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Abstract 
Counterparty credit risk has received increasing attention and become a topi-
cal issue since 2007 credit crisis, particularly for its impact on the valuation of 
the OTC derivatives. Credit Value Adjustment (CVA) has become an import 
field and it is required in Basel III. This paper studies CVA for European op-
tions under Bates model with stochastic default intensity. We develop a 
Monte Carlo and finite difference method framework for assessing exposure 
profiles and impact of counterparty credit risk in pricing. The exposures are 
computed by solving a partial integro-differential Equation (PIDE) using im-
plicit-explicit (IMEX) time discretization schemes. CVA in presence of wrong 
way risk (WWR) is embedded in the correlation between risk factor and de-
fault intensity. Meanwhile, the jump-at-default feature of the models offers an 
effective means to assess WWR. Our results show that both jump and WWR 
play an important role in evaluating CVA and exposures. The impact is sig-
nificant and it is crucial for risk management purpose. 
 

Keywords 
CVA, Bates Model, Stochastic Default Intensity, Wrong Way Risk,  
Jump at Default 

 

1. Introduction 

Counterparty credit risk (CCR) refers to the risk that a counterparty of a finan-
cial contract will default prior to the expiration of the contract, and thus cannot 
make the required contractual payments. It has been widely considered as one of 
the key drivers of the 2007-2008 financial crisis. The management of counter-
party credit risk has caught special attention since the financial crisis. As pointed 
out by Basel Committee on Banking Superversion [1] [2]: “During the financial 
crisis, banks suffered significant counterparty credit risk (CCR) losses on their 
OTC derivatives portfolios. The majority of these losses came from fair value 

How to cite this paper: Feng, Y.Q. (2017) 
CVA under Bates Model with Stochastic 
Default Intensity. Journal of Mathematical 
Finance, 7, 682-698. 
https://doi.org/10.4236/jmf.2017.73036  
 
Received: June 26, 2017 
Accepted: July 28, 2017 
Published: July 31, 2017 
 
Copyright © 2017 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2017.73036
http://www.scirp.org
https://doi.org/10.4236/jmf.2017.73036
http://creativecommons.org/licenses/by/4.0/


Y. Q. Feng 
 

683 

adjustment on derivatives”. Regulations presented in the Basel III include credit 
valuation adjustment (CVA) as an additional capital charge requirement. CVA is 
defined as the difference between the risk free value of a contract and the market 
value of the contract with the possibility of a defaulting counterparty [3]. 

One difficulty in pricing CVA arises from the uncertainty of the losses given 
the default, which is known as exposure. The exposure of contracts evolves be-
fore the expiration, diverting away from the initial value. Because of the growing 
practical importance, there are recently articles that discuss the computation of 
the exposure. Feng and Oosterlee (2012) [4] studied the exposure profile of Eu-
ropean, Bermudan and barrier options under the Heston and Heston Hull- 
White model. Graaf et al. (2014) [5] presented various techniques to approx-
imate exposure for early exercise option within Black-Scholes and Heston frame- 
work. Graaf et al. (2014) [6] explored the exposure profiles and CVA sensitivities 
for Barrier option in the context of Black-Scholes and Heston model. 

The other difficulty in pricing CVA concerns the dependency between expo-
sure and counterparty credit quality, which is known as wrong/right way risk 
(WWR). In the context of computation of CVA, the correct inclusion of Wrong 
Way Risk (WWR) is still a major concern. Many different approaches have been 
proposed to assess WWR. Hull and White (2012) [7] adjusted default probability 
in the dependent CVA formula. Pykhtin and Rosen (2010) [8] used copula me-
thod to model the dependence between default time and exposures. Alternative 
method such as change of measure is illustrated in Brigo and Vrins (2016) [9]. 
We focus on the dependence between the counterparty default and general 
market risk factors. 

Since stochastic volatility models such as Heston model and Bates model are 
widely used in practice, it is often of interest to estimate CVA under the stochas-
tic volatility model and analyze the impact of stochastic volatility on CVA. 
Comparing to Heston model, Bates extended Heston model by adding a jump 
term in the stock process. The inclusion of jumps is necessary for stochastic vo-
latility models to comply with the market observed phenomena to varying de-
grees. At the same time, jumps modeling the sudden changes in the risk factors 
and it could be related to counterparty’s default. Some of market factors will 
jump immediately following the default event [10]. Bates model in the presence 
of jump-to-default is the joint modeling of equity and credit model. The jump 
model conditional on default for CVA was discussed in [10]. Fabio and Min-
qiang (2015) [11] investigated CVA in the presence of WWR by introducing 
jumps at default to model. Unlike other models, we embed the relation between 
default and risk factors in the model by the jump. 

In this paper we model CVA for European options under Bates model with 
stochastic default intensity which presents several attractive features. 

Firstly, Bates model is a stochastic jump diffusion model. Jump diffusion are 
capable of modeling large and sudden changes in the state variable [12]. Default 
and risk factors are correlated through jump. It is intuitive and realistic [11]. 
Secondly, under the Monte Carlo framework, by modeling a stochastic intensity 
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model, default and risk factors can be easily connected through correlations 
from Brownian motion. Default and risk factors are then further correlated 
through correlation parameter. It is very easy to implement. Thirdly, option 
values in the model are computed by finite difference method of the corres-
ponding PIDE. Both Heston model and jump diffusion models are actually 
nested by Bates model. It is flexible. 

We develop a PDE based Monte Carol framework for pricing CVA and assess 
exposure profile. The framework contains essentially three steps: risk factor si-
mulation, independent exposure estimation and WWR incorporation. Monte 
Carlo method is used to generate asset paths from initial time to maturity. Along 
the paths, independent option values are determined at each time grid by PDE 
method. WWR is then formulated by introducing a kind of model-to market 
survival rate change ratio. Under this framework, CVA for both single trade and 
portfolios can be treated. 

This paper contributes as follows: first we expand Bates model by modeling 
the intensity of jump to default with the stochastic process, i.e., the CIR++ 
process which provides a natural and effective framework to handle the correla-
tion between the underlying asset and the default, evaluate the impact on expo-
sure and CVA and assess WWR; second we develop an efficient PDE based 
Monte Carlo framework for pricing CVA and assessing exposure profile under 
Bates model with stochastic intensity of the jump to default which combines ad-
vantages of Monte Carlo simulation (such as path-wise pricing, and properly 
netting and collateral modeling) and efficiency of PDE pricing. Our framework 
can be used for both single trade and portfolios; with the developed efficient 
framework, our results show that both jump and WWR play an important role 
in evaluating CVA and exposures. The impact is significant and it is crucial for 
risk management purpose. 

The outline of the paper is as follows. In Section 2, we describe CVA valuation 
problem in general terms. Section 3 describes the stochastic intensity model and 
underlying asset driven process. In Section 4, we present the general framework 
for CVA pricing based on Monte Carlo and PDE method. In Section 5, we 
present test results. Conclusion is summarized in Section 6. 

2. Preliminary 
2.1. CVA, EE and PFE 

Counterparty risk is very similar to other forms of credit risk in that the eco-
nomic loss is obligor’s default. There are two features that set counterparty risk 
different from more traditional forms of credit risk: the uncertainty of exposure 
and the bilateral nature of credit risk [13]. In the following, we will review the 
definition of credit exposure and CVA. 

In the event that a counterparty has defaulted, an institution may close out the 
relevant contracts and cease any future payments. Following this, they may de-
termine the net amount owing between them and their counterparty. If the net 
amount is negative, the institution is in debt to its counterparty and is still legally 
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obliged to settle this amount. Hence, from a valuation’s perspective, the position 
appears essentially unchanged. The institution does not gain or loss from the 
counterparty’s default. If the net amount is positive, the institution will have a 
claim on the positive value at the time of default [3]. Thus the credit exposure of 
an institution that has a trade level contract with a counterparty is given by 

( ) { }max ,0 ,tE t U=                        (1) 

where tU  is the portfolio’s market value at t . Uncertain future exposure can 
be visualized by means of exposure profiles. This leads to the definition of ex-
pected exposure. Assume that all the stochastic processes considered are defined 
on the probability space ( ), ,t QΩ  , where Q  is the risk neutral measure and 

t  is the filtration up to time t . Expected exposure (EE) at a future time is 
given by: 

( ) { }t 0 ,EE t E U +=                         (2) 

where ( )max ,0t tU U+ =  and E  denotes the expectation under the risk-neu- 
tral measure Q . 

Potential future exposure (PFE) is the maximum loss due to counterparty de-
fault with a given confidence level. It is the quantile of the exposure at a certain 
level and is used to measure the “worst” loss for the risk management purpose. 
The mathematical definition is given by: 

( ) ( ){ }0inf tPFE t x Q U x α= < >                 (3) 

where α  is the confidence level. For calculating PFE, 97.5%α =  is com-
monly used to measure the worst losses. 

Credit value adjustment (CVA) is by definition the difference between risk 
free portfolio value and the true portfolio value that takes into account the pos-
sibility of counterparty’s default [13]. If the counterparty defaults, the institution 
will be able to recover a constant fraction of exposure which is denoted by R . 
Denote the time of counterparty default by τ , then 

( ) ( ) { }1 0, 1 TCVA R E P Uτ ττ +
≤

 = − ⋅ ⋅   

where ( )0,P τ  denotes the discount factor for maturity τ  and T  is maturi-
ty. Assume survival probability 

( ) ( ) { }: 1 tG t Q t E ττ >
 = > =                      (5) 

then the expression for CVA becomes 

( ) ( ) ( )
0

1 0, d
T

tCVA R P t E U t G tτ+ = − − ⋅ = ∫             (6) 

This is the general CVA formula. As we can see, in Equation (6), one key ele-
ment to calculate CVA is the conditional expectation tE U tτ+ =  . Therefore, 
the dependence between tU  and default time τ  is important and can be ma-
terial. In general, the dependency between exposure and counterparty credit 
quality is known as wrong/right way risk (WWR). 

Assume exposure and counterparty default are independent, Equation (6) can 
be simplified to: 
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( ) ( ) ( )
0

1 0, d .
T

tCVA R P t E U G t+ = − − ⋅  ∫               (7) 

This is the independent CVA formula. 
In this paper, we will not only focus on the calculation of exposure, but also 

investigate the impact of WWR on CVA. 

2.2. CVA, EE with WWR 

According to the International Swaps and Derivatives Association, WWR is de-
fined as the risk that occurs when the exposure to a counterparty is adversely 
correlated with the credit quality of that counterparty [14]. Many different tech-
niques have been proposed to assess WWR. Brigo and Pallavicini (2008) [15] 
studied a stochastic intensity and its correction with risk factors. Pykhtin et al. 
(2010) [8] and Bocker et al. (2014) [14] use copula to model the WWR. Hull and 
White (2012) [7] proposed a deterministic relationship that links higher values 
of exposure paths with a higher default probability. Bocker et al. (2014) [14] and 
Ruiz et al. (2015) [16]) modeled WWR by introducing different risk weights for 
different exposure scenarios. Brigo and Vrins (2016) [9] introduced wrong way 
measure and tackled WWR through change of numeraire. 

As we know, survival probability ( )G t  defined in Equation (5) is a deceasing 
function satisfying ( )0 1G = . Survival probability ( )G t  can be expressed in 
terms of hazard rate ( )h t  and the relation between ( )G t  and ( )h t  is  

( )0 d( ) e
t h u uG t −∫= . Following the stochastic intensity model in [9], we introduce a 

survival process ( )t tM Q tτ= >   on the probability space ( ), ,t QΩ  , and as-
sume that: 

0 de ,
t

u u
tM λ−∫=  

where tλ  is a stochastic process. Formally, the survival process tM  and sur-
vival probability ( )G t  are linked by 

( ) ( ).tE M G t=                        (8) 

As mentioned in [9], CVA with WWR in this setting reduces to: 

( ) ( ) ( )
0

1 0, d
T

t tCVA R P t E U G tζ+ = − − ⋅  ∫             (9) 

where 

( )
: .t t

t
t t

M
E M
λζ
λ

=                      (10) 

The denominator ( )t tE Mλ  can be considered as the prevailing market view 
of default likelihood and ( ) 1tE ζ = . The process tζ  is a kind of model-to- 
market survival rate change ratio [9]. For more discussion of tζ , we refer to [9]. 
In the above expression, expected exposure tE U +    with consideration of 
WWR will be t tE U ζ+   . It is a weighted exposure and the exposure weight 
function is determined by tζ . Note that this definition is consistent with the 
WWR discussion in [14]. Unless otherwise specified, Equation (9) is used to es-
timate CVA and EE for the paper. 
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3. Modeling Assumptions 

In this paper, in order to quantify WWR for CVA, we consider a stochastic in-
tensity model, namely Cox-Ingersoll-Ross (CIR) model for the counterparty. 
The underlying process is driven by Bates models. WWR is modeled by a joint 
simulation of the underlying processes that drive counterparty exposure and 
credit risk. The dependence structure is modeled by the correlation between 
driven Brownian motion as well as the jump-to-default feature of Bates model. 
We assume deterministic interest rate r  and hence deterministic discount fac-
tor ( )0,P τ , but all our conclusions hold under stochastic interest rates that are 
independent of default time. 

3.1. Cox-Ingersoll-Ross (CIR) 

In this paper, we assume tλ  follows CIR process. The hazard rate process tλ  
can be formulated as follows: 

( )
 

d d ,d
t t t

t cir cir t cir t t

y

y y t y B

λ ψ

κ θ σ

= +

= − +
               (11) 

where ty  follows a standard CIR process and the deterministic function tψ  
allows calibration to the current hazard curve. The parameters , ,cir cir cirκ θ σ  and 

0y  are positive deterministic constant. As usual, tB  is standard Brownian mo-
tion under the risk neutral measure. It is well known that the probability density 
of ty  is given by a non-central chi-square distribution. The closed form density 
leads to a closed form formula for the survival probability formula. Let  
( ), ;P t T y  be the survival probability up to time T  conditional on survival up 

to time t, then 

( ) ( ) ( )d ,, ; e , e ,
T

s tt y s B t T yP t T y E A t T− −∫ = =  
 

where 

( )
( )( )

( ) ( )( )

22
22, ,

2 e 1

cir cir cir
cir h T t

T t h
cir

heA t T
h h

κ θ σ
κ

κ

+ −

−

 
 =
 + + − 

           (12) 

( )
( )( )

( ) ( )( )
2 e 1

, ,
2 e 1

T t h

T t h
cir

B t T
h hκ

−

−

−
=

+ + −
               (13) 

and 2 22cir cirh κ σ= + . 

3.2. CVA under Bates Model 

We will present methods for computation of the exposure of European options 
under the Bates model [17]. Bates model combines the Merton jump model [18] 
and the Hestonstochastic volatility model [19]. Heston model and jump diffu-
sion models are actually nested by Bates model. Bates model describes the beha-
vior of the asset value tS  and its variance tV  by the following SDE: 
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( ) ( ) ( )
( )

1
t

2

1 2

d d d 1 d

d d d

d ,d d

t J t t t t

t t t t

t t m

S r S t V S W J S N t

V V t V W

W W t

λ ζ

κ θ σ

ρ

= − + + −

= − +

=

         (14) 

where r  is the risk free interest rate, ( )N t  is the standard Poisson process 
which models numbers of jumps and has intensity Jλ . Jump size of the Poisson 
process is denoted by  J .  J  follows log-normal distribution with parameter 
and its probability density function is denoted by ( )f J . The relation between  

ζ  and  J  is: 
21

2e 1J Jµ σ
ζ

+
= − . κ  is the rate of mean reversion level, θ  is  

the mean level of variance and σ  is the volatility of ( )V t . 1
tW  and 2

tW  are 
standard Brownian motion processes with correlation mρ . 

Price U  of an option with maturity T , payoff function ( ),T Tg S V  and 
with the initial value of the underlying and volatility to S  and V  respectively 
equals: ( ) ( ) ( ) 0 0, , e , ,r T t

T TU S V t E g S V S S V V− − = = = 
. Since it’s a two dimen-

sional pricing problem and its analytical formula is hard to obtain, we will apply 
finite difference method to solve the associate PDE under the CVA framework. 
Therefore, from Equation (2), expected exposure in Beta’s model can be ex-
pressed as 

( ) ( )( ){ }0max , , ,0 .t tEE t E U S V t=                (15) 

3.3. WWR CVA 

We now move to the computation of the CVA, as in Equation (9). 
In the case study below, we assume the correlation between tB  and 1

tW  is 
ρ , i.e. 1d ,d dt tB W tρ= . Note that ρ  and mρ  are different. mρ  is the 
correlation between the asset value tS  and its variance tV , while ρ  reflects 
the correction between the underlying process and the default intensity. Fur-
thermore, we assume 2d ,d 0t tB W = . It is clear that when 0ρ = ,  

[ ]t t t t tE U E U E E Uζ ζ+ + +     = =      . Here the second equality comes from the 
fact that ( ) 1tE ζ = . CVA expression in Equation (9) reduces to Equation (7), 
which is the independent CVA formula. The impact of the WWR manifests itself 
in the term t tU ζ+  from the correlation parameter ρ . 

As we know, Bates model in the presence of jump-to-default is the joint mod-
eling of equity and credit model. WWR is also modeled by introducing jumping 
at default part. To measure WWR from the jump contribution, we simply re-
move the jump part from Bates model, which is actually Heston model. 

4. General Scheme for CVA Pricing for under Bates  
Model with Stochastic Intensity 

We assume constant recovery rate R  and independence between interest rate 
and other factors. CVA formula in Equation (9) then has following key compo-
nents: the estimation of exposure tV , the calculation of survival ratio tζ  and 
the final estimation of CVA. For CVA calculation purpose, we are not only con-
cerned with option value at time 0t = , but also for all the time till expiration of 
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the contract. When PDE method is used to price a single trade, only a single grid 
point in initial time is used. In order to calculate exposure at all future time, the 
finite difference method uses a large portion of the grid points. It makes the PDE 
method computationally attractive [6]. Therefore, we will employ PDE method 
to find exposure. The estimation of tζ  is accomplished through MC simula-
tion. In the following, we build MC based PDE framework to price CVA and 
discuss practical implementation of the jump-to-default feature CVA. 

4.1. The Finite Difference Method for Exposure Calculation 

For a European option with maturity T  and payoff function ( ),T Tg S V , the 
risk-neutral price at any time t T≤  is: 

( ) ( ) ( ), , e , , .r T t
T T t tU S V t E g S V S S V V− − = = = 

          (16) 

Let T tτ = − , then ( ), ,U S V τ  satisfies the following partial integro-differ- 
rential Equation (PIDE): 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
2

2

2
2

2

0

, , , , , ,1
2

, , , ,1
2

, ,
, ,

, , d

m

J

J

J

U S V U S V U S V
VS VS

S S V
U S V U S V

V r q S
V S

U S V
V r U S V

V

U JS V f J J

τ τ τ
ρ σ

τ
τ τ

σ λ ζ

τ
κ θ λ τ

λ τ
∞

∂ ∂ ∂
= +

∂ ∂ ∂ ∂
∂ ∂

+ + − −
∂ ∂
∂

+ − − +
∂

+ ∫

   (17) 

where ( )f J  is log-normal probability density function. By introducing oper-
ators 

( ) ( ) ( )

2 2 2
2 2

2 2
1 1
2 2c m

J J

U U UL U VS VS V
S S V V

U Ur q S V r U
S V

ρ σ σ

λ ζ κ θ λ

∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
∂ ∂

+ − − + − − +
∂ ∂

       (18) 

and 

( ) ( )
0

, , d ,J JL U U JS V f J Jλ τ
∞

= ∫                (19) 

the partial integro-differential equation in (17) can be written as : 

 .c J
U L U L U
τ

∂
= +

∂
                     (20) 

The RHS of Equation (20) can be split into two parts. The first part is a diffe-
rential operator cL , which can be discretized in a similar way to Heston PDE. 
The second part JL  is an integral term and need to be evaluated. 

4.1.1. Time Discretization  
The numerical solution of Equation (20) is straightforward since applying a 
standard space discretization lead to a tridiagonal matrix. However, the presence 
of the jump terms which results in PIDE causes the discretization matrix to be 
full. Therefore, we adopt implicit-explicit (IMEX) time discretization schemes. 
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The jump term is treated explicitly, while the rest is handled implicitly. Let us  

construct 1N +  grid points in time direction with step size T
N

τ∆ = . By ap-

plying IMEX scheme, we have 

1
1 .n n

c n J n
U U L U L U

τ
+

+
−

= +
∆

                  (21) 

4.1.2. Discretization of cL  

The discretization for differential operator cL  is similar to the discretization of 
Heston PDE operator. Solving Heston PDE to price European and American op-
tion is extensively studied in [20] [21]. We follow the scheme mentioned in [21] 
for discretization. We use a computational grid that is uniform in τ  and non-
uniform in S  and V . Central schemes have been used to estimate the first de-
rivative, second derivative and mixed derivative. Upwind scheme is applied on 
the boundary point. This is a quite well known method and we do not show the 
detailed here. For more details, we refer to [21]. 

4.1.3. Discretization of JL  

The integral term in operator JL  need to be estimated in each of the grid 
points min 1 2 max0 , , , , nS S S S S= = . We follow the same procedure as listed in 
[22] [23]. Let 

( ) ( )
0

, , d ,i iI U JS V f J Jτ
∞

= ∫                 (22) 

by introducing the change of variable exJ =  and decomposing the integration 
interval into [ ]max0,S  and [ ]max ,S ∞ , Equation (22) becomes 

( ) ( )max, ln
1

e e , , d .
i

n
x x

Si i k i
k S

I I U S V p x xτ
∞
 
 =  

= +∑ ∫            (23) 

where ( )p x  is normal probability density function with mean Jµ  and stan-
dard deviation  Jσ  and 

( ) ( )

( ) ( )

1ln

,
ln

1 1
, 1,

 e , , d

1 ln , ln , ln .
2

k

i

k

i

S
S x

i k iS
S

k k k
k k

k i i

I U S V p x x

S S SU S V p U S V p
S S S

τ

τ τ

+ 
 
 
 
 
 

+ +
+

=

         
≈ +                      

∫
 (24) 

The interval [ ]min max,S S  is chosen to be large so that the last integral in Equa-
tion (23) is negligible. 

4.2. Monte Carlo Simulation for Stochastic Intensity 

For realistic implementation of hazard rate process in CVA context, we rely on 
Monte Carlo simulate to generate the path for hazard rate. Several schemes have 
been tested for simulating the CIR process. Most of them are comparable when 
Feller condition is satisfied and when volatility is small. However, when the vo-
latility is large, the performances deteriorate [9]. One can use reflected schemes 
to avoid negative samples along the path, however, the time step required to en-



Y. Q. Feng 
 

691 

sure the convergence is too small. Alternatively, the scheme mentioned in [24] 
seems to work well. It consists of the following scheme for discretization: 

( ) ( )

( )

( )

2

1
1 1

1

2

1

1
2 2 1

2

4

cir i icir
i i i i

cir
i i

cir
cir cir i i

W W
y t t y

t t

t t

σκ
κ

σκ θ

+
+ +

+

+

 
 −  = − − +      − −    
 

+ − − 
 

         (25) 

The scheme above allows violating the Feller constraint somewhat without 
loss of probability at or through the boundary. We will use this scheme to simu-
late the path for hazard rate. 

4.3. CVA Calculation Based on Monte Carlo and PDE Method 

For the purpose of CVA calculation, we first use Monte Carlo simulation to 
generate market state variables. Next, a grid in S  and V  is created. Price at 
each grid is calculated through PDE method. For any time t  which is not in 
line with simulation time, option price is obtained by bilinear interpolation on 
the grids. At each time point, expected exposure can be calculated accordingly. 
The flow chart of the procedure is given in Figure 1. In a summary, the basic 
procedure is presented in following steps: 
 

 
Figure 1. Flow chart. 

Use Cholesky decomposition; generate 
correlate normal random variable

Does        or        coincide with
          or             ? 

Generate path for      and    
from Bates model

Generate path for         
from (CIR++)

Solve PIDE find EE at 
each grid point

User interpolation to 
find EE 

Calculate        

WWR EE
Calculate default

 probability

Calculate CVA

tS
tV

tζ

tS tV
gridS gridV

tλ
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1) Generate path for tS  and tV  along time axis for SDE (14); 
2) Generate path for hazard rate tλ  using the Scheme (25) and estimate tζ  

use Equation (10); 
3) Calculate option values at all PDE grids for all time t ; 
4) Calculate option values for all tS , tV  at all time t . If tS  or tV  doe not 

coincide with gridS  or gridV , bilinear interpolation will be applied; 
5) Calculate EE, PFE from all the path at each time; 
6) Calculate CVA. 

5. Numerical Results 

In this section, we price EE and CVA for European options under Bates model 
with stochastic default intensity. In order to study the impact of WWR, we show 
the EE and CVA for vanilla European option. Following this, we discuss the im-
pact of the model parameters on CVA. 

For all tests we covered, we follow the basic procedures listed in Section 4.3. In 
order to generate Monte Carlo paths for market risk factors, the jump and diffu-
sion parts of the underlying asset under the Bates model can be simulated sepa-
rately and multiplied together at the end. To simulate the diffusion part of the 
underlying asset, we will use Quadratic Exponential (QE) scheme. 

Unless otherwise specified, the parameters for European call option are given 
by: 2T = , 0r = , 0q = , 0 100S = . The model parameters employed in nu-
merical experiments are listed in Table 1. In addition, the number of Monte 
Carlo paths is set to be 10,000, and the time step size of the SDE discretization 

0.01t∆ = . 

5.1. WWR CVA from Parameter ρ 

To analyze the impact of the WWR on EE and CVA, we provide EE profile and 
CVA for different choices of ρ . To isolate other factor’s impact, we only vary 
parameter ρ  and keep other parameters as listed in Table 1. Figure 2 contains 
the numerical results for the at the money(ATM) option with strike = 100, 
while Figure 3 refers to the in the money(ITM) case with strike = 80, and Figure 
4 displays the result for out of the money(OTM) European option with strike = 
120. Left panel of each figure denotes the EE profile for different levels of ρ , 
right panel is the corresponding CVA plot. From those figures, we can see the 
following: 

When 0ρ = , EE obtained by CVA with WWR and no WWR are extremely 
close and the differences are within Monte Carlo error. As we know, when the  
 
Table 1. Base parameters. 

Betas model 
2κ = , 0.04θ = , 0.25σ = , 0mρ = , 0 0.04V = , 

0.2Jλ = , 0.5Jµ = − , 0.2Jσ =  

CIR model 0.34cirκ = , 0.12cirθ = , 0.13cirσ = , 0 0.15y =  
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Figure 2. ATM. 
 

 
Figure 3. ITM. 
 

 
Figure 4. OTM. 
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correction is zero, EE with WWR should be the same as EE with no WWR. Test 
results are as expected. Sizable differences are observed between EE and CVA 
with the consideration of WWR when 0ρ ≠ . WWR CVA is 15.01% higher 
than the independent CVA for 0.9ρ =  and 15.16% lower than it for 0.9ρ = −  
for ATM option. For OTM case, the difference is 20.36% and 18.37% for 

0.9ρ =  and 0.9ρ = − . For ITM case, similar size of differences are observed as 
well. All the results show that the WWR introduced through correlation has an 
impact on CVA. 

5.2. WWR CVA from the Jump Effect 

In this part, we assess the impact of jump on EE and PFE profiles. We start with 
the comparison of Heston model to Bates model on EE and PFE profile. Then 
we conduct a detailed analysis of jump impact on CVA. Basically, we stress the 
jump parameters from Bates model by considering different levels of jump in-
tensity and jump size volatility. Note that the parameters are chosen from Table 
1. 

5.2.1. Effect of Jump 
In this part, we consider the overall jump impact to CVA. As we mentioned in 
Section 3.3, in order to quantify the WWR from jump contribution, we remove 
the jump part from Bates model (which is Heston model) and compare EE and 
CVA between these two models. Test results are illustrated in Figures 5-7. 
When the results for Heston model are compared to Bates model, significant 
difference can be noticed for both EE and PFE. The average EE difference are 
29.0%, 24.7% and 28.1% for 0ρ = , −0.9 and 0.9 respectively. For PFE, the dif-
ference grows as time elapses. All the differences are introduced by model dif-
ference (the jumps). 

Let us now focus on the Figure 5 when 0ρ = , this is an independent CVA 
case. Independent of underlying dynamics, EE starts at initial option value and 
oscillates around initial value and return to the initial level at expiry. It can be  
 

 
Figure 5. ATM option, 0ρ = .  
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Figure 6. ATM option, 0.9ρ = . 
 

 
Figure 7. ATM option, 0.9ρ = − . 
 
explained by martingale theory proposed by Tang and Li [25]. However, when 

0ρ ≠ , the WWR EE is no longer lingering around the initial level. Figure 6 il-
lustrates the case when 0.9ρ =  and Figure 7 corresponds to the situation 
when 0.9ρ = − . When correlation is counted, the EE either increase with time 
or decrease with time. That is exactly an outcome the WWR.  

5.2.2. Effect of Jump Parameters 
In this section, we consider the effect of the additional jump parameter entering 
the Bates model, namely the jump intensity Jλ  and the jump size volatility 

Jσ . In the left panel of Figure 8, EE profiles for different levels of Jσ  are 
plotted. We can see that increase of Jσ  causes the EE to increase significantly. 
The overall impact on CVA is listed in the right panel of Figure 8. As it shows 
that CVA increases from 1.49 to 2.06 when Jσ  increases from 0.1 to 1, the im-
pact of Jσ  is substantial. Study of Jλ  is shown in Figure 9. It can be noticed 
that both EE and CVA rise as jump intensity Jλ  increases. As we know, Jλ  de- 
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Figure 8. Impact of Jσ . 

 

 
Figure 9. Impact of Jλ . 

 
notes the jump frequency, CVA increase naturally with the increase of jump 
frequency. 

All these results show that jump has an impact on exposure profiles as well as 
CVA. The introduction of jump-at-default can result in large jump WWR. 
Therefore, it is important for CVA and risk management purpose. 

6. Conclusions 

The expected exposure is an option on the market value of the position; if the 
position itself is an option, the evaluation is to price an option on the option; it 
will require the stochastic volatility to generate sufficient volatility of the option 
position and catch the risk properly. The developed Bates model with stochastic 
intensity of the jump to default in CIR++ process in this paper provides a natu-
ral and effective framework to generate the sufficient volatility and provide the 
jump to default feature which is essentially important for addressing the WWR. 
How to efficiently evaluate the expected exposure precisely and how to catch the 
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WWR properly are big challenges to both financial industry and academia; in 
the past, many progresses have been made as pointed out in the introduction. In 
this paper, we develop and demonstrate an efficient PDE based Monte Carlo 
framework for pricing CVA and assessing exposure profile under Bates model 
with stochastic default intensity in CIR++ process which combines the advan-
tages of Monte Carlo simulation (such as path-wise pricing, and properly netting 
and collateral modeling) and efficiency of PDE pricing. The developed frame-
work can be used for pricing both single trade and portfolios and it is a practi-
cally useful algorithm/framework in which its computation performance could 
be improved significantly by computing each individual path parallelly. 

This work studies CVA in presence of WWR caused by the correlation be-
tween the underlying asset and the jump-to-default. The work can be further 
improved by including correlations between underlying asset, the jump to de-
fault, the option seller and the bank. This research focuses mainly on the equity 
asset and European option in our examples, however, the developed framework 
in this paper can be applied to price CVA and study WWR for other assets such 
as commodity, FX and credit etc. as well as other options such as Bermudan op-
tion, American option and barrier option etc. 
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