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Abstract 
This paper presents a method of portfolio selection for reducing co-related 
risks. Differing from the Markowitz’s mean-variance framework, we use the 
joint probability of co-movement of multi-assets (JPCM) as a measure of 
risks, and under the condition of minimizing the JPCM, we pinpoint the op-
timal portfolio by optimizing the JPCM matrix of paired assets. At the same 
time, we use the shape parameter of generalized error distribution (GED) to 
measure the tail shapes of different portfolios. The empirical results for Chi-
na’s stock market show that the JPCM portfolios significantly outperform 
naive-diversified portfolios (1/N-rule) and minimum-variance (MV) in terms 
of the tail shape of portfolio distribution. 
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1. Introduction 

Portfolio selection and optimization has been a fundamental problem in finance 
ever since Markowitz laid down the ground-breaking work that formed the 
foundation of what is now popularly known as Modern Portfolio Theory [1]. 
The main idea of MPT is “never putting all your eggs in one basket”. Markowitz 
posed the mean-variance analysis by solving a quadratic optimization problem. 
This approach has had a profound impact on the financial economics and is a 
milestone of modern finance. However, there are documented facts that the 
Markowitz portfolio is very sensitive to errors in the estimates of the inputs. 
Namely, the allocation vector that we get based on the empirical data can be very 
different from the allocation vector we want based on the theoretical inputs [2]. 
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Hence, the mean-variance optimal portfolio does not perform well in empirical 
applications, and it is very important to find a robust portfolio that does not de-
pend on the aggregation of estimation errors. 

Various efforts have been made to modify the Markowitz unconstrained 
mean-variance optimization problem to make the resulting allocation depend 
less sensitively on the input vectors, such as the expected returns and covariance 
matrices. Black and Litterman showed that although the covariances of a few as-
sets can be adequately estimated, it is difficult to come up with reasonable esti-
mates of expected returns [3]. They proposed that expected excess returns for all 
assets can be obtained by combining investor views with market equilibrium. 
Roon, Nijman and Werker considered testing variance spanning with the 
no-short-sale constraint [4]. Goldfarb and Iyengar studied some robust portfolio 
selection problems that make allocation vectors less sensitive to the input vectors 
[5]. The seminal paper by Jagannathan and Ma imposed the no-short-sale con-
straint on the Markowitz mean-variance optimization problem and gave in-
sightful explanation and demonstration of why the constraints help even when 
they are wrong [6]. They demonstrated that their constrained efficient portfolio 
problem is equivalent to the Markowitz problem with covariance estimated by 
the maximum likelihood estimate with the same constraint. However, as dem-
onstrated in this paper, the optimal no-short-sale portfolio is not diversified 
enough. The constraint on gross exposure needs relaxing in order to enlarge the 
pools of admissible portfolios. Fan, Zhang and Yu showed that the gross-exposure 
constrained by mean-variance portfolio selection has similar performance to the 
optimal theoretical portfolios with no error accumulation effect and no-short-sale 
portfolio is not diversified enough and can be improved by allowing some short 
positions [7]. Colon adopted an A-DCC volatility model to generate the cova-
riance forecasts in order to adjust to prevailing risk environments [8]. Bessler, 
Opfer and Wolff paid attention to the performance of the Black and Litterman 
model, and found that the BL model significantly outperforms naive-diversified 
portfolios, mean-variance, Bayes-Stein, and minimum-variance strategies in 
terms of Sharp ratios [9]. Becker, Gürtler and Hibbeln compared the perfor-
mance of traditional mean-variance optimization with Michaud’s re-sampled ef-
ficiency in a large number of relevant estimators and found that Michaud out-
performs Markowitz when the variance of estimators is large [10]. Pfiffelmann, 
Roger and Bourachnikova compared the asset allocations generated by BPT 
(Behavioral Portfolio Theory) and MPT without restrictions [11], and showed 
that the BPT optimal portfolio is Mean Variance (MV) method efficient in more 
than 70% of cases. 

These excellent works above just consider how to reduce the volatility in the 
financial markets. However, investors are more concerned about co-related risk 
of the portfolio returns, namely the possibility of huge losses in a portfolio. In 
the stock market, if the log-returns of two stocks are norm distributions, correla-
tion coefficient can depict the relationship between two stocks and covariance is 
a good risk measure of two stocks. However, in the case of non-normal distribu-
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tion, covariance is not able to accurately measure the risk between two stocks. 
Instead of the covariance, we use the joint probability of co-movement of two 
stocks to measure the co-related risks of portfolios. The co-movement of two 
stocks represents that the returns of two stocks simultaneously exceed the given 
threshold (superior and inferior threshold). We use revised multidimensional 
normal distribution of log-return of multi-assets to calculate the probability. 
With the criterion of minimizing the joint probability of co-movement of two 
stocks, we obtain the portfolio with the smallest co-related risks by optimization 
procedure. This method overcomes the shortcoming of covariance that merely 
measures risks of portfolio from a linear relationship. 

The remainder of the article is organized as follows: we start with a short de-
scription of the MV approach and JPCM approach in Sections 2. In Section 3, 
we explain the database and present the empirical results. Our findings are 
summarized in Section 4. 

2. Portfolio Optimization Methodology 
2.1. Markowitz Mean-Variance Optimization 

Markowitz built his portfolio selection contributions to MPT on the following 
key assumptions: 
 All investments are completely separable, and each investor can select as 

much or as little investments as they wish (have ability to spend). 
 Investors are willing to select portfolios only depending on expected value 

and variance (standard deviation) of portfolio returns. 
 Investors know in advance the return distribution which satisfies the normal 

distribution. 
 Investors follow these basic rules when they choose a portfolio: 1) They seek 

to maximize returns while minimizing risk. 2) They are only willing to accept 
higher amounts of risk if they are compensated by higher expected returns. 

According to the above assumptions, Markowitz put forward the method of 
computation for expected return and variance of a portfolio and established the 
Efficient Frontier Theory and Mean-Variance optimization: 
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where ( )T
1 2, , , pw w w w=   represents the vector of portfolio shares of the p 

risky assets, iµ  is the sample expected returns, [ ]min ,maxi iR µ µ∈  is a given 
return, Σ  the sample variance-covariance matrix, in none existence of 
short-sale market, 0, 1, 2, ,iw i p≥ =  . 

2.2. Joint Probability of Co-Movement of Multi-Asset 

In the stock market, the loss distribution of stock returns reflects stock risks and 
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this distribution can provide the risk criterion for the stockbroker in the invest-
ment decisions; therefore, the accurate measurement risk is a key factor in the 
risk management. When stockbrokers want to invest multi-asset, only consider-
ing a single distribution is difficult to describe the relationships between mul-
ti-assets. 

On condition that price process is geometric Brownian motion, the depen-
dence between log-return of two assets can be described as follows: Let price of 
two dependence assets be 1tS , 2tS  and their price process be  

1 1 1 1 1 1d d dt t t tS S t S Wµ σ= +  and 2 2 2 2 2 2d d dt t t tS S t S Wµ σ= +  

where 1 2t tW Wρ=  and [ ]1,1ρ ∈ −  is the correlation coefficient. During a con-
tinuous-time model, log-return of two assets are ( )1 1log tr d S=  and  

( )2 2log tr d S= , then ( )2
1 1 1d , dr N t tµ σ  and ( )2

2 2 2d , dr N t tµ σ . The correla-
tion coefficient between two assets can be obtained by calculating  

( ) ( ) ( ) ( )1 2 1 2 1 2, d d dt tCov r r Var r Var r E W W tρ = = . 
In the real market, if the correlation between two assets is linear and the 

log-returns are normal distribution, we can easily compute ρ  and make a per-
fect allocation for assets. However, the reality of discovery is a different matter 
that the asset returns may represent peak and heavy-tailed features and the 
original method above cannot describe the relationship between assets precisely, 
for example, how to find the nonlinear function ( ),f t x  in ( )1 2,t tW f t W=  
and how to confirm the distribution of returns if we do not know the price 
process. 

The clustering of large moves and small moves in the price process is one of 
the most important features of the volatility process of asset prices. Mandelbrot 
[12] and Fama [13] both reported evidence that large changes in the price of an 
asset are often followed by other large changes, and small changes are often fol-
lowed by small changes. This evidence leads to the extreme risks often associated 
with excess returns. We should use the joint probability of co-movement of mul-
ti-asset to describe this joint effect. As noted by Segoviano [14], we define the 
joint probability of co-movement of ρ  assets returns as follows: 
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where d
iT  and u

iT  ( )1,2, ,i p=   represent threshold values, ( )1 2, , , pp x x x
  

represents the joint distribution of multi-variate in portfolio, and Equation (2) 
represents the probability of p assets with returns co-moving to both maximum 
and minimum value during some period. 

Considering how to get the joint probability density of multivariate in a port-
folio, the traditional route is to impose parametric distributional assumptions, 
for example, the most common parametric distributions are the conditional 
normal distribution, the t-distribution and the mixture of normal distributions. 
However, in fact, we can only establish the model through finite information, 
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which will inevitably lead to errors in estimating parameters. Therefore, rather 
than imposing parametric distributional assumptions, we using the Minimum 
Cross Entropy Distribution proposed by Kullback [15] and Good [16] embedded 
in our model. 

For p assets 1 2, , , pX X X , their price logarithmic returns are 1 2, , , px x x , 
and the cross-entropy objective function is defined as follows: 

[ ] ( ) ( )
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−∞ −∞ −∞

 
 =
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  (3) 

where ( )1 2, , , 0pq x x x ≥  is the multi-variates prior distribution, and the 
posterior distribution is ( )1 2, , , 0pp x x x ≥

 . 
Then we assume that the multi-variate prior distribution ( )1 2, , , pq x x x  is 

p-dimensional joint normal distribution, i.e. ( ) ( )1 2, , , ,pq x x x N µ∼ Σ , µ  is 
the mean vector, and Σ  is the variance-covariance matrix. Our objective is to 
minimize the cross entropy distance between the posterior ( )1 2, , , pp x x x

  and 
the prior ( )1 2, , , pq x x x , and the posterior one need to satisfy the constraints 
as follows: 

( ) ({ }1 2 1 2, , , : , d d dd d d
p i i i i p ip x x x I x x T x x x P∈ −∞ =∫ ∫ ∫         (4) 

( ) ){ }1 2 1 2, , , : , d d du u u
p i i i i p ip x x x I x x T x x x P∈ ∞ =∫ ∫ ∫         (5) 

( )1 2 1 2, , , d d d 1p pp x x x x x x =∫ ∫ ∫                   (6) 

where 1,2, ,i p=   and ( )1d
i iT α−= Φ  is the threshold which represents risk 

occur when returns of an asset are below it, ( )1 1u
i iT α−= Φ −  is the threshold 

which represents excess occur when returns of an asset are beyond it, ( )0,1α ∈  
is the risk aversion coefficient, ( )1

i
−Φ ⋅  is the prior inverse CDF of the marginal 

distribution of asset logarithmic returns, ( )d d
i i iP x T= ≤Ρ  and ( )u u

i i iP x T= ≥Ρ  
are the empirically observed probabilities of extreme value for each asset in the 
portfolio. d

iI  and u
iI  represent indicating function as follows:  
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Next, we minimize the Equation (3) by Lagrange multipliers and let 

[ ] ( ) ( )
( ) ( )( )T, log

p X
F X P p X p X I

q X
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where ( )T
1 2, , , pX x x x=  , ( ) ( ) ( ) ( )( )1 2

T
, , , ,

px x xP p X p X p X p X=    
 ,  

( )T
1 2 2, , , pλ λ λΛ =  , ( )T

1 2 1 2, , , , , , ,d d d u u u
p pI I I I I I I=   , and D is a p-dimensional  

space satisfying { }T 2| ,D X X X a a= ≤ →∞ , ( ) ( )* pp X C D∈  minimizes the 
cost functional above 
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( ) [ ] 1 2, d d d pD
J p x F X P x x x=   ∫ ∫ ∫

   

at the boundary planar L of the p-dimensional D, and ( ) ( ) ( )*p X p X Xεη= +  , 
where ε  is a given fully small positive, and ( )Xη  is an any function of pC  
satisfying ( ) 0

L
Xη = , that is ( ) 0

L
p Xδ = . The optimization procedure can be 

performed by computing the following variation: 
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that is, 

( )
( )

Tlog 1 0
p X

I
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+ Λ + + = 
  



, 

and the optimal solution is represented by the following multivariate density as: 

( ) ( ) ( )T
0expp X q X Iλ= −Λ                   (8) 

where 0 1λ ξ= − −  and Λ  are the correction factors to the prior density. We 
can obtain these factors by solving the Equations (4), (5) and (6) and the 
co-movement among p assets is 

( ) ( )T
0 1 2exp d d d pJPCM q X I x x xλ= −Λ∫ ∫ ∫            (9) 

2.3. JPCM Optimization  

For p assets, the weight of each asset is expressed as ( )T
1 2, , , pw w w w=   and 

weights should be 1 20, 0, , 0pw w w≥ ≥ ≥ . During a period of time T, we let 

( )T
1 2, , , pX x x x=   be the random vector of p assets price logarithmic returns, 

and observe it every τ  minute and obtain a total n observations. First, we spe-
cify the distribution of the logarithmic returns of the p assets as a joint normal 
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distribution. If the hypothesis that the return series of multi-assets obey joint 
normal distribution is true, we can easily find a best w to minimize the risk of 

Tw X . However, the relationships between assets are nonlinear and return series 
has peak and heavy-tailed features in real market. The covariance between assets 
is not a very good measure for relationships. So we use JPCM method to estab-
lish the relationships between two assets and we specify the prior distribution of 
two assets ( ), , , 1, 2, ,i j i j i j p≠ =   as 

( ) ( ) ( )T 1
1 2

1 1exp
22π

f x x xµ µ− = − − Σ − 
 Σ

           (10) 

where ( )f x  is bivariate function, and ( )T
,i jx x x= , ( )T

,i jµ µ µ= , Σ  is the 
covariance matrix.  

Then, we obtain the empirically observed probabilities of the threshold value 
according to the actual data: ( )d d

i i iP x T= ≤Ρ  and ( )u u
i i iP x T= ≥Ρ . Therefore,  

the posterior PDF of paired assets ( ),i jp x x  and  

( ) ( )0 1 1 2 2 3 3 4 4exp d dd d u u
ij i jJPCM f x I I I I x xλ λ λ λ λ

∞ ∞

−∞ −∞
= − − − −∫ ∫  are obtained, 

according to the Equation (9) and the corresponding JPCM matrix is 

12 1

21 2

1 2

0
0

0

p

p

p p
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JPCM JPCM

 
 
 =  
  
 





   



             (11) 

Then in none existence of short-sale market, and we establish quadratic pro-
gram with JPCM matrix as follows: 
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=
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where ( )T
1 2, , , pw w w w=   represents the vector of portfolio shares of the p 

risky assets, iµ  is the sample expected returns, [ ]min ,maxi iR µ µ∈  is a given 
return, ( )1 1 2 2, , ,d u d u d u

p pQ diag P P P P P P= + + + , in none existence of short-sale 
market, 0, 1, 2, ,iw i p≥ =  .  

3. Empirical Analysis 
3.1. Data 

This paper selects the SSE (Shanghai Stock Exchange) 50 constituent stocks as 
empirical data which are composed of 50 large-cap stocks. We randomly se-
lected 10 stocks as a portfolio with replacement method, finally, collected 100 
samples. 

The trading day of each stock was selected from 2015-01-05 to 2015-11-2, a 
total of 201 trading days. In this period, China’s stock market experienced the 
formation from the bull market with almost all stock prices jumped up to the 
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stock market crash with nearly all liquidity completely lost, which has certain 
representation of mechanism transformation in stock market.  

Then, data cleaning of sample stocks is based on the following principles. 
First, we computed the trading hours of ten stocks in each day, and eliminated 
the intraday trading data in ten stocks if the trading hours were less than 2 
hours. Second, we took the intersection of trading dates of ten stocks in order to 
ensure the uniform trading date. Third, we took the intersection of one-minute 
price data of ten stocks in each day. Fourth, as noted by Andersen [17], 
five-minute sampling frequency in stock prices has contributed to reducing price 
noise, so we use a five-minute return horizon as the effective time record. 

3.2. Optimization Results 

201 trading days is divided into two periods. The first period from 2015-01-05 to 
2015-06-09 has main characteristics that almost all stock prices jumped up, and 
the second period from 2015-06-10 to 2015-11-02 that almost all stock prices 
plummeted. We apply JPCM method, Markowitz model and 1/N-rule during 
two periods to optimize portfolios. 

When optimizing JPCM matrix during two periods, we set the same risk aver-
sion coefficient α  to 0.001 ( )0.001α = , then calculated the JPCM matrix, fi-
nally optimized the weight of portfolios according to Equation (12). Meanwhile, 
we set 10 assets weights equal to 1/10, and under the same conditions (we estab-
lish quadratic program without return constrain) used quadratic programming 
method to optimize Markowitz’s Mean-Variance model. The weights of three 
methods were obtained respectively, shown in Figure 1. 

 

 
Figure 1. JPCM and MV optimized portfolio weights. This figure describes the JPCM and MV optimized portfolio weights for 
100 during two periods. Subplots (a) and (b) represent the JPCM weights and MV weights respectively during first period. Sub-
plots (c) and (d) represent the JPCM weights and MV weights respectively during second period. The horizontal axis of this chart 
is portfolios and the vertical axis is weights. The regions with similar color represent the same series assets in 100 samples. Seen 
from the chart, the variation of MV weights between two periods is bigger than that of JPCM weights. (a) CM optimized portfolio 
weights during first period; (b) MV optimized portfolio weights during first period; (a) CM optimized portfolio weights during 
second period; (a) MV optimized portfolio weights during second period. 
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3.3. Use Tail Shape Index to Measure Portfolio Risk 

The probability of extreme events of the portfolio can be described by the gene-
ralized error distribution. This is because the tail shape index of the generalized 
error distribution can calculate a tail thickness of a distribution accurately. Gen-
eral error distribution (GED) has been widely used in modeling volatility of 
high-frequency time series with heavy tail. The probability density function 
(pdf) of the standardized GED is given by: 

( ) 11

1exp
2

12

s

s
s

s

g x

s s

λ

λ+

 
−  
 =

 Γ 
 

                  (13) 

For s > 0 and x R∈ , where ( ) ( )
1 222 1 3s s sλ − = Γ Γ   and ( )Γ ⋅  denotes 

the Gamma function. Nelson pointed that the GED reduces to the standard 
normal distribution when s = 2, and s represents the tail thickness parameter, 
i.e., for 0 2s< <  the tail of the GED is thicker than that of the normal distribu-
tion, and the GED has a thinner tail for s > 2 [18]. We calculate the tail thickness 
parameter of portfolios respectively during both period, as shown in Table 1.  

From Table 2, we can conclude that the tail shape index of JPCM portfolio is 
greater than 1/N rule portfolio and Markowitz portfolio. Meanwhile, we also 
find that there is the asymmetry of tail indices during different period, i.e. the 
tail shape index of stock return is greater when in the bull market than in bear 
market, which represents that probability of risk is increased when a stock falls. 

Then we show two figures about the distribution of return between three me-
thods. Because of the space limitations, we select representative figures in our 
empirical results. We use the log-return of twentieth portfolios optimized by 
three methods as data and plot figures by fitting the distributions of these port-
folios. The subplots inserted in figures are the photomicrographs of tail distribu-
tion. Although the tail distribution of JPCM model is thinner than other me-
thods, it is difficult to tell the difference by naked eye. In Figure 2, the tail shape  
 
Table 1. Tail thickness parameters of different methods. 

No. 
The First Period The Second Period 

s11 s12 s13 s21 s22 s23 

1 1.2584 1.1882 1.2371 0.9201 0.7649 0.8737 

20 1.3040 1.1655 1.2519 0.8468 0.7869 0.8487 

40 1.3535 1.3252 1.3377 0.9043 0.7890 0.8889 

60 1.2708 1.2555 1.2480 0.9935 0.8185 0.9351 

80 1.3457 1.3099 1.3299 0.9886 0.8801 0.9820 

100 1.2707 1.2059 1.2405 0.9525 0.8510 0.9475 

This table reports the tail indices of portfolios return distributions during two periods, where s11, s12, s13 
in first period separately represent the indices of JPCM portfolio, Markowitz portfolio and 1/N rule portfo-
lio from 2015-01-05 to 2015-06-09 and s21, s22, s23in second period separately represent the indices of 
JPCM portfolio, Markowitz portfolio and 1/N rule portfolio from 2015-06-10 to 2015-11-02. 
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Figure 2. The distribution comparison between JPCM, MV and 1/N. 

 
Table 2. Mean value of return in different methods. 

No. 
The First Period The Second Period 

m11 m12 m13 m21 m22 m23 

1 5.49E−5 4.02E−5 5.95E−5 4.25E−5 3.92E−5 3.56E−5 

20 4.85E−5 4.37E−5 5.51E−5 2.30E−5 2.29E−5 2.11E−5 

40 2.26E−5 −1.10E−5 2.28E−5 −1.26E−5 6.76E−6 −1.49E−5 

60 2.67E−5 2.48E−5 2.86E−5 −3.55E−6 1.04E−5 −9.39E−7 

80 7.81E−5 7.41E−5 8.48E−5 −3.59E−5 −1.35E−5 −3.66E−5 

100 4.50E−5 3.67E−5 4.90E−5 2.81E−6 1.26E−6 6.45E−7 

This table reports mean value of return during two periods, where m11, m12, m13 in first period separately 
represent mean value of return in JPCM portfolio, Markowitz portfolio and 1/N rule portfolio from 
2015-01-05 to 2015-06-09 and m21, m22, m23 in second period separately represent the mean value of re-
turn in JPCM portfolio, Markowitz portfolio and 1/N rule portfolio from 2015-06-10 to 2015-11-02. 
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index of JPCM portfolio is 1.304, the tail shape index of MV is 1.1655 and the 
tail shape index of 1/N is 1.2519. We can find that JPCM portfolio has thinnest 
tail shape.  

In order to compare the difference in the tail indices of these portfolios opti-
mized by different methods, we carry out a paired-samples t-test method to 
analyze every discrimination of the tail indices. Paired-samples t-test substan-
tially is used for determining whether there is a systematic deviation between 
paired test data, i.e. the difference between paired data can be seen as a sample of 
a normal distribution, and infer whether there is a significant difference between 
co-related risks of these portfolios optimized by different methods through 
two-sided test on the zero mean. 

Therefore, these tail indices during two periods are used to establish a paired 
sample as follows: {s11-s12, s11-s13, s12-s13}, {s21-s22, s21-s23, s22-s23} and we 
analyze these data with paired-samples t-test with the results shown in Table 3 
and Table 4.  

Table 4 reports the results of paired-sample t-test for different optimization 
methods during first period. We find that: 1) There exist significant differences 
between the tail shape index of JPCM portfolio and of 1/N rule portfolio, and 
JPCM portfolio has a significantly higher tail shape index to 1/N rule, i.e. JPCM 
portfolio has a thinner tail than 1/N rule. 2) There exist significant differences 
between the tail shape index of JPCM portfolio and of Markowitz portfolio, and 
JPCM portfolio has a significantly higher tail shape index to Markowitz, i.e. 
JPCM portfolio has a thinner tail. 3) There exist significant differences between 
the tail shape index of 1/N rule portfolio and of Markowitz portfolio, and 1/N 
rule portfolio has a significantly higher tail shape index to Markowitz. Recently, 
1/rule model performs better than MV (Minimum-Variance) model in research 
community, when optimizing in high-dimension space. Text heads organize the.  

The table reports the results of paired-sample t-test for different optimization 
methods during second period. We find that: 1) There exist significant differ-
ences between the tail shape index of JPCM portfolio and of 1/N rule portfolio,  
 
Table 3. Paired-sample t-test during first period. 

 Mean Std T df Sig (two-sided) 

s212-s22 0.06063 0.04828 14.011 99 0.000 

s212-s23 0.01455 0.02400 6.062 99 0.000 

s222-s23 −0.04608 0.04545 −10.140 99 0.000 

 
Table 4. Paired-sample t-test during second period. 

 Mean Std T df Sig (two-sided) 

s212-s22 0.10912 0.03731 29.249 99 0.000 

s212-s23 0.01677 0.01419 11.816 99 0.000 

s222-s23 −0.09235 0.03022 −30.561 99 0.000 
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and JPCM portfolio has a significantly higher tail shape index to 1/N rule, i.e. 
JPCM portfolio has a thinner tail than 1/N rule. 2) There exist significant differ-
ences between the tail shape index of JPCM portfolio and of Markowitz portfo-
lio, and JPCM portfolio has a significantly higher tail shape index to Markowitz, 
i.e. JPCM portfolio has a thinner tail. 3) There exist significant differences be-
tween the tail shape index of 1/N rule portfolio and of Markowitz portfolio, and 
1/N rule portfolio has a significantly higher tail shape index to Markowitz. 

The results above show that: 1) the distribution of JPCM portfolio has a sig-
nificantly higher tail shape index (a higher tail shape index represents a thinner 
tail) than that of naive-diversified portfolio and Markowitz portfolio, whether we 
optimize these portfolios from 2015-01-05 to 2015-06-09 or from 2015-06-10 to 
2015-11-02, i.e., extreme value occurs with small probability in JPCM portfolio, 
which represents that this method can reduce risk of portfolio significantly. 2) 
Tail shape index has obvious asymmetry in both periods, i.e., tail indices of 
portfolios optimized by three methods in first period are larger than that in 
second period, which means that the tail shape index of a portfolio when its 
price rising is greater than that when falling, in other words, portfolio return is 
prone to have more risk during stock market crash.  

To sum up advantages of JPCM method: first, we get more information of 
portfolio distribution. Second, JPCM method overcomes the shortcomings of the 
covariance which measures return volatility only from linear perspective among 
different assets; Lastly, JPCM method aims at reducing the probability of ex-
treme events between each two assets, and essentially reduces co-related risks of 
portfolios. 

4. Conclusions 

In this paper, we present a new method called “Minimum JPCM” to portfolio 
optimization, and this method which constructs multi-assets JPCM matrix based 
on joint probability of co-movement between each two assets to optimize our 
portfolio is different from currently popular improved Markowitz method. The 
optimization procedure of JPCM possesses a superior performance of reducing 
co-related risks compared to Markowitz and naive method. Co-related risks in 
portfolio are mainly determined by simultaneous change of returns caused by 
macro common factors, and have impact on all the stocks in the same way. We 
could not eliminate co-related risks completely in financial market, however, we 
can reduce part of it through diversified portfolio. We also present a new me-
thod to measure co-related risks of portfolio, i.e., using the shape index of the 
generalized error distribution to measure co-related risks in each portfolio, 
which distinguishes the tail shape index difference among JPCM, Markowitz and 
Naive-Diversified. 

In empirical analysis, we use the SSE 50 constituent stocks from 2015-01-05 to 
2015-11-02 to select 10 stocks with replacement method as a sample, and obtain 
100 samples with repeating 100 times for comparing the difference between 
three optimization methods. 
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The empirical results indicate an impressive performance of the proposed 
model. 1) The distribution of JPCM portfolio log-return has a significantly 
higher tail shape index than that of naive-diversified portfolio and Markowitz 
portfolio. 2) Paired-samples t-test shows that the distribution of JPCM portfolio 
log-return has a lower co-related risk among three portfolios. 3) Tail shape index 
has obvious asymmetry in China stock market, i.e., the tail shape index of a 
portfolio is greater when its price rises rather than falling. In other words, our 
portfolio log-return is prone to have co-movement value during stock market 
crash. 

Essentially, JPCM method tries to reduce co-related risks of a portfolio based 
on joint probability of common movement between each two assets. Although 
JPCM method well avoids deficiency in parameter estimation of covariance, it 
also needs to estimate related parameters in computing posterior distribution. 
Therefore, the proposed method cannot avoid errors in parameter estimation 
completely, and in order to increase the accuracy of parameter estimation, we 
need large sample size. We need further study to increase the accuracy of post-
erior distribution. 
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