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Abstract 
The co-evolution and co-movement of financial time series are of utmost im-
portance in contemporary finance, especially when considering the joint be-
haviour of asset price realizations. The ability to model interdependencies and 
volatility spill-over effects introduces interesting dimensions in finance. This 
paper explores co-integrating relationships between crude oil and distillate 
fuel prices. Existence of multivariate co-integrating relations and bidirectional 
Granger-Causality is established among the series. It is also established that 
even after fitting a full VECM, the residuals are not necessarily multivariate 
normal suggesting the noise could as well be multivariate GARCH. 
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1. Introduction 

In empirical finance, most realistic applications are actually multivariate in na-
ture. The co-evolution and covariation between the prices of financial assets is 
essentially important in Finance. Often, the interest is not merely in the beha-
viour of a single stock but rather in the joint behaviour of several stocks, and 
such joint behaviour is described using multivariate distributions. Multivariate 
analysis provides a framework for describing the properties of individual series 
as well as any possible correlations among series that are interrelated both con-
temporaneously and across time lags [1]. Co-integration, which provides a 
sound methodology for modelling both short-run and long-run dynamics in a 
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system, has emerged as a powerful technique for investigating common trends in 
multivariate time series [2]. It was developed as a means of modelling dynamic 
co-dependencies in multivariate time series [3] and it deals with the common 
behaviour of a multivariate time series where each component series may be 
non-stationary, but certain linear combinations of these components are statio-
nary [3]. 

Co-integrated processes are characterized by short-term dynamics and 
long-run equilibria. Economic theory supposes a long term pricing relationship 
between prices of crude oil and revenues from distillate fuels. This implies that 
profit spreads tend to converge to a long term average. Co-integration theory, is 
useful in estimating and testing long-term equilibrium relationships among 
non-stationary asset prices and making meaningful statistical inference. 
Co-integrated series have stationary co-integrating residuals, and various spreads 
will be stationary [4]. This study uses co-integration to analyse the long-term 
equilibrium relationship between the prices of crude oil and the distillate fuels. 
The findings from this study will aid in gaining insights into the interdependen-
cies between energy input and output products, information which is useful in 
portfolio diversification from the refiner’s perspective, both for purposes of 
profit maximization and risk management. 

The positive correlation of price variations or volatility clustering, evidenced 
in speculative markets motivated the introduction of the autoregressive condi-
tional heteroscedastic (ARCH) process by Engle [5], and it’s generalization to 
the generalised autoregressive conditional heteroscedastic (GARCH) by Bollers-
lev [6] later. Given their univariate nature, these models neglect the possibility of 
any further information embedded in multiple measurements with temporal and 
cross-sectional dependence in empirical stock price variation and the contem-
poraneous cross correlation implied by economic theory, such as a set of asset 
prices, exchange and interest rates, stock market indices among other macroe-
conomic variables. 

For dynamic volatilities, multivariate models provide the natural framework 
to account for cross sectional information. Haigh and Holt [7] employ a Multi-
variate GARCH (MGARCH) model that allows direct incorporation of the time 
to maturity effect in accounting for the time-varying volatility spill overs be-
tween related markets when considering the possibility of hedging crude oil, un-
leaded gasoline and heating oil price risk simultaneously in a time varying set-
ting. Their results show the importance of cross market linkages between crude 
oil, unleaded gasoline and heating oil markets. Veiga and McAleer [8] use the 
vector autoregressive moving average asymmetric generalised autoregressive 
conditional heteroscedasticity (VARMA-AGARCH) model of Hoti et al. [9] to 
show the existence of volatility spillovers between the Standard & Poor’s 500 In-
dex (S & P 500), the Financial Times Stock Exchange 100 Index (FTSE 100) and 
Nikkei 225. 

This study builds on the work of Aduda et al. [10] in detailing empirical anal-
ysis of financial time series data. Official daily closing prices from the trading 
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floor of the New York Mercantile Exchange (NYMEX) for a specific delivery 
month for Cushing Oklahoma West Texas Intermediate (OK WTI), Reformu-
lated Blendstock for Oxygenate Blending (RBOB), and the number 1 heating oil 
futures contracts are considered. The existence of co-integration is established 
and causal relationships are investigated. The analysis is done using MATLAB 
[11] and R. The rest of the document is organized as follows: Section 2 discuses 
the methods used in empirical analysis, Section 3 gives a brief discussion of the 
data used, and the empirical analysis and the results obtained and finally Section 
4 gives a summary of the work and the findings. 

2. Methodology 

In this section, we test for cointegration using the trace test, fit a full VECM and 
test for Grangercausality. The Durbin-Watson (D-W) is also used to check for 
spurious regression. 

2.1. Co-Integration 

The error processes from two non-stationary series can be represented as a com-
bination of two cumulated error processes. These cumulated error processes 
form stochastic trends which produce another non-stationary process if com-
bined. If two series, say xt and yt, are related, they would be expected to move 
together and their two stochastic trends would be similar. If when combined, it 
would be possible to find a combination of them which eliminates the 
non-stationarity, then the two series would be co-integrated. 

Co-integrated series evolve together, staying close to each other, even if indi-
vidually, their systems drift about. If the series are not co-integrated, then, their 
spreads can deviate without bounds and spread trading for risk management 
would not be optimal [4]. If spreads are mean-reverting, and asset prices are tied 
together by a common stochastic trend in the long-term, then, the prices are said 
to be co-integrated. This means there are system feedbacks that keep variables 
mutually aligned [12]. Co-integration simply augments correlation analysis to 
include a first stage where the price data are analysed and a second stage that in-
cludes dynamic analysis of correlations which inform about any lead-lag beha-
viour between returns [13]. 

According to Engle and Granger [14], two series {xt} and {yt} are co-integrated 
if ( ), ~ 1t tx y I  but there exists α such that ( )~ 0t t tu x y Iα= − . Generally, the 
variables in a k-dimensional process {pt} are called co-integrated of order (d,b), 
written briefly as, ( )~ ,tp CI d b , if all components of {pt} are I(d) and there ex-
ists a linear combination :t ta pβ ′=  with ( )1, , 0kβ β β ′= ≠  such that 

( )~ta I d b−  [15]. It is possible to have up to n − 1 linearly independent 
co-integration vectors. 

Co-integration analysis seeks to detect any common stochastic trends in price 
data and use these trends for dynamic analysis of correlations in returns, 
through, the error correction model (ECM). If two variables are I(1) and 
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co-integrated, they can be modelled as having been generated by an ECM which 
corrects the deviations from the long-run equilibrium [2]. Multivariate time se-
ries are best considered as components of some vector-valued process {pt}, 
which has both serial dependence within each component of the series {pti} and 
interdependence between different components {pti} and {ptj}, for i j≠  [3] [16]. 

For a k−dimensional time series ( ){ }1, ,t t tkp p p ′=  , the mean vector is de-

fined by [ ] ( ) ( )( )1 , ,t t tkE p E p E pµ ′= =   and the covariance matrix  

( ) ( )
( ) ( )

( ) ( )

11 1

1

, ,
, Cov ,

, ,

k

t h t

k kk

t h t t h t
t h t p p
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  where  

( ) ( ), ,, Cov ,ij t h i t jt h t p pγ ++ = . 

This which can be written in compact form as 

( ) ( )( ), .t h t h t tt h t E p pµ µ+ +
′Γ + = − −                 (1) 

The diagonal elements of the matrix in equation (1) are the auto-covariance 
functions of the univariate series {pti}, whereas the off-diagonal elements are the 
cross-covariances between pt+h,i and pt,j, i j≠ . Note also that ( ) ( )ij jih hγ γ= −   

and the autocorrelation matrix is then defined as ( )
( ) ( )

( ) ( )
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where the cross-correlation function ( ) ( ) ( ) ( )( ) 1 2
0 0ij ij ii jjh hρ γ γ γ

−
= . Unlike  

the case of univariate stationary time series for which the auto-covariances of lag 
h and lag −h are identical, one must take the transpose of a positive-lag 
cross-covariance matrix to obtain the negative-lag cross-covariance matrix. 

The cross-covariance matrices Γ(h) and cross-correlation matrices ρ(h) are 

positive definite since ( )
1 1

0
n n

i j
i j

b i j b
= =

′Γ − ≥∑∑  for all positive integers n and all 

k−dimensional vectors 1, , nb b , which follows since 
1

Var 0
n

i t i
i

b p −
=

 ′ ≥ 
 
∑ . 

2.2. Error Correction Model 

The time paths of co-integrated variables are influenced by the extent of any 
deviation from long-run equilibrium. In any case, for the system to return to the 
long-run equilibrium, the movements of at least some of the variables must re-
spond to the magnitude of the disequilibrium. These movements are captured 
using an ECM. When two random walk I(1) variables are co-integrated, an ECM 
can be formulated to study their short-run dynamics as influenced by the devia-
tions from equilibrium [17]. An ECM is a dynamic model in which the move-
ment of a variable in any period is related to the previous period’s departure 
from the long-run equilibrium. In such a model, the changes in a variable de-
pend on the deviations from some equilibrium relation [15]. 
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Consider a simple long-term equilibrium model 

0 1 .t ty xβ β= +                          (2) 

A simple dynamic model of short-run adjustment is given by 

0 0 1 1 1 1t t t t ty x x y zα γ γ α− −= + + + +                  (3) 

where ( )2~ 0,tz N σ , γ0 denotes the short-term reaction of yt to changes in xt. 

This implies that in the long run elasticity between y and x, assuming 1α < , is 

1
1 0 1

γ
β γ

α
= +

−
. However, with this form of the dynamic model, there are several  

potential problems including the likelihood of a high level of correlation between 
current and lagged values of a variable, which will result in problems such as 
multicollinearity, non-standard distributed parameter estimates and spurious 
correlation [18]. These problems could be solved by estimating the first differ-
ences of Equation (3) to obtain 0 1 1 1 1 1t t t t ty x x y zα γ γ α− − −∆ = + ∆ + ∆ + ∆ + . This, 
however, introduces problems of loss of information about the long-run equili-
brium. A more suitable approach is to adopt the ECM, which is set up by sub-
tracting yt − 1 from both sides of the short-run model in Equation (3) and fur-
ther subtracting γ0xt − 1 from both sides of the resulting equation and then 
re-parametrizing to give 

( )

( )[ ]

0 0 1
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if we take 0
0

11
α

β
α

=
−

 and 0 1
1

11
γ γ

β
α
+

=
−

. This representation now incorporates  

both short-run and long-run effects so that should the equilibrium hold, then 
the term [ ]1 1 0 1 1t t tz y xβ β− − −= − −  indicating a period of disequilibrium will 
equal 0. The introduction of this equilibrium error of the previous period as an 
explanatory variable in this representation allows movement into a new equili-
brium. The term ( )11 α−  measures the speed of adjustment back to the 
long-term equilibrium depicted by Equation (2). For the system to converge to 
equilibrium, the coefficient of zt − 1 must be negative. If the values of 
( )11 1α− → , it indicates that economic agents eliminate large percentages of 
disequilibrium in each period, if ( )11 0α− → , it indicates that adjustment is 
slow and values close to 2, indicate an overshooting of economic equilibrium. 
Positive values would imply that the system diverges from the long-run equili-
brium path. zt here is the disequilibrium error or the co-integrating residual. The 
expected value of zt defines a long term equilibrium relationship between xt and 
yt and the periods of disequilibrium occur as the observed value of zt varies 
around its expected value. 

All terms in the ECM are stationary, so standard regression techniques are va-
lid, assuming co-integration and that we have estimates for β0 and β1 [18]. Ac-
cording to Engle and Granger [14], if ( ), ~ 1,1t ty x CI , then an ECM must exist, 
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and conversely, the ECM generates a co-integrated series. 
The ECM can also be specified in multivariate form. In order to do this, we 

consider vector autoregressive and moving average (VARMA) or multivariate 
autoregressive and moving average (MARMA) models. A general V ARMA (pq) 
is written as 

0
1 1

p q

t i t i j t i t
i j

p p a aφ φ θ− −
= =

= + + +∑ ∑
                  

(5) 

with p and q ≥ 0, ϕ0 = k-dimensional constant vector, ϕi and θj = k × k constant 
matrices and { } ( )~ i.i.d 0,t aa Σ . Using the back shift operator, we can write 
( ) ( )0t tB p B aφ φ θ= +  where ( ) ( )1

p
k pB I B Bφ φ φ= − − −  and  

( ) ( )1
q

k qB I B Bθ θ θ= − − −  are matrix polynomials in B. In a vector autore-
gressive (VAR) model, each variable is expressed by its own lagged values and 
the lagged values of all the other variables in the system. If the variables are 
co-integrated vector autoregressive (CVAR), we also include the co-integrating 
vectors that pull the entire system towards a long run equilibrium. When the va-
riables of a VAR model are co-integrated, we use a vector error correction model 
(VECM). 

Co-integrated variables are generally unstable in their levels, but exhibit 
mean-reverting “spreads” (generalized by the co-integrating relation) that force 
the variables to move around common stochastic trends. Modification of the 
VAR model to include co-integrated variables balances the short-term dynamics 
of the system with long-term tendencies. For the general VAR(p) model,  

1

p

t i t i t
i

p p aφ −
=

= +∑ , then, 
1

1 1
1

p

t t t t i t i t
i

p p p p p a
−

− − −
=

∆ = − = Π + Γ ∆ +∑  where  

( )1 2 3 11 p pφ φ φ φ φ−Π = − − − − − −  and ( )i i pφ φΓ = − + +  If the rank r of 
the matrix Π is zero, there is no co-integration, no stable long-run relationship 
between variables and VECM is not possible, only VAR in first differences, so  

that the equation 
1

1
1

p

t t i t i t
i

p p p a
−

− −
=

∆ = Π + Γ ∆ +∑  reduces to a VAR model for the 

differences 
1

1

p

t i t i t
i

p p a
−

−
=

∆ = Γ ∆ +∑ . If the matrix is full rank i.e. r = k, then all the 

variables in ( )~ 0tp I . If 0 < r < k, there are r co-integrating vectors describing 
the long-run relationships between variables. In this case VECM suffices, and 
the k × k matrix Π can be written as 

,αβ′Π =                            (6) 

where α and β are k × r matrices, though this representation is of course not 
unique. For interpretations, it is often convenient to normalize or identify the 
co-integrating vectors by choosing a specific coordinate system in which to ex-
press the variables. An arbitrary normalization, suggested by Johansen [19], is to 
solve for the triangular representation of the co-integrated system. The elements 
of β'pt − 1 may be interpreted as equilibrium relations and the elements of α, as 
adjustment coefficients which multiply the co-integrating relationship β'pt − 1 to 
help counterbalance the deviations from the equilibrium. α can also be considered 
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a loading matrix since it determines into which equation the co-integrating vec-
tors enter and with what magnitudes. Normally, these coefficients would be ex-
pected to be negative. Suppose pt is I(1) with E[pt] = 0, then Equation (6) 
represents a VECM and the rank r of the matrix Π determines the number of 
co-integrating relationships. 

The ECM also satisfies the assumptions of classical normal linear regression 
model (CNLRM) which include a linear regression model, normally distributed 
residuals, no serial autocorrelation of residuals, and no multicollinearity. As 
such, diagnostic tests must be carried out to ensure these assumptions are not 
violated. Among the tests employed are Jarque-Bera (JB) [20] to determine the 
normality of the ECM, Lagrange multiplier (LM) [21] test for ARCH effects and 
Ljung-Box (LB) [22] for serial autocorrelation or cross correlation in the resi-
duals. 

2.3. Estimation and Testing for Co-Integration 

Testing for co-integration is necessary in checking if the models being built are 
empirically meaningful. With no evidence of co-integration, time series data is 
considered in differences. Spurious regression can also occur when completely 
unrelated time series appear to be related [23]. According to [23], an R2 > d 
where d is the Durbin-Watson (D-W) [24] [25] statistic can be a good signal of a 
spurious regression. The D-W statistic tests for autocorrelation in the residuals 
from a regression analysis. It lies between 0 and 4. A value of 2 implies no auto-
correlation in the sample. Small values of d indicate that successive error terms 
are positively correlated. 

Co-integration allows for the regression of one integrated series over other 
integrated series [26]. Testing for co-integration implies testing the existence of a 
long run relationship between two or more non stationary series. Because of this, 
it is important that a sufficiently long period of data is used, in order to detect 
the common long term trends among the series under consideration [13]. The 
two most common methods used for testing co-integration among series are the 
Engle-Granger (E-G) [14] test, which is based on an ordinary least squares (OLS) 
regression model, and [27] test, also found in [28] [29], which is based on ei-
genvalue analysis. 

2.3.1. Engle-Granger (E-G) Test for Co-Integration 
The residual based E-G test [14] follows in two steps. The first step involves fit-
ting the static OLS regression (after confirming that the series are I(1)) which 
captures any potential long-run relationship between the series and then carry-
ing out a stationarity test on the residuals of this OLS regression. The second 
step describes the dynamic adjustment of the series towards an equilibrium. 
Since the E-G method produces only one co-integrating vector, it involves pair-
wise comparison of two co-integrating regressions and it is affected by the 
choice of the dependent variable. Testing for co-integration using the E-G test is 
essentially equivalent to testing for unit roots in the estimated residual series us-
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ing the augmented Dickey-Fuller (ADF) test. If the unit root hypothesis is re-
jected then xt and yt are co-integrated. 

2.3.2. Johansen’s Test for Co-Integration 
The Johansen [27] test provides a means for testing for co-integration in a mul-
tivariate context. It allows for more than one co-integrating vector since the va-
riables in the model might form several equilibrium relationships. The proce-
dure builds co-integrated variables directly on maximum likelihood estimation 
(MLE) instead of just relying on the OLS estimates. If the variables are I(1), the 
Johansen maximum likelihood procedure can be used to determine the existence 
of a stable long-run relationship between variables and the number of co-integrating 
vectors present. Generally, there will be a possible k − 1 vectors, where k is the 
number of variables included in the model. 

This test is based on the examination of the long-run coefficient matrix Π = 
αβ’, described in Equation (6), so that testing for co-integration between va-
riables is achieved by examining the rank of Π through the eigenvalues. These 
Johansen tests are the likelihood ratio test based on maximal eigenvalue of the 
stochastic matrix and the test based on the trace on the stochastic matrix. Before 
estimating the parameters of aVECM, you must choose the number of lags in the 
underlying VAR, the trend specification, and the number of co integrating equa-
tions. 

The basic steps in Johansen’s methodology include 1) testing the order of in-
tegration of all variables, 2) setting the appropriate lag length of the model, 3) 
choose an appropriate model with regard the deterministic components in the 
multivariate system, 4) Construct likelihood ratio tests for the rank of Π to de-
termine the number of co-integrating vectors, 5) impose normalization and 
identifying restrictions on the co-integrating vectors, and 6) given the norma-
lized co-integrating vectors estimate the resulting co-integrated VECM by 
maximum likelihood (ML). The test procedure produces two statistics useful in 
determining the number of co-integrating vectors. 

The trace statistic 
The trace test is a test whether the rank of the matrix Π = r. The null hypothe-

sis of the trace statistic is that there are no more than r co-integrating relations. 
Restricting the number of co-integrating equations to be r or less implies that the 
remaining k − r eigenvalues are zero, where k is the maximum number of possi-
ble co-integrating vectors. Johansen [27] derives the distribution of the trace sta-
tistic 

( )trace
1

ˆln 1
k

i
i r

LR T λ
= +

= − −∑
                     

(7) 

where T is the number of observations and the îλ  are the k − r estimated ei-
genvalues. For any given value of r, large values of the trace statistic are evidence 
against the null hypothesis that there are r or fewer co-integrating relations in 
the VECM. Note: The test is not based on the trace of Π. 
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The maximum eigenvalue statistic 
To test the null hypothesis of r co-integrating vectors versus the alternative of 

(r + 1) co-integrating vectors the test statistic is 

( )max 1
ˆln 1 rLR T λ += − −

                     
(8) 

where T is is the number of observations and r̂λ  is the ith largest canonical 
correlation. 

2.4. Granger-Causality 

If two or more time-series are co-integrated, then there must be Granger causal-
ity between them—either one-way or in both directions. However, the converse 
is not true. Co-integration usually indicates the existence of a long-run relation-
ship between variables. Even when the variables are not co-integrated in the 
long-run, they could still be related in the short-run. If the prediction of one 
time series is improved by incorporating the knowledge of a second time series, 
then the latter is said to have a causal influence on the first. Granger [30] pro-
posed a time-series data based approach that can be used to determine causality. 
Specifically, two autoregressive (AR) models are fitted to the first time series— 
with and without including the second time series—and the improvement of the 
prediction is measured by the ratio of the variance of the error terms. A ratio 
larger than one signifies an improvement, hence a causal connection. At worst, 
the ratio is 1 which signifies causal independence from the second time series to 
the first. The Granger causality test is based on a standard F-test which seeks to 
determine if changes in one variable cause changes in another variable. 

3. Data and Results 

This study explores the co-integration relationships and interdependencies be-
tween the Cushing OK WTI and RBOB and the number 1 heating oil traded in 
the NYMEX, for the period running from 2nd January 2006 to 22nd May 2015. 
The data was obtained from the U.S. Energy Information Administration (EIA), 
the principal agency of the U.S. Federal Statistical System responsible for col-
lecting, analysing, and disseminating energy information [31]. EIA can be ac-
cessed at http://www.eia.gov/petroleum/data.cfm. 

Spot and futures prices of crude oil and distillate fuels are non-stationary and 
integrated of order one [10], and therefore co-integration analysis is suitable. We 
use the E-G method to test for the existence of a co-integrating relationship be-
tween the six series. In this test, we take the crude futures CF series as the de-
pendent variable and obtain the results summarised in Table 1. 

Though the R2 = 0.9994, the D-W statistic is 0.7545 signalling a spurious re-
gression. The null hypothesis of no co-integration is rejected with a p-value < 
0.001 implying that indeed these series are co-integrated with the single 
co-integrating vector given by 

[ ]1,0.986809, 0.02571,0.001709, 0.027940,0.035578β ′ = − −       (9) 
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and the long-run relationship given by 

0.5118 0.986809 0.02571 0.001709
0.027940 0.035578

CF CS GF GS
HF HS

= + − +

− +        
(10) 

The co-integrating residuals which give the co-integrating relation are given 
by the representation 

ˆ 0.5118 0.986809 0.02571 0.001709

0.027940 0.035578 ,
ta CF CS GF GS

HF HS
= − − + −

+ −      
(11) 

and the plot of the co-integrating relations (the error correction term), which 
depicts stationarity, is shown in Figure 1. Testing for stationarity using the ADF 
test gives a p-value < 0.001 indicating we reject the null hypothesis of existence 
of unit roots. However, as has been discussed previously, one of the main draw-
backs of the E-G technique of testing for co-integration is that it identifies only a  

 
Table 1. Results obtained from the E-G test. 

Parameter Value t-statistic p-value SE 

α0 0.511765 10.69652 0.0000 0.047844 

α1 0.986809 625.7656 0.0000 0.001577 

α2 −0.002571 −1.251454 0.2109 0.002055 

α3 0.001709 1.004433 0.3153 0.001701 

α4 −0.027940 −5.154723 0.0000 0.005420 

α5 0.035578 6.805134 0.0000 0.005228 

 

 
Figure 1. Co-integrating residuals for the co-integrating relationship in the six series 
taking crude futures prices as the dependent variable. 
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single co-integrating relation, among what might be many such relations. When 
we consider more than two series, we will have a different co-integrating rela-
tionship for every dependent variable specified as shown in Figure 2 where each 
of the six price series under consideration is taken as the dependent variable. 
These relations are not unique and change according to how the dependent va-
riables are chosen. In all the six relationships, we reject the null hypothesis of no 
co-integration with p-values < 0.001 in all the six instances indicating six 
co-integrating relations. 

For the Johansen co-integration trace test, we examine whether the rank of the 
matrix Π = r. As such, testing proceeds sequentially for 1,2, ,r k=   and the 
first non-rejection of the null is taken as an estimate ofsmallest lag for which we 
obtain a rank of r. In our case this happens for r = 4 at 44, making this the optimal 
lag length. The trace test indicates 4 lags with a p-value of 0.0746 as shown in Ta-
ble 2. Lag 4 is the co-integrating equations at the α = 0.05 level and * denotes  

 

 
Figure 2. Six co-integrating relations obtained when all six series are considered as de-
pendent variables. 

 
Table 2. Results obtained from Johansen co-integration test. 

Rank Trace statistic Critical value p-value Eigenvalue 

0* 

1* 

2* 

3* 

4 

5* 

444.1103 

155.9466 

65.5717 

34.3072 

14.3214 

3.9785 

95.7541 

69.8187 

47.8564 

29.7976 

15.4948 

3.8415C 

0.0010 

0.0010 

0.0010 

0.0143 

0.0746 

0.0461 

0.1150 

0.0376 

0.0132 

0.0084 

0.0044 

0.0017 
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rejection of the null hypothesis at the 0.05 level. 
The co-integrating relations are as shown in Figure 3 and the resultant para-

meters from MLE are the co-integrating speed parameters 

0.0991 0.0008 0.1401 0.0100
0.1803 0.0336 0.1195 0.1037
0.0847 0.0396 0.1639 0.0170
0.2289 0.0022 0.1364 0.0050
0.1508 0.4087 0.0775 0.0913
0.1001 0.0305 0.1070 0.0324

α

 
 − 

− =  
 
 
 − 

 

and the vector of co-integrating relations 

3.0080 0.1463 0.1334 0.1482
0.0017 0.1818 0.0643 0.0817

0.0870 0.1898 0.4645 0.1300
2.9847 0.1302 0.0974 0.0821

0.0066 0.1813 0.0136 0.0022
0.1008 0.1706 0.4150 0.2435

β

− − 
 − − 
 − − − =  − − 
 − −
 
−  

 

so that for most cases, the 6 × 6 matrix Π represented in Equation (6) would be 

0.2782 0.0082 0.0579 0.2816 0.0024 0.0507
0.5062 0.0072 0.0469 0.5137 0.0087 0.0509
0.2412 0.0190 0.0741 0.2434 0.0043 0.0621
0.6699 0.0084 0.0445 0.6698 0.0029 0.0351
0.4897 0.0715 0.1123 0.4884 0.0722 0.1089
0

αβ

− −
− − −

− − −
′Π = =

− −
− − −

.2962 0.0149 0.0426 0.2951 0.0033 0.0317

 
 
 
  
 
 
 
 

− − −    

 (12) 

 

 
Figure 3. Four co-integrating relations obtained using the Johansen’s trace test. 
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( )
4

0 1 1
1

t i t t t
i

p p p aα β δ− −
=

′∆ = Γ + Γ ∆ + + +∑
             

(13) 

where α and β are given as above, [ ], , , , ,t t t t t t tp CF CS GF GS HF HS′ = ,  
[ ]1.4215,1.6461,0.9019,2.5075δ ′ = −  are intercepts in the co-integrating rela-

tions, [ ]0 0.0045,0.0017,0.0021, 0.0009, 0.0002,0.0021′Γ = − − − , and at are the 
shocks or innovations associated with each of the relations, 

1

0.3080 0.0253 0.1005 0.2390 0.0317 0.1120
0.5324 0.0092 0.1000 0.4972 0.0102 0.0732
0.2669 0.0049 0.3733 0.2746 0.0364 0.3705
0.3995 0.0306 0.1024 0.3167 0.0291 0.1200
0.3504 0.0815 0.1126 0.3070 0.0287 0.1938
0

− − −
− − −
− − −

Γ =
− − −
− − −
− .2601 0.0460 0.1269 0.2649 0.0490 0.1698

 
 
 
  
 
 
 
 

− −  

 

2

0.1898 0.0159 0.1731 0.1933 0.0085 0.1007
0.4415 0.0219 0.2134 0.4629 0.0007 0.1372
0.1942 0.0021 0.3479 0.2948 0.0129 0.2319
0.2013 0.0159 0.1646 0.1999 0.0075 0.0996
0.1517 0.0158 0.1349 0.2206 0.0216 0.0236
0.18

− −
− − −
− −

Γ =
− −
− − −
− 70 0.0092 0.1063 0.2752 0.0168 0.0145

 
 
 
  
 
 
 
 

− −  

 

3

0.2912 0.0254 0.0248 0.3225 0.0006 0.0213
0.4268 0.0866 0.0535 0.5186 0.0095 0.0366
0.2768 0.0503 0.2320 0.3808 0.0160 0.1827
0.1805 0.0330 0.0340 0.2683 0.0029 0.0077
0.2061 0.1020 0.0417 0.3759 0.0643 0.0527

− − −
− − −
− − −

Γ =
− − − −
− − − −

0.3183 0.0349 0.0491 0.4017 0.0128 0.0058

 
 
 
  
 
 
 
 
− − −  

 

and 

4

0.0854 0.0188 0.0183 0.1668 0.0166 0.0293
0.0418 0.0058 0.0020 0.1972 0.0123 0.0532
0.2077 0.0020 0.0483 0.2911 0.0197 0.0685
0.0743 0.0190 0.0155 0.1458 0.0163 0.0289

0.0470 0.0729 0.0273 0.1029 0.0394 0.00

− − − −
− − − − −
− − − −

Γ =
− − − −

− − 47
0.0756 0.0060 0.0202 0.1828 0.0084 0.0508

 
 
 
  
 
 
 
 
− − −  

 

( )1tpα β δ−′∆ +  represents the error correction term. 
After fitting this model, an analysis of the residuals show that they are not 

white noise. Figure 4 shows plots for the residuals from the VECM. They do not 
seem to be multivariate normal, and this is confirmed by the results shown on 
Table 3 which reports the multivariate extensions of the JB residual normality 
test, which is a test of the hypothesis that the skewness of the underlying distri-
bution is zero, and the kurtosis is three. This test also compares the third and 
fourth moments of the residuals to those from the normal distribution. These 
two measures allow one to test the hypotheses that are compatible with the as-
sumption of multivariate normality. 
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Figure 4. Residuals from the full VECM. 
 

This test is applicable since individual variables from a set of variables that are 
jointly multinomial distributed are also normally distributed, although if a 
number of variables are normally distributed individually, they are not necessar-
ily also multivariate normal [32]. The test statistic is given by equation (14) be-
low where Sˆ and Kˆ represent the sample skewness and sample kurtosis respec-
tively. 
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( )2
2 ˆ 3ˆ

6 24

KSJB n
 − = + 
  

                   (14) 

The null hypothesis for this test is that the residuals are multivariate normal 
and this is rejected as can be seen from the p-values reported in Table 3. 

A visual inspection of Figure 4 suggests the presence of volatility clustering. 
Further investigation of the residual series reveals the presence of arch effects as 
shown in Table 4. The null hypothesis of no ARCH effects is rejected. The noise 
is therefore MGARCH. 

For this study, the results for Granger-causality in levels are reported in Table 5 
and results for causality in differences are recorded in Table 6. 

From Table 5, we see bidirectional causality between almost all the series ex-
cept for gasoline futures which doesn’t Granger cause gasoline spot though gaso-
line spot Granger causes gasoline futures. This result is confirmed by the joint  

 
Table 3. Multivariate normality test on residual series. 

Series Skewness χ2 statistic df p-value 

CF 0.056937 1.274020 1 0.2590 
CS −4.240484 7066.810 1 0.0000 
GF −0.589093 136.3830 1 0.0000 
GS 0.592101 137.7792 1 0.0000 
HF −1.138971 509.8211 1 0.0000 
HS −0.125048 6.145373 1 0.0132 

  7858.213 6 0.0000 
Series Kurtosis χ2 statistic df p-value 

CF 10.21375 5112.752 1 0.0000 
CS 101.6174 955,519.8 1 0.0000 
GF 17.20323 19,820.15 1 0.0000 
GS 15.34322 14,968.89 1 0.0000 
HF 24.22178 44,248.25 1 0.0000 
HS 31.65732 80,687.03 1 0.0000 

  1,120,357 6 0.0000 
Series JB statistic df p-value  

CF 5114.026 2 0.0000  

CS 962,586.6 2 0.0000  

GF 19,956.53 2 0.0000  

GS 15,106.67 2 0.0000  

HF 44,758.07 2 0.0000  

HS 80,693.18 2 0.0000  

Joint 1,128,215 12 0.0000  
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Table 4. Test for ARCH effects on residual series. 

Joint test:      

χ2 statistic df p-value    

6278.398 1176 0.0000    

Individual components:     

Dependent R2 F (56, 2301) p-value χ2 (56) p-value 

res1 * res1 0.233479 12.51559 0.0000 550.5426 0.0000 

res2 * res2 0.211971 11.05254 0.0000 499.8271 0.0000 

res3 * res3 0.085742 3.853501 0.0000 202.1805 0.0000 

res4 * res4 0.260093 14.44374 0.0000 613.2987 0.0000 

res5 * res5 0.142756 6.842568 0.0000 336.6190 0.0000 

res6 * res6 0.100405 4.586018 0.0000 236.7544 0.0000 

res2 * res1 0.222538 11.76124 0.0000 524.7442 0.0000 

res3 * res1 0.145531 6.998214 0.0000 343.1617 0.0000 

res3 * res2 0.146352 7.044489 0.0000 345.0987 0.0000 

res4 * res1 0.134115 6.364236 0.0000 316.2435 0.0000 

res4 * res2 0.131406 6.216239 0.0000 309.8558 0.0000 

res4 * res3 0.097981 4.463300 0.0000 231.0398 0.0000 

res5 * res1 0.127599 6.009785 0.0000 300.8780 0.0000 

res5 * res2 0.126302 5.939869 0.0000 297.8197 0.0000 

res5 * res3 0.133311 6.320207 0.0000 314.3473 0.0000 

res5 * res4 0.119110 5.555916 0.0000 280.8617 0.0000 

res6 * res1 0.100783 4.605250 0.0000 237.6472 0.0000 

res6 * res2 0.100042 4.567614 0.0000 235.8994 0.0000 

res6 * res3 0.101842 4.659118 0.0000 240.1439 0.0000 

res6 * res4 0.107252 4.936366 0.0000 252.9014 0.0000 

res6 * res5 0.100744 4.603270 0.0000 237.5553 0.0000 

 
test also. This actually shows the presence of spillover effects across the series. 
From Table 6, we see, returns from gasoline futures do not Granger cause gaso-
line spot returns and we also note that gasoline spot returns only Granger causes 
heating oil futures and maybe heating oil spot returns. 

4. Discussion 

In this study, both the E-G test [14] and Johansen’s test [27] are used to explore 
the presence of co-integrating relations between the daily prices of crude oil and 
distillate fuels. Given the multivariate nature of the data under consideration, 
Johansen’s test becomes more efficient given its ability to test for co-integration  
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Table 5. Results obtained from Granger-causality (F) test in levels. 

 CF CS GF GS HF HS Joint 

CF 2356 254 239 195 1044 951 1819.2 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

CS 321 382 293 159 833 732 1564 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

GF 40 46 33369 6 54 40 146.6 

 (<0.001) (<0.001) (<0.001) (0.2132) (<0.001) (<0.001) (<0.001) 

GS 25 19 49 6077 36 34 103 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

HF 61 125 110 109 13655 148 458.9 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

HS 102 122 78 104 48 14178 455.3 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

p-values are indicated in the parenthesis. 
 

Table 6. Results obtained from Granger-causality (F) test in differences. 

 ∆CF ∆CS ∆GF ∆GS ∆HF ∆HS Joint 

∆CF 51.5493 81.5114 158.8971 231.7504 871.1525 598.9422 1463.8 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

∆CS 37.6260 28.3827 210.8375 176.4722 857.9510 579.0799 1212.4 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

∆GF 23.9313 32.1628 22.5417 3.8876 51.2044 30.3673 175 

 (<0.001) (<0.001) (<0.001) (0.4214) (<0.001) (<0.001) (<0.001) 

∆GS 6.3281 2.8095 13.2817 6.7035 21.7478 14.5890 72.2 

 (0.176) (0.5902) (0.1) (0.1524) (<0.001) (0.0056) (<0.001) 

∆HF 61.3676 192.8939 45.3097 122.6379 173.5127 112.1761 498.4 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

∆HS 34.5446 90.3696 61.5954 114.1517 30.1818 27.3170 451.6 

 (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 

p-values are indicated in the parenthesis. 
 

in a multivariate context. 
Under the E-G test, the null hypothesis of no co-integration is rejected and 

this result is backed by the DW statistic. Similarly, Johansen’s test results reveal 
up to 4 co-integrating vectors with an optimal lag length of 4 if all six series are 
considered simultaneously. After fitting the full VECM, a residual analysis is 
carried out and it suggests some heteroscedasticity in the noise process, contra-
vening the Gaussian assumption on the residuals. Tests reveal ARCH effects in 
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the residuals, and the JB hypothesis of multivariate normality is rejected. This 
suggests a VECM with GARCH errors could have been better. For noise that is 
MGARCH, fitting a VEC-GARCH. This involves writing the VEC part as a see-
mingly unrelated regression (SUR) model and combining to obtain SUR-GARCH 
model. That is however not covered in this study. 

Causal relationships are also explores and bidirectional Granger-causality is 
exhibited for all cases except for the gasoline futures which do not seem to 
Granger cause gasoline spot prices. This underscores the importance of the 
spill-over effects in the volatilities of these price series. It confirms the presence 
of cointegrating relations and hence spill-over effects. 
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