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Abstract 
Extended correlations, i.e. correlations that can take values less than −1 and/or larger than 1, oc-
cur naturally in mathematical models of financial processes. Extended correlations also occur in 
financial practice, especially in dispersion trading, implying arbitrage opportunities. Based on 
theoretical and practical emergence of extended correlations, we derive a mathematical frame-
work for extended correlations explaining interpretations and applications. We develop a broader 
mathematical approach, which can model conventional as well as extended correlations. 
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1. Introduction 
New discoveries are often met with skepticism and resistance. When negative numbers came to Europe in books 
of Eastern mathematicians, critics dismissed their sensibility. Many well-known European mathematicians, e.g., 
Jean le Rond d’Alembert (1717-1783) or Augustus De Morgan (1806-1871), rejected the sensibility of negative 
numbers until the 18th century and referred to them as “absurd” or “meaningless” (Kline, 1980 [1]; Mattessich, 
1998 [2]). Even in the 19th century, it was a common practice to criticize any negative results derived from equ-
ations, on the assumption that they were meaningless (Martinez, 2006 [3]). For instance, Lazare Carnot (1753- 
1823) argued that “the attempt to take it [a number] away from a number less than itself is ridiculous”, affirming 
that the idea of something being less than nothing is absurd (Mattessich, 1998 [2]). Some other outstanding ma-
thematicians, such as William Hamilton (1805-1865) and August De Morgan (1806-1871), had similar opinions.  

Likewise, irrational numbers and later imaginary numbers were firstly rejected. Today these concepts are ac-

http://www.scirp.org/journal/jmf
http://dx.doi.org/10.4236/jmf.2016.61017
http://dx.doi.org/10.4236/jmf.2016.61017
http://www.scirp.org
http://www.dersoft.com/
http://www.cassandracm.com/
http://creativecommons.org/licenses/by/4.0/


M. Burgin, G. Meissner 
 

 
179 

cepted and applied in numerous scientific and practical fields, such as physics, chemistry, biology and finance. 
Similarly, probabilities less than 0 and greater than 1 were long considered non-sensible. However, these ex-

tended probabilities and especially their important case-negative probabilities with values between 1 and −1, 
have been applied in physics for quite a while (cf. Wigner, 1932 [4]; Dirac, 1942 [5]; 1943 [6]; Bartlett, 1945 [7]; 
Feynman, 1987 [8]; Mückenheim, 1986 [9]; Krennikov, 1992 [10] and 2009 [11]). The probabilities which are 
negative and bigger than 1 are also applied in finance (Haug, 2004 [12]; Székely, 2005 [13]; Burgin and Meiss-
ner, 2010 [14] and 2012 [15]; and 2012 [16]). 

Mathematical patterns of negative probabilities were studied in Bartlett 1945 [7] and in Allen 1976 [17]. A 
mathematical theory of negative probabilities in p-adic fields was developed in (Krennikov, 2009) [11]. A ma-
thematical theory of extended probabilities, which included negative probabilities, was created by Burgin and 
Meissner in 2010 [14] and 2012 [15] for the standard situations in physics, economics and finance, where real 
numbers and not p-adic numbers are used. Mathematically grounded interpretations of negative probabilities 
were constructed in Burgin, 2012 [18]; Abramsky and Brandenburger, 2014 [19]. 

In this paper, we study correlation coefficients used in mathematical models of financial markets. By their 
conventional construction, correlation coefficients cannot be larger than 1 and smaller than −1. However, by ex-
ploring the theory and practice of financial markets, we have discovered emergence of correlation coefficients 
beyond these limits. We call them extended correlations and develop a mathematical theory for them.  

The significance of our research lies on the fact that conventional mathematical theories cannot fully model 
all existing correlation values and processes in finance. That is why we introduce and study the concept of ex-
tended correlations, which is more general than conventional correlations including them as a special case. 
Hence all correlations in finance (and other sciences), i.e. conventional, and correlations that are smaller than −1 
or larger than 1 can be evaluated using the concept of extended correlations.  

The rest of the paper is organized as follows. In Section 2, we show that extended correlations can naturally 
occur in mathematical models of financial processes. In Section 3, we find extended correlations in the practice 
of financial markets, which imply arbitrage opportunities. In Section 4, we build mathematical foundations for 
extended correlations. Section 5 addresses the limitations of our concept. Section 6 concludes.  

2. Extended Correlations in Financial Modeling   
Financial variables such as stocks, bonds, interest rates, commodities, and volatilities are stochastic, i.e. they can 
be only predicted with a certain probability. Therefore, it is a good idea to model financial variables with sto-
chastic processes as it is done in mathematical finance.   

Recent events, such as the global financial crisis 2007-2009, have highlighted an important critical financial 
variable: correlation. In the crisis, correlations between many financial variables such as stocks, bonds, loans, 
and especially, sub-prime mortgage loans often securitized in a CDO, increased sharply and led to large unex-
pected losses. Hence, “Correlation Risk”, the risk of unfavorable change in correlation, has recently been ad-
dressed in financial modeling as well as in risk management and regulation1.  

It has been suggested (see Emmerich, 2006 [20], Ma, 2009 [21] and 2009 [22]) to model correlations with a 
bounded Jacobi process of the form 

( ) ( ) ( )d d dt t t ta m t h f tρ ρρ ρ σ ρ ρ ε= − + − −                                (1) 

where: 
ρ is the Pearson correlation coefficient2, 
a is the mean reversion parameter (speed, gravity) i.e. degree with which the correlation at time t, 
ρt is pulled back to its long term mean mρ, 0 ≤ a ≤ 1, 
σρ is the volatility of ρ; σρ > 0, 
mρ is the long term mean of the correlation ρ, 
h is the upper boundary level, f: lower boundary level, i.e. h ≥ ρ ≥ f, 
εt is the random drawing from a standard normal distribution at time t, ε = n~(0,1). 

 

 

1For example the Basel accord addresses several correlation measures as “general and specific wrong-way risk”, and the stress testing of 
correlations, see [23] Basel Committee of Banking Supervision “Principles of sounds stress testing practices and supervision” May 2009. 
2The Pearson correlation model can be found in virtually every descriptive statistics or econometrics textbook. For a discussion of the limi-
tations of the Pearson model, see [24] Meissner 2015. 
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Applying traditional Pearson correlation values, i.e. −1 ≤ ρ ≤ +1, the upper bound h becomes +1 and the lower 
bound f becomes −1 and Equation (1) reduces to  

( ) ( )2d d 1 dt t ta m t tρ ρρ ρ σ ρ ε= − + −                             (2) 

For high values of the correlation volatility σρ and low values of the mean reversion parameter “a”, Equations 
(1) and (2) can result in correlation values ρ of < −1 and > +1, and the equations cannot be evaluated (since the  

terms ( ) ( )t th fρ ρ− −  and ( )21 tρ−  cannot be evaluated). Hence we have to introduce boundary condi-  

tions, which are 

( )
( )
2 2h f
m fρ

σ
α

−
≥

−
 and 

( )
( )
2 2h f

h mρ

σ
α

−
≥

−
                          (3) 

for Equation (1) and  

( )
2

1mρ

σα ≥
+

 and 
( )

2

1 mρ

σα ≥
−

                              (4) 

for Equation (2).  
However, there are problematic issues with Equations (1) and (2) and its boundary conditions (3) and (4). 

When modeling financial correlations in practice, we have to discretize Equations (1) and (2). Equations (1) and 
(2) then become 

( ) ( ) ( )1t t t t t ta m t h f tρ ρρ ρ ρ σ ρ ρ ε+ = + − ∆ + − − ∆                     (5) 

( ) ( )2
1 1t t t t ta m t tρ ρρ ρ ρ σ ρ ε+ = + − ∆ + − ∆                         (6) 

respectively. 
For Equations (5) and (6) the boundary conditions (3) and (4) are invalid, i.e. even if the boundary conditions 

are met, it can happen that Equations (5) and (6) cannot be evaluated. This is especially the case for high corre-
lation volatility σρ and low values of the mean reversion parameter “a”. There are several solutions to this prob-
lem:  

1) We can introduce limits which the correlation values can take. The limits would be h and f for Equation (5) 
and −1 and +1 for Equation (6). We could compute Equation (5) as 

( ) ( ) ( )( )( )( )1 If , , if , ,  t t t t t t t tf f h h a m t h f tρ ρρ ρ ρ ρ ρ σ ρ ρ ε+ = < > + − ∆ + − − ∆         (7) 

Equation (7) reads: If the simulated correlation coefficient at t, ρt, is smaller than the lower boundary f, take 
the value f; if the simulated correlation coefficient at t, ρt, is greater than the upper boundary h, take the value h,  
otherwise apply Equation (5) ( ) ( ) ( )1  t t t t t ta m t h f tρ ρρ ρ ρ σ ρ ρ ε+ = + − ∆ + − − ∆ . For Equation (6), the  

lower boundary f = −1, and the higher boundary h = +1. However, the approach (7) arbitrary and model-incon- 
sistent. 

2) We can allow extended correlations increasing the upper boundary h above +1 and decreasing the lower 
boundary f below −1 in Equation (5). However, increasing h and decreasing f would effectively increase the vo-
latility of the correlation ρ since the last terms of Equations (5) and (6) are amplified.  

3) A viable solution to this problem is to allow utilization of extended correlations and to describe correlation 
by means of a standard mean-reverting Vasicek model of the form  

( )d d dt ta m t tρ ρρ ρ σ ε= − +                                 (8)  

or by its discrete version  

( )1t t t ta m t tρ ρρ ρ ρ σ ε+ = + − ∆ + ∆                               (9) 

Equations (8) and (9) can be evaluated in every simulation with the standard parameter values 0 ≤ a ≤ 1 and 
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σρ > 0.  
In summary, the Jacobi process, which has been suggested to model correlation, can lead to errors when si-

mulating discrete correlations in reality. Increasing the boundaries in a Jacobi process solves the problem, how-
ever at the cost of increased correlation volatility. A viable solution is to apply a standard Vasicek model and 
allow extended correlations. This will guarantee that every real-world discrete correlation simulation is executed 
without receiving error values.  

Extended Correlations as an Input for Financial Models 
In finance, the Pearson correlation coefficient or a Pearson correlation matrix serves as an input for many finan-
cial models. For example, Copulas typically apply the Pearson correlation coefficient or a Pearson correlation 
matrix. Due to its convenient properties, the thin-tailed Gaussian copula is often used in finance. For the biva-
riate Gaussian copula, the density function is  

( ) ( )
2 2 2 2

1 2 1 2 1 2
22

21, exp
2 2 11

Gc x y ζ ζ ρζ ζ ζ ζ
ρρ

 + − − = +
 −−  

                    (10) 

where ( ) ( )1 1
1 2: , :N x N yζ ζ− −= =  and N−1 is the inverse of the standard normal distribution, and ρ is the Pear-

son correlation coefficient. Figure 1 and Figure 2 show the density of the bivariate copula with uniform mar-
ginals. 
 

 
Figure 1. Gaussian copula density with ρ = −0.8.                              

 

 
Figure 2. Gaussian copula density with ρ = +0.8.                              
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From Figure 1 and Figure 2 we can observe the critical impact of the correlation parameter ρ on the density 
function.  

To derive the dependency for more than two variables, often a factorization is applied. This OFGC (one-fac- 
tor Gaussian copula) model is  

21i ix M Zρ ρ= + −                                   (11) 

where: 
M is the systematic factor, which impacts all variables xi. As ԑ, M is a random drawing from a standard nor-

mal distribution, M = n~(0,1).  
Zi is the idiosyncratic factor of entity i. Just like M, Zi is a random drawing from a standard normal distribu-

tion, Zi = n~(0,1). 
xi: The variables xi for 1, 2, ,i n=   are correlated with each other by “conditioning on M”. From Equation 

(11) we observe that for ρ = 1, all xi are equal to M in a certain simulation, i.e. all xi are identical. For ρ = 0, all xi 
are equal to their idiosyncratic factor Zi, i.e. they are independent.  

The seminal Heston model applies a similar model as Equation (11). It correlates two Brownian motions dz1 
and dz2 with the Pearson correlation coefficient ρ, where dz = εtdt and εt is defined as in Equation (1). The core 
equation is 

( ) ( ) ( )2
1 2 3d d 1 dz t z t z tρ ρ= + −                             (12) 

Numerous extensions of the Heston (1993) model exist, see for example Hagan et al. (2002) [25] and Bura-
schi et al. (2006) [26].  

By construction, Equations (10) to (12) limit the correlation parameter ρ to −1 ≤ ρ ≤ 1. Hence in order to ap-
ply extended correlations, we have to alter the equations. Changing the term 21 ρ−  in Equations (11) and (12) 
to 21 ρ−  or 1 − ρ would add model flexibility. For ρ > 1, the dependent variable xi or dz1(t) have a higher than 
100% positive dependence on M or dz2(t) respectively, and a negative dependency on Zi or dz3 respectively. Vice 
versa, for ρ < −1, the dependent variable xi or dz1(t) have a higher than 100% negative dependence on M or dz2(t) 
respectively, and a positive dependency on Zi or dz3 respectively. The higher flexibility comes at the cost of loss 
of standard normality for xi and dz1. While the mean, skewness and kurtosis of dz1 and xi would still be zero, the 
variance is unequal to 1 for all ρ\{0,1}. Equation (10) is not a good candidate for extended correlations since 
they can change the sign of the equation. 

3. Extended Correlations in Financial Practice 
Extended correlations occur in finance if arbitrage opportunities exist. We will show this with the example of 
dispersion trading.  

Dispersion trading emerged in the late 1990s from index arbitrage. In a long index arbitrage trade, the trader 
buys certain components (e.g. stocks) of an index (e.g. the S&P 500) and shorts the whole index. The index  

components are expected to outperform the index, so that I

n

i
ii r rw  > 

1
∑
=

 where wi are the component weights,  

ri is the return of the index components and ri is the return of the Index.  
Dispersion trading applies the same idea, just with respect to component volatility and index volatility. The 

strategy can be well implemented with options. For details on dispersion trading see Willmott (2009) [27] or 
Meissner (2015) [28].  

Let’s briefly derive the core equation of dispersion trading. We start with the variance equation for two assets 
i and j, ( )2 , 1, ,  ij i j ijVar Var Var Cov i j n= + + =  . Generalizing for n assets, which comprise the index I, and 
using financial notation, i.e. Var ≡ σ2, we derive 

1
2 2 2

1 1
2

n n n

I i i i j i j ij
i i j i

w w wσ σ σ σ ρ
−

= = >

= +∑ ∑∑                              (13) 

where 2
Iσ  is the implied variance of the Index, i.e. the variance implied by option prices on the index, and 2

iσ  
is the implied variance of an option on the component i, and wi and wj are weighting factors. Solving equation 
(13) for the average implied pairwise correlation coefficient between assets i and j, ρij, we derive  
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2 2 2

1
1

1
2  

n

I i i
i

ij n n

i j i j
i j i

w

w w

σ σ
ρ

σ σ

=
−

= >

−
=

∑

∑∑
                                (14) 

Equation (14) shows the general concept of dispersion trading. The correlation between the components i and 
j, ρij, is not derived by data points in a two-dimensional coordinate system as in the Pearson model, but by the 
relationship between the index implied volatility σi and component implied volatility σi. 

The CBOE disseminates the implied correlation index of the S&P 500 derived by Equation (14) since 2007, 
ticker symbol ICJ, JCJ, and KCJ, see http://www.cboe.com/micro/impliedcorrelation. So far the CBOE has re-
ported 3 extended correlations. Not surprisingly, they occurred at the height of the global financial crisis: On 
November 6, 2008, implied correlation was 100.8%, on November 13, 2008, 105.93% and on November 20, 
2008, 103.04% for the KCJ, the January 2009 option maturity. This confirms that extended correlations exist in 
financial practice.   

The extended correlations imply arbitrage opportunities: If ρij > 1, from Equation (14), we observe that im-
plied index volatility 2

Iσ  is too high relative to the component volatility 2
iσ . I.e. index volatility can be sold 

and component volatility bought realizing a risk-free profit (assuming no transaction cost, and mid-market ex-
ecution). The type of arbitrage, ρij > 1, not ρij < −1, is plausible. For instance, in the severe crisis of 2008, traders 
assumed that many stocks would decline jointly. Hence, they bought puts on the whole index I, driving up index 
volatility 2

Iσ  to levels, which generated the correlation coefficients ρij > 1, i.e., they became not conventional 
but extended correlations.  

In the following section, we derive a mathematical model for extended correlations constructing two basic 
types of extended correlation coefficients: complete correlation coefficients and total correlation coefficients. 

4. A Mathematical Model for Extended Correlations  
Let us first review constructions and properties of Pearson’s correlation coefficient, also called population cor-
relation coefficient, if a whole population is modeled. For two variables X and Y, it is defined by  

( ) ( ), cov ,X Y X Yr X Y σ σ= ×                                (15) 

where cov(X, Y) is the covariance of X and Y, while σX and σY are the standard deviations of X and Y, respec-
tively. 

If we model random variables, it is possible to express the correlation coefficient in terms of expectations  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 22 2
, X Y E XY E X E Y E X E X E Y E Yρ = − − −               (16) 

In the case when random variables X and Y are represented by samples, the sample Pearson correlation coef-
ficient, or sample correlation coefficient, rX,Y is defined by  

( ) ( )

( ) ( )
1

,

1 1

n

i x i y
i

X Y n n

i x i y
i i

x y
r

x y

µ µ

µ µ

=

= =

− −
=

− −

∑

∑ ∑
                           (17) 

where { }1, , nx x  is a sample for X with the sample mean µx and { }1, , ny y  is a sample for Y with the sam-
ple mean µy. 

The properties of the Pearson correlation coefficients are well-known: 
1) The population correlation coefficient has the following boundaries 

,1 1X Yρ− ≤ ≤ . 

2) The sample correlation coefficient has the same boundaries 

,1 1X Yr− ≤ ≤ . 

3) The population correlation coefficients symmetric, i.e., ρX,Y = ρY,X. 

http://www.cboe.com/micro/impliedcorrelation
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4) The sample correlation coefficients symmetric, i.e., rX,Y = rY,X. 
5) The population correlation coefficients invariant with respect to linear transformations of the two variables, 

namely, changing X to a + bX and Y to c + dY, where a, b, c, and d are constants with b, d > 0, does not 
change the population correlation coefficient ρX,Y. 

6) The sample correlation coefficients invariant with respect to linear transformations of the measurement 
scales, i.e., of the x-y-coordinates, namely, changing the coordinate x to a + bx and the coordinate y to c + dy, 
where a, b, c, and d are constants with b, d > 0, does not change the sample correlation coefficient rX,Y. 

7) The equality ρX,Y = 1 implies that a linear equation perfectly describes the relationship between X and Y, with 
all data points lying on a line for which Y increases as X increases.  

8) The equality ρX,Y = −1 implies that a linear equation perfectly describes the relationship between X and Y, 
with all data points lie on a line for which Y decreases as X increases.  

9) The equality ρX,Y = 0 implies that there is no linear dependency between the variables X and Y. 
However, as demonstrated above, to better model financial reality, it is necessary to use extended correlation 

coefficients. At first, we consider population correlation coefficients. 
To understand how extended correlation coefficients emerge in a mathematical context, we delineate a set A 

of aspects of the random variables X and Y assuming that it is possible to numerically represent each aspect A 
from A, i.e., there are variables XA and YA that represent the aspect A in the variables X and Y. 

This allows us to define the aspect population correlation coefficient for variables X and Y as 

( ) ( ), cov ,
A A

A
X Y A A X YX Yρ σ σ= ⋅                            (18)  

To find an integral correlation characteristic, it is possible to use the complete population correlation coeffi-
cient for variables X and Y, which is computed by the following formula: 

, ,
C A
X Y X YAρ ρ

∈
= ∑ A                                   (19) 

When the set A consists of n aspects, the value ,
C
X Yρ  is called the n-aspect population correlation coeffi-

cient. 
It is also possible to use the aspect sample correlation coefficient for variables X and Y 

( ) ( )

( ) ( )
1

,

1 1

  

n
A A A A
i x i y

A i
x y n n

A A A A
i x i y

i i

x y
r

x y

µ µ

µ µ

=

= =

− −
=

− −

∑

∑ ∑
                          (20) 

Then the complete sample correlation coefficient for variables X and Y is based on the aspect sample correla-
tion coefficients and is computed by the following formula: 

, ,
C A
X Y X YAr r

∈
= ∑ A                                   (21) 

When the set A consists of n aspects, the value ,
C
X Yr  is called the n-aspect sample correlation coefficient. 

Example 1. Let us consider a situation when a company wants to find the correlation between its profit and 
expenses. The company has three factories and wants to take into account all of them. To find the necessary 
correlation, a statistician represents the profit by the random variable X and the expenses by the random variable 
Y. Each factory represents a factor of these variables. Then it’s possible to use the complete correlation coeffi-
cient, which better represents relations between profit and expenses than the conventional correlation coeffi-
cient.  

In this case, the profit of the first factory is represented by the random variable X1 and the expenses related to 
the first factory - by the random variable Y1. The profit of the second factory is represented by the random varia-
ble X2 and the expenses related to the second factory-by the random variable Y2. The profit of the first factory is 
represented by the random variable X3 and the expenses related to the first factory-by the random variable Y3. 
Then the complete (or 3-aspect) sample correlation coefficient for variables X and Y is equal to 

1 1 2 2 3 3, , , ,
C
X Y X Y X Y X Yr r r r= + +  

For instance, 
1 1, 0.3X Yr = , 

2 2, 0.8X Yr = , and 
3 3, 0.6X Yr = . In this case, the complete sample correlation coeffi-
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cient , 1.7C
X Yr = . 

If 
1 1, 0.3X Yr = , 

2 2, 0.7X Yr = − , and 
3 3, 0.8X Yr = − . In this case, the complete sample correlation coefficient 

, 1.2C
X Yr = − . 
If 

1 1, 0.5X Yr = − , 
2 2, 0.3X Yr = , and 

3 3, 0.7X Yr = . In this case, the complete sample correlation coefficient 
, 0.5C

X Yr = . 
Example 2. Let us consider a situation when a biologist wants to find correlation between traits of fathers and 

sons. Then it possible to use the complete correlation coefficient taking such features as the height, weight, color 
of eyes, IQ and education in the role of aspects of the compared trait.  

In this case, the height of the father is represented by the random variable X1 and the height of the son—by the 
random variable Y1. The weight of the father is represented by the random variable X2 and the weight of the 
son—by the random variable Y2. The IQ of the father is represented by the random variable X3 and the IQ of the 
son by the random variable Y3. In addition, it is possible to assign numerical values to the color of eyes and edu-
cation, for example, assigning 0 to the case when a person does not have any education and 10 when a person 
has PhD. This makes possible representation of father’s color of eyes by the random variable X4 and son’s color 
of eyes by the random variable Y4. In a similar way, we represent father’s education by the random variable X5 
and son’s education by the random variable Y5. 

Then the complete sample correlation coefficient for variables X and Y is equal to 

1 1 2 2 3 3 4 4 5 5, , , , , ,
C
X Y X Y X Y X Y X Y X Yr r r r r r= + + + +  

For instance, 
1 1, 0.3X Yr = , 

2 2, 0.5X Yr = − , 
3 3, 0.5X Yr = , 

4 4, 0.8X Yr = , and 
5 5, 0.7X Yr = . In this case, the complete 

(or 5-aspect) sample correlation coefficient , 1.8C
X Yr = . 

Some properties of complete correlation coefficients are the same as properties of conventional correlation 
coefficients, while other properties are different. Based on the properties 1 - 8 of conventional correlation coef-
ficients considered above, we obtain the following results. 
1) The complete (n-aspect) population correlation coefficient ,

C
X Yρ  has the following boundaries 

,
C
X Yn nρ− ≤ ≤ . 

2) The complete (n-aspect) correlation coefficient ,
C
X Yr  has the same boundaries 

,
C
X Yn r n− ≤ ≤ . 

3) The complete (n-aspect) population correlation coefficient is symmetric, i.e., , ,
C C
X Y Y Xρ ρ= . 

4) The complete (n-aspect) sample correlation coefficient is symmetric, i.e., , ,
C C
X Y Y Xr r=

 
. 

5) The complete (n-aspect) population correlation coefficient is invariant with respect to linear transformations 
of the two variables and their aspects, namely, changing X to a + bX and Y to c + dY, where a, b, c, and d are 
constants with b, d > 0, does not change the complete population correlation coefficient ,

C
X Yρ . 

6) The complete (n-aspect) sample correlation coefficient is invariant with respect to linear transformations of 
the measurement scales, i.e., of the x-y-coordinates, namely, changing the coordinate x to a + bx and the 
coordinate y to c + dy, where a, b, c, are constants with b, d > 0, does not change the complete sample corre-
lation coefficient ,

C
X Yr

 
. 

7) The equality ,
C
X Y nρ =  implies that a linear equation perfectly describes the relationship between all cor-

responding aspects of X and Y, with all data points lying on a line for which the aspect of Y increases as the 
corresponding aspect of X increases.  

8) The equality ,
C
X Y nρ = −  implies that a linear equation perfectly describes the relationship between all cor-

responding aspects of X and Y, with all data points lying on a line for which the aspect of Y decreases as the 
corresponding aspect of X increases.  

Proofs of these properties are based on the properties 1 - 8 of conventional correlation coefficients. 
Another way to build extended correlation coefficients is based on factors of random variables. Let us assume 

that we have a set F of factors of the random variables X and Y assuming that it is possible to numerically 
represent each factor F from F, i.e., there are variables XF and YF that represent the factor A in the variables X 
and Y. 

This allows us to define the factor population correlation coefficient for variables X and Y as 
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( ) ( ), cov ,
F F

F
X Y F F X YX Yρ σ σ= ⋅                               (22) 

To find an integral correlation characteristic, it is possible to use the total population correlation coefficient 
for variables X and Y, which is computed by the following formula: 

, ,
T F
X Y X YFρ ρ

∈
= ∑ F                                    (23) 

When the set F consists of n factors, the value ,
F
X Yρ  is called the n-factor population correlation coefficient. 

It is also possible to use the factor sample correlation coefficient for variables X and Y 

( ) ( )

( ) ( )
1

,

1 1

n
F F F F
i x i y

F i
x y n n

F F F F
i x i y

i i

x y
r

x y

µ µ

µ µ

=

= =

− −
=

− −

∑

∑ ∑
                           (24) 

Then the total sample correlation coefficient for variables X and Y is based on the factor sample correlation 
coefficients and is computed by the following formula: 

, ,
T F
X Y X YFr r

∈
= ∑ F                                    (25) 

Example 3. Let us consider a situation when an investor wants to find correlation between prices of stocks of 
companies A and B. Then it possible to use the total correlation coefficient, taking into account factors that in-
fluence prices of stocks, which could be the PE (price earnings ratio), EPS (earnings per share), and the dividend 
yield. This allows achieving better representation of dependencies than the conventional correlation coefficient. 

In this case, the PE of the company A is represented by the random variable X1 and the PE of the company B- 
by the random variable Y1. The EPS of the company A is represented by the random variable X2 and the EPS of 
the company B- by the random variable Y2. The dividend yield of the company A is represented by the random 
variable X3 and the dividend yield of the company B-by the random variable Y3. Then the total (or 3-aspect) 
sample correlation coefficient for variables X and Y is equal to 

1 1 2 2 3 3, , , ,
T
X Y X Y X Y X Yr r r r= + +  

For instance, 
1 1, 0.5X Yr = , 

2 2, 0.7X Yr = , and 
3 3, 0.3X Yr = . In this case, the complete sample correlation coeffi-

cient , 1.5T
X Yr = . 

If 
1 1, 0.5X Yr = , 

2 2, 0.9X Yr = − , and 
3 3, 0.8X Yr = − . In this case, the complete sample correlation coefficient 

, 1.2T
X Yr = − . 
If 

1 1, 0.5X Yr = , 
2 2, 0.3X Yr = − , and 

3 3, 0.7X Yr = − . In this case, the complete sample correlation coefficient 
, 0.5T

X Yr = − .  
Some properties of total correlation coefficients are the same as properties of conventional correlation coeffi-

cients, while other properties are different. Based on the properties 1 - 8 of conventional correlation coefficients 
considered above, we obtain the following results. 
1) The total (n-factor) population correlation coefficient has the following boundaries 

,
T
X Yn nρ− ≤ ≤ . 

2) The total (n-factor) sample correlation coefficient has the same boundaries 

,
T
X Yn r n− ≤ ≤ . 

3) The total (n-factor) population correlation coefficient is symmetric, i.e., , ,
T T
X Y Y Xρ ρ= . 

4) The total (n-factor) sample correlation coefficient is symmetric, i.e., , ,
T T
X Y Y Xr r= . 

5) The total (n-factor) population correlation coefficient is invariant with respect to linear transformations of 
the two variables, namely, changing X to a + bX and Y to c + dY, where a, b, c, and d are constants with b, d > 
0, does not change the total population correlation coefficient ,

T
X Yρ . 

6) The total (n-factor) sample correlation coefficient is invariant with respect to linear transformations of the 
measurement scales, i.e., of the x-y-coordinates, namely, changing the coordinate x to a + bx and the coordi-
nate y to c + dy, where a, b, c, and d are constants with b, d > 0, does not change the total sample correlation 



M. Burgin, G. Meissner 
 

 
187 

coefficient ,
T
X Yr . 

7) The equality ,
T
X Y nρ =  implies that a linear equation perfectly describes the relationship between all cor-

responding factors of X and Y, with all data points lying on a line for which the factor of Y increases as the 
corresponding factor of X increases.  

8) The equality ,
T
X Y nρ = −  implies that a linear equation perfectly describes the relationship between all cor-

responding factors of X and Y, with all data points lying on a line for which the factor of Y decreases as the 
corresponding factor of X increases.  

Proofs of these properties are based on the properties 1 - 8 of conventional correlation coefficients. 

5. Limitations of the Model  
The correlations, which are created in this paper, are extended from the Pearson correlation model. While the 
Pearson correlation model is by far the most applied correlation model in finance, it suffers from several limita-
tions. The main limitations are 
1) The Pearson can only evaluate linear associations between variables 
2) As a consequence of 1), The Pearson coefficients can only be meaningfully interpreted if the data distribu-

tion is approximately elliptical. 
3) Outliers can distort the correlation results 
4) Different time frames can lead to very different results 
5) The causality has to be determined exogenously 
6) Spurious correlation can occur 

For a detailed discussion on ten limitations of the Pearson model, see Meissner 2015 [14]. These limitations 
are inherited by the new model. 

6. Conclusions  
When modeling financial processes with discrete stochastic processes, extended correlations, i.e. correlations 
which can be <−1 and >1, naturally occur. Rather than discarding the whole model or applying arbitrary boun-
daries, extended correlations can be implemented to utilize the model.  

Correlations often serve as an input for more complex mathematical models such as copulas or Heston models. 
Utilization of extended correlations in these models adds flexibility such as extending of the dependencies be-
tween variables beyond unity.  

Extended correlations occur in financial practice as the 2008 global financial crisis demonstrated. Conse-
quently, there is a need to create a sound mathematical model for extended correlations.  

We derive one type of extended correlation coefficients by delineating a set A of aspects of random variables 
and creating aspect correlation coefficients and combining them into the complete, or n-aspect, correlation coef-
ficient. Some properties of the complete correlation coefficient are different from the traditional Pearson corre-
lation coefficient, for example, boundaries of the coefficient become –n and +n, while other properties, such as 
symmetry, remain unchanged.   

Another way to build extended correlation coefficients is based on factors of random variables. Taking a fac-
tor F from a set F, which consists of n factors of considered processes, we build the quantity ,

F
X Yρ  called a 

factor correlation coefficient and combine factor correlation coefficients into the total, or n-factor, correlation 
coefficient. As with the complete correlation coefficient, the total correlation coefficient can have wider boun-
daries, while some of its properties are identical to the Pearson correlation coefficient.  

In conclusion, conventional mathematical correlation approaches cannot fully model all existing correlation 
values and processes. Therefore we introduce the model of extended correlations, which is more general than the 
conventional correlation models. Hence all correlations in finance (and other sciences), i.e. conventional, and 
correlations that are smaller than −1 or larger than 1, can be represented by extended correlations. 
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