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Abstract

A three-factor exchange-rate diffusion model that includes three stochastical-
ly-dependent Brownian motion processes, namely, the domestic interest rate
process, volatility process and return process is considered. A linear regres-
sion approach that derives explicit expressions for the distribution function
of log return of foreign exchange rate is derived. Subsequently, a closed
form workable formula for the call option price that has an algebraic ex-
pression similar to a Black-Scholes model, which facilitates easier study, is
discussed.
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1. Introduction

A foreign exchange rate depends on the supply and demand dynamics of a cur-
rency. The exchange rate is a function of trade balance, the interest rate differen-
tial and differential inflation expectations between the two countries [1] [2].

Let S(u), u>0 = exchange rate process over the time interval: u>0, where
u = number of domestic currency units, e.g., $, per unit of foreign currency =
$-price of foreign currency.

As interest rate Iy (u) increases, $ appreciates because investors prefer
$-denominated bonds. Assuming a frictionless, arbitrage-free continuous-time

economy in [1], we define a diffusion process model for S(u). In addition, using
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interest-rate parity condition we have

T (1o(u)-re (8))u

S(h)=S,e° , see [1],

In the following section, the formula for valuations of currency spot options is
considered, where we obtain a closed form formula for the call option price that
has a simple algebraic expression, which is similar to the call option price ex-
pression of a Black-Scholes model, making it much easier to compute its value
and study. As in [2], we can define an implied volatility function and derive its
skewness property.

Subsequently, the proposed three-factor exchange-rate diffusion model is
discussed, such that the stochastic volatility process and the stochastic domestic
interest rate process each have a stochastically dependent Brownian motion re-
turn process.

In the next section, a linear regression approach that derives explicit expres-
sions for the distribution function of InS (S) is treated.

Foreign exchange rate option modeling is the subject of several well-known
papers and in chapters within [3] [4] [5] [6]. Leveraging Heston’s model [4] for
this application would introduce complexity due to the need to numerically in-
tegrate conditional characteristic functions obtained as solutions of nonlinear
pdf to derive the call option prices. An equivalent two-factor Black-Derman-Toy
model [2] can be formulated with introduction of H{u).

The method suggested in this paper results in Black-Scholes type formula for
call option pricing, which is easily computable.

Finally, we provide concluding remarks and suggestions for future direction.

2. Currency Spot Option

Given the spot rate S(0)=s,, consider the present value of option
C*(SO,K,*)zEo[exp[—er(u)duj*(S(s)—K*)} (1)
0

where K is the known strike price and (I (u),u>0) is a mean-reverting sto-
chastic process given in (2) below. S(s) is the value of the exchange rate at the
option’s maturity price. The option to purchase foreign currency over the coun-

ter can be exercised when S(s) > the strike price exchange rate K.

3. A Diffusion Process Model

A continuous-time risk-adjusted and risk-neutral exchange rate model, under a
Martingale Measure @, is defined below as a diffusion process (2), mean-reverting
stochastic processes: Volatility {H (u),u > 0} (3) and domestic interest rate

I, (t) process (4), and foreign interest rate I isaknown constant.

dS(U)_ L (Uu)—r, +H2(u) u+ u)+o u
2O (@) s @) @
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dH (u)

a(H (u)-6)du+ndV,(u),6,720,a>0 3)

dry (u) = B(rp (u)—A)du+<dV, (u), 4,4 20, >0 (4)

2

.-_dlns(u)=[ro(u)—rF —U?Jdu+(H(u)+u)dBl(u) (5)

Equation (5) is obtained from Equation (2) by the application of Ito calculus [7].
Assumption:

V,(t)=pB,(t)+5C(t), where 5£\1-p*> and B (t) and C(t) are in-
dependent Brownian processes.

V, (t)=p,B, (t)+5C, (1), where & =4/1-p]
and B/ (t) and C,(t) are independent Brownian processes. (6)

From the assumption above, the return processes V; (u),u=0,j=12 are
correlated with B, (u) and that \Z (t),j=1,2 are standard Brownian motion
processes.

Then it follows, see [2] [3], that the distributions of H(u) and r,(u) are
Gaussian processes.

Alternatively, H(u) and r,(u) may be expressed as:

H(u)= q(u)+:[y/(t)dvl(t).

%
.-.H(u):q(u)+iw(t)[pdsl(t)+5dc(t)}.
E(H (u))=q(u)=xe +0(1-e)
—0+(k—0)e ™, a>0,
where § is the long-term mean and where H (0)=x .
(1 (0) 205 = o= fre a0
’ " (8)

So P(H(u)<0):®(—#—Hj

On

Remark 1:

From (8), choosing 6>0 and that is small in value, we can make
P(H(u)<0) negligible.

If, alternatively, we assume that {H (u),u > 0} has a square root process [8],
then the random variable H(z) distribution is non-central y? (.). For simplicity
we chose the mean-reverting process model (3).

E(ro(u)) =0 (u)=me ™ +A(1-e™)=2+(x,-2)e ™, >0

wr(r, (1)< [ )

where y,(u)=¢e™ u>0 and r,(0)=x

u

< Ty (u) =0 (u) + [, (1) pdB, (1) +5,dC, (1)] ©9)

0
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Assuming 1, (0)=x;,and
v, (t)=0e",0,20,0<t<u
o (u)=re ™ +A(1-e )= A+(x, - A)e ™ (10)

:qu(u)du =(rq —/1)1_;[;5 +As

The Brownian motion processes V,(u) and B, (u) are as follows:

V,(u)=pB,(u)+5C,(u), where §=41-p° (11)

In addition, the Brownian motion processes B, (u) and C,(u) under Qare
independent.
Remark 2:

H (u),u >0: the volatility process.
It follows from [2] that the distribution of H (u) is:

n —2au 12

H ~N ——(1- ,0<u<s. 12
(©)-N ). f o) | osuss )

Alternatively, H(u) may be expressed as
H(u):q(u)+Jw(t)dV1(t)
. (13)

+_[l// de +5dC(t)]
0

where 5=1-p° and w(u)=ne ™, n,a>0.

See [9] for a similar assumption. See also [2] and [3].

Note that B, (s) has a normal distribution with mean 0 and variance s, so
B,(S) can be written as B,(s)=Z(s)v/s, where Z(s) is a standard normal
variable. Then In X (s) can be written as a quadratic function of

S
Z (s) = m
Js

For d&=dC(t),0<t<u,0<u<s, we define a volatility process

v(g):{vu :iz//(t)dc(t),OSUSS}.

2 —2au Y2
13| 717 (1—e ) -
—j Ty du| =V, as the average standard

deviation in the case of uncorrelated Brownian motion process
{C(u),0<u<s}£¢& [See[10], p. 182].

,$>0 plus a residual term g(s). {See Proposition 1 below}.

11>

Define O'(V (S))

Proposition 1:

( ) O ( I [pldBl + 6,dC, (t)J;

0

j; )du_jq1 du+jduj1//1 (t)] p,dB, (t)+68,dC, (t) ] 19

=Q.(s)+ B, (s )(Gl( )= (s ))+51V1+93( ).
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where

G(s)éiwdt zi(iﬂ(_l)j”] (15)

Proof: See Appendix B.

We consider a mean-reverting Gaussian process model (2), the volatility sto-
chastic processes {H (u),0<u< s} and the processes, V,;(u) and B, (u) in
(3) to be correlated; where V,(u) is a standard Brownian motion return
process. In addition, in (3), we define the volatility H (u)¢R as a mean revert-
ing Gaussian process with 6 as its long-term mean.

Assumption 1:
V,(t)=pB, (t)+5,C(t), wheres, =\1-pf (16)

In (4), we define the domestic interest rate process Iy (u) as a mean revert-
ing Gaussian process with A as its long-term mean. The process
{rD (u),0<uc< s} is such that the return process V,(u) is a correlated stan-
dard Brownian motion process to B, (u). The foreign interest rate r.(u) isa
constant I

Assumption 2:

It follows from [2] that the distribution of r (u) :

rD(u)~N(ql(u) \/g_ﬂ(l e*zﬂ“) ]O<u<s (17)

Now we use the results obtained in Proposition 1 to derive an explicit expres-

sion for

idInS(u):InS(s)—lnS0

Proposition 2:
[dIns(u)
0
2

=j)'(rD(u)—rF)du—%s+:[[u+6+qo(u)}d81(U) (18)

+i j(// (pdB, (t +5dC(t))}dBl(u);

Remark 3:

From the expression for

_[r u)du=Q,(s)+ plBl(S)(Gl(S) -1 (S))+ S8V, . the stochastic terms
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pB(5)(G,(s)- z(s)) modifies n(s) and the constant term Q(s)+6V,
modifies p”(s,h) with the addition of PB,(3)(Gy(s)— x.(s)) and the con-
stant terms  Q, (s)+ 45V, modifies p”(s,h) with the addition of Q,(s)+38V,.

Then, using the results in [2], Proposition 1 and those in Appendix A and
Appendix B we have:

2

InS(s)=Ins, —U?s—rFs+(u+¢9)Bl(s)+[7l(s)Bl(s)+e1(s)]

I R Y

(19)

Therefore,

0(5)=2°(9) ™) 2 (5)n(s)+ p(s)
m(s)=py2(s)s;
n(s)=[(v+0+V)+71(s)+75(5)+(:(Gi(s)- 2 (5))+ 6 ) [¥s;

Remark 4:
Note that n(s) in this paper is an updated version from the n(s) in [2],

due to our treatment of a stochastic interest rate: .[rD (u)du
0
1, S
p(s)=Ins, —5v s—pyz(s)5+g(s)+Ql(s)—rFs;

o (v(s)):jlw}lu

0 200
s 2 _ p—2au

1 (77 (1 ° )} du

S5 2
2 2 _ 1 —2as

:lﬂ(as (2 € ))évz,
S do
In the case of C(u),u>0.
1§2(2ﬁs—(1—e‘2ﬂ3)) _
O'Z(Vl(S))= 2V,?, where C,(u),u=0 (20)

S 4°
m(s)=pr,(s)s;
n(s)=[(0+0+V )+, (s)+ A+75(s)+ @, + o1 (G (s) - (s)) [Vs (21)

1 _
p(s)=1InS, —EUZS—p)/Z (s)%+g(s)+Q1(s)—rFs+51Vl

e(s)=e,(s)+e,(s)+e;(s) where
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Ql(s)_qu(u)du:(zq—l)él—ems)Ms
71(5)_%jqo(u)du:(K_e)o(i_eas)
i (1 g (22)
72(5)22_”.[Iw(t)dtdu=§_?j(l ° ),
_2zg(es-fte”))

Var (e3 (S)) is provided in (B1)

Cov(e (s).e;(s))=0;i,j=123 i=]

Casel: p>0;
[dIns(u)
0

(rD(u)—rF)du—isﬂs‘ (A4 +0, (u)) du+j[u+9+q0(u)]d81(u)

O —

S

+ﬁw de()+5Ct}dB )+ v (t) (0B, (u) +8,4C, (u)) |
(

ot—

0

Let S(0)=s

2

InS(s)=Inso—%s—rFs+(u+¢9+é\7)Bl(s)

+[;fl(s)Bl(s)+el(s)]+{yz(S)p(@—%}+62(s)}
+Qi(3)+ABy(s)(Gy(s) - 2 (s)) + My &5 (s)-
Let InS(s)éZZ(s)@JrZ(s)n(s)Jr p(s)+e(s)2U(s,&)+e(s).

Assumption 3: U(s,&) and £(s) areindependent random variables.
Assumption 4: n’(s,&)—2m(s)(p(s,h)-@)=0.
Assumption 5: m(s)=0 and m(s)<1.
If Assumptions (4) and (5) hold, then the conditional risk-neutral distribution
of InS(s) is:
Proposition 3:
1- FInS(s) (a), h)

=P(InS(s)2a)|g(s):h)=<

1-®(z,(h))+®(z,(h)), @2 0 (p,h,&)
Lo<wo (p,h¢)

DOI: 10.4236/jmf.2018.81013 167 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2018.81013

R. Jagannathan

®(z(1))- (2 (h).0> o (p.h.¢)
0,0< w0 (p,h&)

< Fsgs) (@) = P(InS(s)<wl|e(s)=h) :<

(23)
where
- Zl(h,f), Zz(h,é‘): —n(S)i\/nZ(S,f)r;?:;(S)( p(S)+h—a))
2 (24)
o (p.h)=h+ p(s)_;m((i))

If n? (S,f)— 2m(s)( p(s)— h —a)*) =0, then the roots of the equation defined

_n(s:¢)
m(s)

in (24) are equal so that z, =z,=7"(&)= , then there exists a value

o' (p.h,&) such that
P(InS(s)za)*(p,h)|g(s):h,\72(s):§)=1.

In other words, a)*( P, h,§) is the lowest value for the conditional random
variable In (S (s)) .

Remark 5:

Since we know the CDF of InS(s) we can estimate the parameters of the un-
derlying model (2)-(5).

Case 2: Conditional Risk-neutral Distribution function of
(In S(s)le(s)=hV (s)= 5) , m(s)<0. Suppose p <0, Conditional risk-neutral
distribution of InS(s)] (s(s) =h\V?(s)= f) is as follows:

1=Fiso (@.h)

=P(InS(s)>w|&(s)=hV (s)=¢)

) {@(zz(h»—@(a(h)),wsw*(p,h@
O,a)Za)*(p,h,g)

l—(D(Zz(h))+q)(Zl(h)),a)Sa)*(p,h,f)

Lo>wo (p,h)

FInS(s)I/f (a), h) =<

where

—n(s,g)i\/n2 (s.£)-2m(s)(p(s)+h-w)

z=7(h¢),2,(h,¢)=

m(s)
Example 1
dry (u) = B(ry (u)—A)du+£adV, (u),2,£ 20,8> 0,1, (0) = x;;
dry (u) =0.3(r, (u)—0.02)du +0.04dV, (u), 1, (0) = 0.03;
dH (u)=a(H (u)-0)du+nV,(u),H(0)=x
dH (u) =(H (u)-0.1)du+0.3v,(u),H (0)=0.6
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0.3 0.2 0.4 0.03 0.6

a o n P K ry
1 0.1 0.3 -0.8 0.6 0.8
Then

p’(s,h)=p(s)+h-Q,(s)-Ins(0)+InK - pY,
Remark 6:

From the expression for

S

[t (u)du=Q;(s)+p,B,(5)(Gy(s) - 1 (5)) + OV,

0

the stochastic terms p,B, (5)(G,(s)— z(s)) modify the term n(s) and the
constant terms Q, (s)+d)V, modifies p(s,h) with the addition of
Q(s)+6V,-

Proof:
, Apply a proof similar to the one in Appendix A of [2] using the result for
j r,(u)du in Appendix B of the current paper. See also Proposition 4.
’ Remark 7:

Assume p >0, which implies that m(s)>0.

If Assumption (3) holds then the conditional risk-neutral distribution of
{Ins(s)|e(s)=hV (s)=¢&} is:
1- Flns(s)(a),h)
l—CD(Zl(h))+(D(ZZ(h)),a)2 o (p,h&)
Lo<ao (p,h¢)
<D(zl(h))—¢>(22(h)),a)Za)*(p,h,.f)
0,w<w (p,h¢)

:P(InS(s)2w|£(s)=h)=<

F|ns(s)\.§ (o,h)= P(InS(S)S wle(s)= h):<

(25)

where

—n(s)i\/nz(s,f)—Zm(s)( p(s)+h-o)

2=2,(n,¢),2,(h,¢)= m(s)
(26)

o (ph) = p(s)—LS)

2m(s)
If n?(s,&)- 2m(s)( p(s)—h- af) =0, then the roots of the equation defined
in (26) are equal so that z =z, = Z*(é):—m, then there exists a value

m(s)
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@' (p,h,&) such that P(InS(S)Zw*(p,h)|g(s):h,\72(s)=§):1.
In other words, a)*( p,h,§) is the lowest value of the conditional random
variable {InS(s)lg(s):hag(s)}.
Call option price:
¢ (s.5(s).K,8(0)) = EQexp{ [ro(u du}“lns ~In KH
0

Proposition 4:

C*(so.K,r,;7,h, p<0)

*
/_/h\
@D
X
©
VR
©
/\
+
'_‘:
N
3'0)\
\_/ —_~
%/_J
\./
7<
m
- 1
@D
Olw
5
[92]
—~
~
5
A
| — |

where from Proposition 1
jr u)du=Q,(s)+ B, (5)(Gy(s)- 4(s))+ V.
See Appendix B.
p*(s,h)={p(s)le(s)=h}+Ins,—~InK +[Q(s)+5V, |

Remark 8:

Given the formula for

Ir u)du=0Q(s)+pB,(s)(G,(s) -z (s))+6V, , the stochastic expression

PB;(5)(G,(s)— z(s)) modifies the function n(s) and the constant terms

Q.(s)+ 6V, , modifies p”(s,h) with the addition of Q(s)+dV,.

*ETD(U)dU
Kle® [InS(s)>InK

= szh K EXp{(Ql (s)+ 51\71)+(01 (S)—;((s)plz\/g)}e*zz/zdz (27)

—K ([ eA(s)+A1(s)z—zz/2dz;

Ih

Let
A(5)22 5, (G1(5)-7(5)B,(5) = 21(G, () 1 (5)) 245

)-
A(s)=Q(s)+6V,
A(s)+A(s )z—?z:—[z— (s)/2}2/2+A(s)—A&28(5); (28)
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Then
Kj'zzh eA(s)+A1(s)z—zz/2dZ

[0z A©)2)-0[a A2 oo o)1
Hedge Ratio:
oc’ ()

A=—22
05,

1 2, (h)(1-m(s))-n(s) | _[z(h)(2-m(s))-n(s)
J1—m<s>{®[ 1-m(s))” Jq{ (1-m(s))” }
*exp{p*(s,h)+2(—

0,InK=w (p,h);

A-Neutral Portfolio

Delta-Neutral Portfolio

Consider the following portfolio that includes a short position of one Euro-
pean call and a long position of delta units of the domestic currency.

The portfolio of delta-neutral positions is defined as:
P =s,A—¢ = Hedge ratio(P) =0

We obtain below Conditional Risk-neutral Distribution function of
(InS(s)|.9(s)=hag,\7(s)=§),m(s)<0 (29)

by considering the cases of: A=1,0and -1
We use a discrete approximation (see [2], (28)).
Suppose p <0, which implies m(s)<0.
Again, we consider the Equations (1)-(4) to define Example 1 below.

dSS((uu)) =[rD(u)—rF + sz(u)Jdu +(H (u)+0)dB, (u); (30)
dH (u) =a(H (u)-6)du+ndV, (u),0,720,a >0; (31)
dry (u) = B(ry (u)—A)du+£dV, (u), 4,4 20,8>0; (32)
...dInS(u):(rD (u)-re —U—;)du +(H (u)+v)dB, (u); (33)

Let

(u)
dry (u) =0.3(r, (u)—0.02)du +0.04dV, (u),r, (0) = 0.03;
dH (u) =a(H (u)-6)du+nV, (u),H(0)=x;
dH (u) =(H (u)-0.1)du+0.3v, (u),H (0)=0.6
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Then, H (u)
v a n 0 P K o s H(0)
0.08 1 0.2 0.1 -0.8 0.1 0.6 0.5 0.06
And 1, (u):
B 4 A 2 ¢ 2 r
0.3 0.2 0.1 0.5 0.04 3/4 0.06

If Assumption (2) holds then the unconditional risk-neutral distribution of
InS(s)] (g(s) =hV?(s)= 5) and U(s,&) are independent random variables.
Then Figure 1 depicts the unconditional risk-neutral distribution of
P{InS(s)<ulh}=Fqq ulh).

Remark 9:

Future movement of values of risk-free interest rate and volatility are uncer-
tain and as they increase, they affect call option values as depicted in the above
Figure 2, Figure 3 ([5], p. 204). Sudden changes in their values may occur be-

cause of economic shock. See the models suggested in [11] [12].

Unconditional Risk Neutral Cumulative
Distribution Function of In(S(s))

0.5
0.4 /
0.3 /
0.2 —— Unconditional Risk
0.1 Neutral CDF
0 rrirrrrrrrrrrrrrrrrrrrrrrrrrrrr1i
(o] ~ (o] ~ (o] ~ o ~ o ~ (o]
A N f BN 60 O A4 o o O
Ll i Ll Ll i

Figure 1. Unconditional risk-neutral CDF of InS(s), strike price (cents) &
from 1.1 to 16.2.

Unconditional Call Option Price
40
35
30
25

7

/
P

20

/

Unconditional Call

15

)

Option Price in

10

~

Dollars

5

P

0

i
Ll

_~

n < 0~
o wn

o o
- Ll

16

17.5
19

20.5

n o~
0 (o]

11.5
14.5

n
o~

23.5

Figure 2. Unconditional call option price with strike price & (cents) from
1.1 to 26.
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Unconditional Hedge Ratio
350

e

300

250 /

200 /

/ = Unconditional Hedge
150

100 / Ratio
s~

O 4

MmN ™~ A NN N O
R I I B B |

- ™M
N N N

Figure 3. Unconditional hedge ratio with strike price & (cents) from 1.1
to 26.

4. Conclusion

We define a three-factor exchange-rate diffusion model with 1) stochastic vola-

tility process, 2) stochastic domestic interest rate process, and 3) return process

which are Brownian motion return processes that are stochastically dependent.

Further generalization is possible with the assumption of domestic and foreign

stochastic interest rate processes which are subject to economic shocks [11] [12].

The results are applicable to bond option models ([5], p. 783).
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Appendix A

2 s1ew g (s-(1-e%)/a)
S [

2
R
2 S u
7, (S) =—2J.dujw(t)dt
S 0 0
is the regression coefficient.
2 ¢
& (s =—2H )=72(s))dB (t)dB, (u)
00
E(e,(s))=0;E(e,(s))=0.Cov(e(s).e,(s))=0 (2A1)
Var (e, (s jduj y :32” t)dtdu— 2 (s)
00
Then the regression equation is
z//**(s):yz(s)(Blz(s)/2—§j+e2(s); (242)
Assumption 6:
e, (S) =N (O,Val‘l/2 (62 (S))) (Approximately) (2A3)

Note that Cov(e1 (s).e, (s)) =0 and
e, (s)=N(0,Var*(e,(s))).
(Var(el(s))+Var(e2(s))m) =Var (e, (s))+Var(e,(s))
Assumption 7:
e(s)=e(s)+e,(s)~N (0,(Var(e1(s))+Var(e2 (s)))m) (Approximately)

(2A4)

Proof of Proposition 1:
id[ln S(u)]= j;du [{rd (u)-r, }—U?j
+ {0+ 0+, (U)+ () 0B, (1) + 5C, (1)) 0B, (u);

0

InSS:InsO+J'{rd }du—%u s+[(v+0)B,(s

Ta0n e ) oo Lo }

|nso+jrd(u du—;z) s+(v+0)p {m SJ

2 2

+[71(S)Bl(s)+ ]+é\/B1 +p|:;/2( )(BlT(S)_g}_ez(s)}_
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Appendix A from [2]

03 (0) o (108, (1) = 75 () B (), () )

where
72(5)= 2 Jaufu (et =2 [ ="~
_332,7(3—(1—;“5)/“)_ngn(“s‘sz‘e )
es(5)= (v ()75 (s)) o
where
v (0)=fw ()
Var (e, (5)) = (v () (5
=j(7721 eZ“J u{%n(s (1; )/“)]
Appendix B
o (4)=8(0)+ [y (0% ()
:ql(u)+f[1// t)[ p,dB, (t)+3,dC, (1) ;
~ [ (u)du = qu o|u+jdujy/1 )[ /0B, (t)+8,dC, (1) ]
=Q (s)+pBy(s )(G( )= 7:(3))+ Vs +e (s)
Ql(s)zs[ql(u)du
See [13].
9 (s* s
G(S)_ﬂs[ﬁ 3! J
because

Let jy/l )dB, (1) 2 7 (u) B, (u) +, (u)

where o7 —J.l/ll u)du—y?(u).
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Let
G(U)él'y(U)du=le9(lI;3 )du:%L —2—2|+3—3| J
pliy(u)s(u)du:plis(u)de(u):pl B(S)G(s)—j;G(u)dB(u)}

Let
EG(u)dB(”)éZ(S)idB(U)+e3(s);

where applying Wilk’s linear regression [14], we get

o (5)=[ & ()du-7'(s)

s s ug(l—e ™ (B1)
jG(u)du jdu_[ ( )dt . , 4
2(s)="2 0 o A _ 9 u-— L du
S S ps 21 3l
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