x x  

However we have the identity 
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( ) 22 2 2ψ ψ ψ ψ= ∆ +div ∇ ∇  

so that 
22d d d

U U U

t Sψ ψ ψ ψ
∂

∂ ∂ = − + ⋅∫ ∫ ∫x x∇ ∇  

where the surface integral on U∂  follows from the divergence theorem and 
equals zero. Since both 2d

U

ψ∫ x  and 2 d
U

ψ∫ x∇  are non-negative, we must have 
0ψ = , giving only one solution to the heat equation. 

4.2. An Initial Condition Problem 

We will replace the boundary conditions under the Dirichlet problem with 
initial conditions that lead to the same solution. First we introduce the reflection 
operator about a hyperplane T y=a x . This is given by T  where 

( )T2 2y= − +Tx I aa x a  

It is clear that 2 =T I  and leaves the hyperplane invariant. It is also clear that 
the transformation T  leaves the heat equation invariant, that is ( ),tϕ x  satisfies 
the heat equation, so too does ( ),tϕ Tx . This follows immediately from 

( ) ( ) ( ) ( )
TT 2 T, 2 2 , .t tϕ ϕ ϕ ∆ = − − = ∆  

Tx tr I aa I aa x∇  

However the transformed equation has the initial condition ( ) ( )0,ϕ δ=Tx x . 
We may apply the reflection for each of the constraints, denoting by iT  that 
corresponding to the ith: 

( )T2 2i i i i iy= − +Tx I a a x a  

The group generated by { }| 1i i m= ≤ ≤T  is in general a countably infinite 
Coxeter group with a complex structure. We use it to generate initial conditions 
under the following process. 

Generating Process for Heat Sources/Sinks 
Let { }0S = 0  be the initial singleton set. Then for 1,2,i = �  let 1i iS S −=   
after removing any points which have appeared previously in 0 1 2iS S S −∪ ∪�∪ . 
Then an alternative initial value problem can formulated as: 

1 2tϕ ϕ∂ ∂ = ∆  with initial conditions ( ) ( ) ( )1 iϕ δ= − −x x z  if iS∈z   (3) 

This method of construction ensures that: 
 A point iS∈x  for only one value of i;  
 For any i ∈T  , the delta function at x  has the opposite sign to that at 

iTx .  
By analogy with the heat equation, it is convenient to refer to the delta 

functions at time 0t =  in 3 as (heat) sources where the corresponding coefficient 
is +1, and as (heat) sinks where the coefficient is −1.  

The IC problem is clearly defined for the whole of D , and we then have our 
main result. 
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Proposition 3. If the solution of the Dirichlet problem in 2 can be extended to 
the whole space D , then the problem in 3 and the Dirichlet problem have the 
same solution, and it is unique.  

Proof. We show that the solution to the IC problem, if it is well posed, satisfies 
the Dirichlet problem. Consider the operator iT . If ( ),tϕ x  solves the IC 
problem, then so too does ( ), itϕ Tx  as the initial conditions are transformed, 
with the sign reversed. Thus ( ),tϕ x  and ( ), itϕ− Tx  both solve the IC 
problem. But by uniqueness they must be equal. 

On the hyperplane T
i i=a x y  we have i=x Tx , and thus ( ) ( ), ,t tϕ ϕ= −x x , 

which implies that ( ),tϕ x  vanishes on every hyperplane, thereby satisfying the 
Dirichlet problem. By uniqueness of the solution, the two problems have the 
same solution in the domain U. 

Conversely suppose that the Dirichlet problem can be extended to D . Then 
by uniqueness it must have the same solution as that of the IC problem, which 
involves the series of heat sources and sinks described in the above generating 
process. 

The proposition extends the method of images used for the heat equation to 
many dimensions and types of constraint. However the images method is but 
one of several group theoretic methods, also known as similarity methods [5]. 
They are of practical importance as the solution to the IC problem in many cases 
can be written down as the summation of Gaussian densities, viz 

( ) ( ) ( )
22 2, 1 2π 1 e .

i

D i t

S
t tϕ − −

∈

= −∑ x z

z
x  

4.3. The Case D = 1 

In the special case 1D = , we can have at most two constraints, being the 
maximum 1y  and minimum 2y  of the Wiener process, with 1 21, 1a a= = − . 
In this case 1 12T x y x= −  and 2 22T x y x= − . The initial conditions are 
therefore at the points shown below (letting 1 1 2 22 , 2z y z y= =  for simplicity) 

( ) ( )
( ) ( )

1 2

1 2

1 2 2 1

1 2 1 2 1 2

1 2 1 2 1 2

Result of operator at level
0
1
2
3 2 2

T T
z z

z z z z
z z z z z z

z z z z z z

− −
− − − −
− − − −
� �

 

It is not hard to show that the points at the nth level are given by 

( ) ( )
( ) ( )

1 2

1 2 2 1

1 2 2 1

Level
2 2 2

2 1 2 2 1 2 2 1

T T
n n y y n y y

n ny n y ny n y
− −

− − − − −
 

Hence the density is given by 

( ) ( ) ( )( )22
1 21 2 2 2 1 22 2 2, 1 2π e e .x ny n y tx ny ny t

n
t x tϕ

∞
− − + −− − +

=−∞

 = −  
∑        (4) 
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This result was originally derived in a stochastic setting by [6], and indirectly 
in an option pricing setting in [2]. However from a much older historical 
perspective, this problem is identical to that of finding the temperature in a rod 
of length 2, where both ends at 1x = ±  are held at zero temperature and with 
an initial unit source at 0x = : 

2 21 2t xϕ ϕ∂ ∂ = ∂ ∂  

and  

( ), 1 0tϕ ± = , ( ) ( )0, x xϕ δ=  

The classical solution [7] derived from Fourier series is 

( ) ( ) ( ) ( )
2 2 22 1 π 2

1 1
=0

, 2 e sin π sin πn y t

n
t x y n y y n x y yϕ

∞
− += − −∑       (5) 

where 2 1y y y= − . The form of this solution is more complex than the Gaussian 
form above, as it contains oscillatory elements, and is thus less preferred for 
calculation purposes. The equality of (4) and (5) is known as Jacobi’s identity 
[7]. 

Where only a maximum is relevant, the density reduces to the well known 
result  

( ) ( )22 2 22, 1 2π e e .y x tx Tt x tϕ − −− = −  
               (6) 

5. Analytic Solutions 

The examples given above demonstrate that analytic solutions of the extremum 
problem can always be found for 1D = . In higher dimensions this is not always 
so. This may be because: 
 the Dirichlet problem may not be extensible to the whole of D  [in this 

case multiple sheets of D  may be useful [4]; or 
 from a numerical viewpoint, the heat sources and sinks cluster within a 

limited domain in D  and computational accuracy becomes an issue.  
Where these issues arise, it is always possible to resort to the numerical 

procedure of solving the heat equation by using random walks as presented in 
section 3.1. In addition it sometimes happens that a slight variation in the 
constraints will lead to an analytic solution. The possibilities are illustrated in 
this section. 

As a general rule, the most successful cases where the IC approach leads to an 
analytic solution are where the heat sources and sinks become infinitely dispersed 
under the Coxeter reflection group, as evident for the 2 extrema case for 1D = . 
The most serious difficulties are where the Coexter group is finite [8], as this 
may lead to the Dirichlet problem being inextensible, in contrast to the assertions 
given in [9]. 

Remark. For computational purposes, it is convenient to transform the affine 
reflections involved into linear reflections. This can be done by imbedding D  
into a hyperspace of projective space 1D+  where the last coordinate becomes 1. 
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Thus the linear reflection corresponding to the affine reflection  

( )T2 2y= − +Tx I aa x a  becomes 
T2 2

1 10 1
y −   

=     
    

x xI aa aT�  

The example below are all given for 2D = , as this should suffice to illustrate 
what is possible. In the figures below, the density of the contour indicate the 
level of the Wiener density function. Heat sources are indicated as red points, 
and heat sinks as blue. The caption of each figure indicates the constraints 
imposed. 

5.1. The Case m = 1 

An example of a single constraint for 2D =  is shown in Figure 3. 
For this possibility, all densities are well behaved and are similar to the case 

for 1D = . 

5.2. The Case m = 2 

An example of two constraints for 2D =  is shown in Figure 4. 
Most of the cases are well behaved. However the constraints 

1 2

2

1
0.5

x x
x
+ ≤ 

 ≤ 
 

lead to a finite Coxeter group, and it is easy to show that the additional 
constraint 1 0.5x ≥  is necessarily implied by the other two. This is an example 
of an inextensible Dirichlet problem. Adding this additional constraint, however, 
leads to a well posed Dirichlet solution as shown in Figure 5. 
 

 
Figure 3. A single constraint. 
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Figure 4. Two constraints. 

 

 
Figure 5. An invisible constraint. 

 
However the original problem, without the additional constraint, might be 

approximated by varying the constraint levels to 410−=  as shown in Figure 6. 
Which can be compared with Figure 1. 
It also of interest to approximate non-linear constraints with a set of linear 

ones. Here is an example which is relevant to evaluating exotic options as 
discussed in Section 7, and shown in Figure 7. 

https://doi.org/10.4236/jmf.2018.84043


A. Leung 
 

 

DOI: 10.4236/jmf.2018.84043 700 Journal of Mathematical Finance 
 

 
Figure 6. A slightly varied situation with two constraints. 

 

 
Figure 7. An approximation to exponential constraints. 

5.3. The Case m ≥ 3 

Examples of multiple constraints are shown in Figure 8 and Figure 9. 
No difficulties are evident, except that the larger the number of constraints, 

the greater the possibility of clustering and therefore of computational problems. 
Slight variations in the constraints may resolve these difficulties, as in Figure 6. 
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Figure 8. Three constraints. 

 

 
Figure 9. Four constraints. 

6. Time of First Breach 

The density ( ),tϕ x  clearly depends on the level of the extrema y and is thus a 
cumulative distribution with respect to the extrema; this may be recognized by 
expressing it as ( ), ,tϕ x y , with ( )Tmaxi iy = a x . The joint density ( ), ,tΦ x y  of 
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the Wiener process x  and its extrema y  may then be found from  

( ) ( ), , , ,t tϕ∂
Φ =

∂
x y x y

y
. 

In particular, if k denotes a specific extremum, the density of the process 
which obeys all the constraints apart from k, which is breached at some time, is: 

( ) ( ), , \ , ,kt y tΦ −Φx y x y  

where the symbol\denotes exclusion of the relevant constraint. It is not difficult 
to incorporate time of breach of extremum k in this analysis. This is useful in 
pricing options (such as of the Parisian type), where the timing of breach and 
re-entry are relevant. 

For this purpose, consider the situation where the time of first breach of 
extremum k occurs after time τ . Then the process must satisfy the Dirichlet 
condition until time τ  at a level ≤z y  satisfying all extrema, and breach 
extremum k after time τ . The density of the process at level x  is therefore 

( ) ( ), , , , \ .kt yτ τΦ Φ − −z y x z y  

Summation over all possible times 0 tτ≤ ≤  and levels ≤z y  therefore 
provides the density of meeting the extrema, apart from k and breaching k after 
time τ  but before time t. This can be obviously generalized to breaches of 
multiple extrema at specified times. This provides a straightforward generalization 
of the result in [10] for 1, 1D m= = . 

7. Application to Option Pricing 

We now conclude with our initial motivation for considering extrema of Wiener 
processes—option pricing. This is based, not on asset prices or variables being 
modelled as Wiener processes, but more commonly as asset returns being such 

d d dt= +P P xΣµ  

where x  is the outcome of a Wiener process as before. This results in 

( )21 2
e

t− +
=

x
P

Σµ σ
 

where ( )2 2= tr Σσ . The exponent in the above price is a Wiener process with 
drift 21 2−µ σ . 

The general expression for call options with strike K  on the assets is  

( )| ,0t sE U s t= − ∈ ≤ ≤C P K P  

The exponent appearing in the price is of the form ( )21 2 t− + xΣµ σ . For 
2D ≥ . Two difficulties arise. 

First, the exponent contains the drift term ( )21 2 t−µ σ , which means that 
the constraints themselves contain drift. This can easily be dealt with using 
Girsanov’s theorem, or alternatively (and equivalently) by including drift in the 
heat equation. This is detailed in Appendix B. 

Second, linear constraints on asset prices P  do not translate exactly into 
linear constraints for the Wiener process. This is because linear constraints for 
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prices of the form T y≤a P  imply a non-linear constraint on the exponents, 
that is ( )21 2Te

t
y

− +
≤

x
a

Σµ σ
. This is dealt with next. 

7.1. Non-Linear Constraints for Wiener Processes 

Where the time period involved does not allow the exponential of a Wiener 
process to be approximated, two approaches can be considered. 

One of these is direct—to solve the heat equation with non-linear constraints. 
The random walk of Section 3.1 shows this can be handled numerically and 
efficiently. 

The second approach is to approximate the non-linear constraints with an 
envelope of linear ones. The example of Section 3.1 shows how this might be 
feasible computationally. 

7.2. Example 

[2] use a similar technique to that employed above for finding analytic solutions 
for exotic option pricing for 1D = . The technique is also called `the method of 
images’. However the reason for this is less obvious than that of this paper as the 
authors consider, not the PDE for the Wiener process, but that for the option 
price V under the Black Scholes PDE, namely 

2 2 2 21 2 0V S V S rS V S rVτ σ∂ ∂ + ∂ ∂ + ∂ ∂ − =  

where r and 2σ  relate to the characteristics of the stock price S and Tτ =  is 
the time of expiration. 

Its is straightforward to show this PDE can be reduced to the heat equation 
1 2t xxu u=  for 1D =  using a transformation of the form 

exS K=  

( ) 2t T τ σ= −  

( )2 4 1 2
e

t x
V Ku

α α α− + + −
=  

22 1.rα σ= −  

This can be accomplished in many ways by choosing the value of the constant 
K; this possibility leads to invariance of the PDE under the images involved. 

Consider the example where the option has a payoff of ( )f P  at time t T=  
provided the spot price does not exceed the ceiling H. The spot price can be 
solved to give e tP S λ σ+= x  where 21 2rλ σ= −  and S is its initial price. The 
value of the payoff ( )f P  at time T is 

( ) ( )
ln

e , d dT x

x y H

C f S u x y x yλ σ

σ

+

≤ ≤

= ∫  

The integral ( )
ln

, d
y H

u x y y
σ≤

∫  is just the density of the Wiener process where  

the maximum is ln H σ . From 6 this is given ( )22 2 ln 221 2π e e H x Tx Tt σ− −− −  
. 

Hence the expression for C becomes 
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( ) ( )22 2 ln 22

ln

1 2π e e e d dH x TT x x T

x y H

C t f S x yσλ σ

σ

− −+ −−

≤ ≤

 = −  ∫  

Now bring in a further transformation to remove drift: let t x zλ σ σ+ =  for 
a new Wiener process z. The transformation may be written z x tλ σ= + , so 
that the change of measure under Girsanov’s theorem from x to z is 

( )212e z Tλ σ λ σ− . 
The above integral may then be written as  

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

22

2 2

2

22

2

1 22

ln

2 ln 2 1 2

ln

2

ln

2 ln 22

ln

2

ln

e 2π e e e d

e e e d

e 2π e e d

e e d

e 2π e e d

z TrT z x T

x H

H z T z Tz

x H

z T TrT z

x H

z H T Tz

x H

z T TrT z

x H

C T f S z

f S z

T f S z

H f S z

T f S z

λ σ λ σσ

σ

σ λ σ λ σσ

σ

λ σσ

σ

σ λ σλ σ σ

σ

λ σσ

σ

−− −−

≤

− − −

≤

− −−

≤

− − −

≤

− −−

≤


= 




− 



= 




− 



= 



−

∫

∫

∫

∫

∫

( ) ( )22 22 2

ln

e e dz T Tz

x H

H f SH zλ σλ σ σ

σ

− −

≤





∫

 

Thus the value of the path-restricted call option is thus given by the difference 
between two path-unrestricted options. This result is consistent with [2], who 
refer to the second integral as an image of the first. Clearly similar examples 
involving both extrema can be found. 

8. The Case of Steel 

Another application of a multi-dimensional Wiener process is in the case of 
commodities, e.g. steel (s). The major inputs are iron ore (i), coal (c), labor and 
energy. The first two inputs and the output may be measured in USD. These 
outputs may be analyzed by the Augmented Dickey Fuller test in isolation to be 
stationary, i.e. ( )0I , except possibly for the labor and energy inputs. For 
simplicity, we assume that the full process is stationary; time trends can be be 
dealt with by introducing drift as in Appendix B. The simplification is that 
commodities do not have an intrinsic return, compared to financial assets. 

Data was provided for 600 observations during the period 1/26/2016 to 
8/8/2016 [11]. The observed means and the covariance matrix of ( ), ,SIC s i c=  
are as follows: 

495.243
66.560
83.314

SIC
 
 =  
  

 

and 
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14,776 696 1888
696 111 109 .

1888 109 375

 
 Σ =  
  

 

The commodities can be modelled as a three dimensional Wiener process 
SIC = Ax  with x  being a 3 dimensional Wiener process, and with A  being 
given by the Cholesky decomposition of A :  

0.043 1.595 121.544
8.025 3.596 5.776
2.621 11.038 15.681

 
 = − − 
 − 

A  

For an example of an exotic option, consider a down-and-out option, where 
SIC is subject to the particular floors over a one year period as follows: 

505.243
76.560 .
93.314

SIC
 
 + ≤  
  

Ax                       (7) 

Since the commodities are stationary in their own right, the price of a call 
option at 500 is given by 

[ ] ( )max 0, 500 dCall f s s s= −∫ �  

where [ ]f s�  is the density of the steel price if the variable SIC obeys the floors, 
or equivalently the constraints 7. Thus it remains to assess the density ( )f x  
under the constraints, and when s exceeds 500 in its payoff. 

The poles to be assessed under the constrained process are the sources:  

0
0
0

  
  =   
    

  

and the sinks1 

0.6129 1.5069
113.7736 , 0.0716
37.1549 0.1944

    
    = −    
        

  

Thus the density of x is 

( )
( )

( ) ( )2 2

2 2
3 2

1 e e .
2π

x q

f
− −

− −

∈ ∈

 
 = −
 
 
∑ ∑
 

x p

p q
x  

From this expression the the density of T
1s = e Ax  can be computed. where 

[ ]T
1 1,0,0=e . If its steel (and its labor and energy inputs) were subject to time  

trends, then drift as in Appendix B can be employed using a factor 
21

2e
κ κ−

 for 
the trend κ  in steel s.  

We now compute the density of SIC = Ax . Since s has an historic mean of 

 

 

1Note that poles differing by more than 10−9 have been eliminated on the basis of computational in-
accuracy.  
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495, we require only that T
1 ≥e Ax 10 . The value of the barrier option is then 

( )
( ) T

13 2
1 max 0, 10 d 0.991.

2π
f  − = ∫ x e Ax x  

It is more convenient to evaluate this integral numerically in the result above. 
In contrast the option price without constraints is  

[ ]
( )

( )

( )

2

2

495.2
2 14776

500

500 495.2
2 14776

1 15.6224 e d
2π14776

14776 495.2e 500 495.2 1 68.523.
π 14776

s

s

s s
−

−
×

>

−
−

×

−

 
= − − Φ − = 

 

∫
 

Thus the imposition of floors on the inputs during the one year process has a 
strong effect in reducing the variability of the steel price, and thus narrowing the 
option price. Of course more extreme examples are possible. 

9. Conclusion 

Though the connection between the Wiener process and the heat equation has 
long been known, there has been little research to exploit it. The context of 
constrained processes provides a natural setting for deriving computational, and 
even analytic, solutions for these problems. The power of group theoretic 
methods, embodied in Kelvin’s method of images, is only touched on in this 
paper, but it is evident they have a much greater role to play in mathematical 
finance. 
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Appendix A: Convergence of the Random Walk to the  
Wiener Process 

The recurrence relation in (1) after 2 steps may be written as follows 

( ) ( ) ( )2
2

,
= 1 2nt nt i j

i j
f n D D f n D+ ± ±∑x x e e  

or 

( ) ( )
( ) ( ) ( ) ( ) ( )

2

21 2

nt nt

nt i j nt nt i nt
i j i

f n D f n D

D f n D f f n D f

+

≠

−

 
= ± ± − + ± − 

 
∑ ∑

x x

x e e x x 2e x
 

Denoting ( ) ( )t ntf n Dψ =x x  and h D n=  this may be expressed as 

( ) ( )

( ) ( ) ( ) ( )

2
2

2

2 2

2

1 16

tt h D

t i j t t i t
i j i

h D

D h h h h h

ψ ψ

ψ ψ ψ ψ

+

≠

−

 
= ± ± − + ± − 

 
∑ ∑

x x

x e e x x 2 e x
  (8) 

The Taylor series expansions are: 

( ) ( ) ( )T T 2 T 2 31 2t i j t i t j t i t jh h h h h O hψ ψ ψ ψ ψ± ± − = ± ∆ ± ∆ + ∆ +x e e x e e e e  

( ) ( ) ( )T 2 T 2 32t i t i t i t ih h h O hψ ψ ψ ψ± − = ± ∆ + ∆ +x 2 e x 2 e e e  

There are ( )2 2 2D D −  of the first of the above relations, and 2D of the 
second. In the above summations, the aggregate coefficients of T

i tψ∆e  and 
T 2
i t jψ∆e e  for i j≠  are zero, as for any term i jh h± ±x e e  there is the 

opposing term i jh h∓ ∓x e e . The only non-zero terms are T 2
i t iψ∆e e , each with 

total coefficient ( )8 1 8 8D D− + = . Thus as n →∞ , or equivalently 0h → , we 
have the limit ( )0limh tϕ ψ→= x  and 

( )21 2 1 2tϕ ϕ ϕ∂ ∂ = = ∆tr ∇  

which is the heat equation in D dimensions. The constraints ≤Ax y  are 
similarly scaled as n D n D≤Ax y . 

Appendix B: Allowance for Drift in Wiener Processes 

The stochastic approach to introducing (or removing) drift into Wiener processes 
is via Girsanov’s theorem, which allows the use of a Radon Nikodỳm change of 
measure for the process. Since we are dealing directly with densities under the 
PDE approach to such processes, it is not surprising that a more direct treatment 
is possible under this approach. 

This can be achieved by considering the heat equation with linear drift, 
namely 

T 1 2tv v v+ ∇ = ∆κ  

where D∈κ  is a specific drift vector. Thus if ( ),u t x  is a solution of the 
usual heat equation 1 2tu u= ∆ , then ( ) ( ), ,v t u t t= +x x κ  is the solution to 
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that with drift. It also follows that if u is constrained to vanish on surfaces of the 
form T =a x y , then must v vanish on the drift-adjusted surfaces  

( )T t− =a x yκ . Thus we can solve problems where the constraints themselves 
drift with time. 

Fortunately there is an easy adjustment that allows us to connect the solutions 
of heat equations with or without drift. If u is a solution of the driftless equation, 
then consider the function 

2 2 2T2 2 1 2e e e .t t t tv u u− − − −= =x x xκ κ κ  

We have 
2T 21 2e 1 2t

t tv u u−  = − + 
x κ κ κ  

[ ]
2T 1 2e tv u u−= +x

x x
κ κ κ  

2T 21 2 Te 2tv u u u−  = + + 
x

xx x xx
κ κ κ κ  

and thus 
T = 1 2tv v v+ ∇ ∆κ  

satisfies the heat equation with drift. The factor 
2T 1 2e t−x κ κ  is precisely the 

change of measure prescribed by Girsanov’s theorem, but here it appears as a 
transformation for linear drift. Clearly this result may be generalized to non- 
constant drift. 
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