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Abstract 
This paper develops a novel method to price basket options by using an application-driven ap-
proach to estimating the state price density of the basket or the joint state price density of the as-
set prices in the basket. In this connection, we also discuss the difference between the applica-
tion-driven and the traditional statistical approach to density estimation. 

 
Keywords 
Basket Options, Portfolio Weights, Joint State Price Density 

 
 

1. Introduction 
Basket options are popular derivative contracts. A basket option is an option whose payoff depends on the value 
of a portfolio (or basket) of n assets which are usually individual stocks or stock indices, currencies or commod-
ities. The value of the portfolio at some future time T is ( )

1
n i

T i TiB w S
=

= ∑  in which ( )i
TS  is the price of the ith 

asset and the iw  is the portfolio weights (possibly negative). Therefore the price of a European call option on 
the basket, with maturity T and strike price X, is  

( ) ( ),
,, , , e ,tr

t t t TC X B r B Xττ
ττ −

+
 = −                             (1) 

in which ( )max ,0a a+ = , T tτ = − , t  denotes conditional expectation, under the risk-neutral measure, giv-
en the information set (or more precisely the σ -field of events) up to time t, and ,tr τ  is the interest rate of a 
risk-free bond, with maturity τ , at current time t. Even under the usual assumption that the asset prices ( )i

tS  
follow correlated geometric Brownian motion processes, the computation of (1) involves Monte Carlo simula-
tions, unlike the case 1n =  for which (1) has an explicit formula, which is the well-known Black-Scholes for-
mula. Therefore, even assuming classical parametric price processes, pricing basket options still undergo recent 
developments which include analytical approximations and computationally fast upper and lower bounds [1]. In 
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addition, the parametric model involves parameters that have to be estimated from data and this poses new sta-
tistical issues. Even for the case 1n = , departures from the classical parametric model have manifested them-
selves in well-documented volatility smiles and skews and have led to more complicated parametric models 
whose parameters may be much more difficult to estimate and which also exhibit other lack-of-fit patterns. 

Hutchinson, Lo and Poggio [2] introduced a nonparametric approach to pricing options, by making the use of basis 
functions to estimate the pricing function g in the nonparametric regression model ( ),t t ty Xg S X τ= +  , in which 

ty  denotes the option price and t  is the additive noise in the regression model. Subsequently, Aït-Sahalia and 
Lo [3] pointed out that such methods “do not provide any formal statistical inference to gauge the accuracy of 
these estimators” and introduced a semiparametric approach, which involved semiparametric estimation of the 
state space density (SPD) and for which they were able to derive an asymptotic sampling theory for statistical 
inference. Aït-Sahalia and Duarte [4], Yatchew and Härdle [5] and Yuan [6] provided subsequent improvements 
in estimating the SPD. We begin Section 2 with a brief review of the main ideas of these methods and then 
modify them to estimate the SPD of a portfolio of assets, treating the portfolio value tB  as a single combined 
asset value whose SPD can be estimated from the observed basket option prices. In Section 3, we provide a re-
finement in nonparametric pricing of a basket option by estimating the joint state price density of ( )1 , , n

T TS S  
using option price data of the n assets. Section 4 gives some concluding remarks and points out in particular how 
Sections 2 and 3 illustrate a general application-driven approach to estimating densities for financial applica-
tions. 

2. SPD of a Portfolio and Nonparametric Pricing of Basket Options 
2.1. Estimation of SPD of an Asset and Option Pricing 
Aït-Sahalia and Lo [3] note that one of the most important advances in the economic theory of investment under 
uncertainty is the Arrow-Debreu preference-based equilibrium model under which the prices of securities that 
pay $1 (or nothing) in a specific state of nature (otherwise) are given by the SPD. In particular, in an arbi-
trage-free options market, the SPD Sf  of the price TS  of an asset at some future time T, given the current 
price S of the asset, can be expressed as the density function with respect to a risk-neutral measure under which 

TS  is a martingale after multiplication by a stochastic discount factor. The price at time t of a European option 
on the underlying asset, with maturity T and strike price X, can therefore be expressed in terms of the SPD by  

( ) ( ) ( ),
, 0

, , , e dt
t

r
t t SC X S r s X f s sττ

ττ
∞−

+
= −∫                           (2) 

for a call option, and with ( )s X
+

−  replaced by ( )X s
+

−  for a put option. Recall that T tτ = −  and ,tr τ  is 
the interest rate of a risk-free bond as in (1). 

In the classical Black-Scholes model [7], the underlying asset price process is assumed to follow a geometric 
Brownian motion ( )d d dS r S t S Wδ σ= − +  under the risk-neutral measure, where W is Brownian motion and 
δ  denotes the dividend rate. In this model, the SPD belongs to a parametric family (with parameter σ ) of  

log-normal distributions as ( )
2

2
, ,log ~ ,

2T t t tS S N r τ τ
σδ τ σ τ

  
− −     

, where ,t τδ  is the dividend yield of the  

period. Because of well-documented differences between the Black-Scholes and the actual option prices, more 
flexible (and also more complicated) models have been proposed for the asset price process under the 
risk-neutral measure, including the implied volatility function (IVF) model, the stochastic volatility (SV) model, 
and stochastic volatility with contemporaneous jumps in asset prices and volatilities (SVCJ). Aït-Sahalia and Lo 
[3] therefore propose to use a semiparametric estimator of SPD, which can in turn provide a robust pricing func-
tion for European options. Central to their semiparametric approach is the representation of Sf  in terms of the 
second partial derivative of C with respect to X:  

( ) ( ),
2

,2e , , , ,t
t

r
S t t

X s

f s C X S r
X

ττ
ττ

=

∂
=

∂
                            (3) 

due to Breeden and Litzenberger [8] and Banz and Miller [9]. The semiparametric approach assumes the 
Black-Scholes pricing function for C but with σ  replaced by a function ( ), , ,tF Xτσ τ  that is estimated non-
parametrically from option price data, where ( ), ,

, e t tr
t tF S τ τδ τ
τ

−=  represents the future price of the asset. As a 
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density function, the SPD has to be nonnegative and integrates to 1. The first constraint implies that C is a con-
vex function of X, and the second constraint requires a post-estimate normalization. Aït-Sahalia and Duarte [4] 
and Yatchew and Härdle [5] propose alternative estimates of C that satisfy the convexity constraints and show 
their improved accuracy in recovering option prices. 

Yuan [6] develops a novel nonparametric estimate of the SPD that can be represented as a nonparametric 
mixture of log-normal densities. The estimator is defined as the minimizer of the least square criterion 

( ) 2

1 ,M
i ii C C x G

=
 − ∑  applied to the dataset of ( ),i iX C  pairs, 1, ,i M=  , where  

( ) ( ) ( ), ; , d ,C X G C X Gµ σ µ σ= ∫                              (4) 

is the pricing function determines by the Black-Scholes call option price ( ); ,C X µ σ  and the mixing distribu-
tion G of the mean µ  and standard deviation σ  of the normal distribution for ( )log T tS S . This is a conse-
quence of (2) and the mixture of log-normal densities for ( )

tSf ⋅ . Although the minimization is taken over an 
infinite-dimensional space of distributions G, Yuan (2009) [6] shows that the minimizing G actually has finite 
support that consists of at most ( )1M +  points ( ) ( )1 1 1 1, , , ,M Mµ σ µ σ+ + . He also reports a simulation study 
and an empirical analysis of S&P 500 index option prices, showing good performance of the method. 

2.2. Nonparametric Pricing of Basket Options via Estimated SPD of Portfolio  
Treating the portfolio as an asset, we can follow Yuan’s method described above to estimate the SPD ( )

tBf ⋅  of 
TB  from a sample of basket option prices and their corresponding strike prices and thereby to obtain a nonpa-

rametric pricing function ( ),, , ,t tC X B r ττ  via (4). Specifically, Yuan’s method uses the representation  

( ) ( )2

1
log ; log ,

t

m

B i t i i
i

f s s Bπ φ µ σ
=

= +∑                             (5) 

where ( )2; ,φ µ σ⋅  is the ( )2,N µ σ  density function and 1m M≤ +  when the sample size is M; Yuan’s 
Theorem 2.1 shows that the minimizer of the least square criterion ( ) 2

1 ,M
i ii C C x G

=
 − ∑  actually choses 

1 mσ σ σ= = =  when it is assumed that ( ) [ ]supp , ,G µ µ σ σ ⊂ ×  . Although this means that we can choose 
any 0σ > , we propose to choose it by cross-validation in practice. We summarize the procedure in the follow-
ing. 

Algorithm 1 Estimation of state price density of a basket 

Input: Basket option prices jC , 1, ,j p=    

Output: iπ  and iµ , 1, ,i m=  , that minimize the squared loss ( ) 2

,1
, , ,p

j t t jj
C X B r Cτ τ=

−∑   

Method: 
1. Choose σ  by cross-validation 

2. Initialize 
1

i m
π =  and iµ  evenly in ,µ µ     

3. While not converge do 
4.   Update iµ ‘s by Newton Ralphson iteration given current iπ ‘s 
5.   Update iπ ‘s by quadratic solvers given current iµ ‘s 
6. end while 
7. Return iπ  and iµ , 1, ,i m=   

Example 1. Consider 0t = , 0.25τ =  and a portfolio of 3n =  assets, with weight vector 
( )0.3,0.5,0.2 ′=w  or ( )1,1,1 ′− . The interest rate over the period is assumed to be 0.05r = . The asset prices 

are assumed to follow correlated geometric Brownian motions under the risk-neutral measure so that ( )log TS  
has a multivariate normal distribution with mean ( ) ( )0log 0.04,0.05,0.06 ′+S  and covariance matrix  

0.1 0.04 0.02
0.04 0.2 0.01 ,
0.02 0.01 0.05

− 
 Σ =  
 − 
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where ( )0log S  is trivariate normal with mean ( )( )log 20,100,500 ′  and covariance matrix  

( )( ) ( )( ) ( )( )( )2 2 2diag 0.05log 20 , 0.1log 100 , 0.08log 500 .  

Here and in the sequel, we use ( )1log , , nx x ′ 
 

  to denote ( ) ( )( )1log , , log nx x ′
 . Conditional on  

T
0 0B = w S , the strike price of the basket option is assumed to be ( )2

0 0, 10N B B . We simulate 500M =  
basket option prices (calls) from this model and use them as data to compute via Algorithm 1 (with 50m =  
and ,µ µ    being the range of the 500 portfolio values T

0w S  and the strike prices of the corresponding 
basket options) the SPD estimate f̂ , which is then used to estimate the pricing function by  
( ) ( ) ( )0 0

ˆˆ , , , e drC X B r s X f s sττ
∞−

+
= −∫ . We also simulate an additional 100 basket calls from this model and 

compare them with the values obtained by the estimated pricing function Ĉ . Figure 1 and Figure 2 give the re-  
 

 

Figure 1. Basket option price (left) and SPD (right) for ( )0.3,0.5,0.2 ′=w . 

 

 

Figure 2. Basket option price (left) and SPD (right) for ( )1,1,1 ′= −w . 
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sults comparing these prices, and also the estimated SPD with the actual density function, for ( )0.3,0.5,0.2 ′=w  
and ( )1,1,1 ′= −w  respectively. They show that Algorithm 1 provides excellent estimates of the pricing func-
tion and the SPD, for long-only and long-short portfolios. 

2.3. Discussion and Related Literature 
The approach to density estimation in this section starts with the application at hand to come up with a repre-
sentation of the density function. In particular, the choice of Gaussian mixture for the SPD in Yuan (2009) [6] is 
based on the closed-form expression of the option price when ( )log T tS S  is a mixture of Gaussian random va-
riables. Moreover, the criterion used to choose the parameters of the Gaussian mixture (or more general 
smoothing parameters when other representations of the density function are used) is based on how well the 
pricing formula approximate the actual option prices as in Algorithm 1 (or on how well the estimated density 
works for the application at hand), and not on statistical measures such as integrated mean squared error. More-
over, the data used to estimate the density f function need not be samples drawn from f, but can be financial 
quantities such as option prices that are related to f via the underlying economic theory. 

In the statistics literature, the use of Gaussian mixture to estimate density function has been studied from the 
Bayesian perspective that the weight and parameters of each mixture come from some prior distribution. Sup-
pose the data 1, , nY Y  are conditionally independent and normally distributed, ( ) ( )2| ~ ,i i i iY Nπ µ σ , where 
the mean iµ  and standard deviation iσ  is determined by iπ . iπ  comes from some prior distribution. Fer-
guson [10] and Escobar and West [11] consider this mixture model assuming the prior distribution for parame-
ters iπ  is Dirichlet process. As a comparison with the kernel density estimator, they pointed out that this model 
automatically provides a Bayesian decision for the number of mixtures in the density, which leverages the local 
clustering structure of data points and estimating local structure using combining information. Also by allowing 
distinct variance in the mixtures, the model is able to apply different smoothing degree to the sample space. As 
for the estimation of the mixture models, Ferguson [10] proves that the posterior density estimation is to eva-
luate the ratio of two n-dimensional integrals and suggests Monte Carlo simulation for computation. Kuo [12] 
proposes an importance sampling Monte Carlo methods to improve the computation efficiency. And Escobar 
and West [11] suggest a Gibbs sampling methods for parameter estimation by giving the conditional density 

( )( )| , datai
iπ π  and then the density estimation can be evaluated by a mixture of Gaussian determined by the es-

timated iπ ’s and prior. They also illustrate the relationship of the parameter α  in the underlying Dirichlet 
process and number of mixtures in the density and discussed learning α  from the data. 

3. Estimation of Joint State Price Density and Pricing Function of Basket Options  
Using observed basket option prices to estimate the SPD of the underlying portfolio is unrealistic in practice be-
cause basket option is exotic options in over-the-counter markets. In fact, financial engineers make use of data 
from vanilla options on the underlying assets of the basket to price these exotics. We now describe how the me-
thod in Section 2.2 can be modified to estimate the joint SPD of the vector ( )1 , , n

T T TS S ′=S   from the ob-
served option prices kjC , 1, ,k n= 

, 1, , kj M=  , of the underlying assets in the basket and the correspond-
ing asset returns. A natural extension of (5) (with iσ σ= ) is  

( ) ( )
1

log ; log , ,
t

m

i t i
i

f π φ
=

= + Σ∑S s s S μ                             (6) 

where ( ); ,φ µ⋅ Σ  denotes the multivariate ( ),N µ Σ  density function. Note that for the Gaussian mixture mod-
el (6),  

( )( ) ( )( )
1

Cov log .
m

T t i i i
i
π

=

′= Σ + − −∑S S μ μ μ μ                         (7) 

The marginal SPD of k
TS  can be estimated from the option prices kjC , 1, , kj M=  , by using Yuan’s me-

thod that yields a mixture normal density ( )ˆ kf , with km  components ( )( )2,k
j kN µ σ  densities that have cor- 

responding weights ( )k
jπ  ( )1, , kj m=  . The choice of iπ , iµ  and Σ  in the estimate of the joint density (5) 
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should yield ( )ˆ kf  as the associated marginal density of k
TS  ( )1, ,k n=  . This suggests choosing 

1 nm m m=   components in the Gaussian mixture and labeling each component as ( )1, , ni j j=   so that  
( ) ( )( )1

1 , ,
n

n
i j jµ µ ′=μ   and 

1

(1) ( )
n

n
i j jπ π π=  . It remains to choose Σ . The correlation matrix of ( )log T tS S  can  

be estimated from historical returns data since the time series of returns are i.i.d random variables in the Gaus-
sian mixture model [6], yielding a consistent estimate Ĉ  of ( )( )Corr log T tC = S S . Note that the diagonal 
elements of the right-hand side of (7) (and of Σ ) are already determined by the marginal densities ( ) ( )1ˆ ˆ, , nf f . 
Making use of these diagonal elements together with Ĉ  and (7), we can then estimate the off-diagonal ele-
ments of Σ . Details are given in the following. 

Algorithm 2 Estimation of joint state price density of a portfolio 

Input: Single asset option price kjC , 1, ,k n=   and 1, ,j p=   and Σ  

Output: iπ  and iμ , = 1, ,i m  and Σ  such that the Gaussian mixture distribution minimizes the square loss 

( ) 2

,1 1 2
, , , ,n p k

kj t t kjk j
C X S t r Cτ τ= =

−∑ ∑  and has correlation matrix Ĉ   

Method: 
1. for 1 k n≤ ≤  do 

2.   Apply Algorithm 1 and get the optimal Gaussian mixture density estimate ( ) ( )( )2

1
,km k k

j j kj
Nπ µ σ

=∑  to minimize 

( ) 2

,1 2
, , , ,p k

kj t t kjj
C X S t r Cτ τ=

−∑  

3. end for 
4. Chosse 1

n
k km m== Π  

5. for ( )1, , ni j j= 
 with 1 k kj m≤ ≤  for all 1 k n≤ ≤  do  

6.   Construct ( ) ( )( )1

1 , ,
n

n
i j jµ µ ′=μ    

7.   Construct ( )
1 k

kn
i k jπ π== Π   

8. end for 
9. Choose Σ  such that Σ  has diagonal elements 2 ,1k k nσ ≤ ≤  and the right hand side of (7) is Ĉ  

10. Return iπ , iμ , 1, ,i m=   and Σ    

Example 2. To illustrate Algorithm 2, this example considers 0t = , 0.25τ =  and portfolio of 2n =  as-
sets with weight vector ( )0.7,0.3 ′=w . The asset prices are assumed to follow correlated geometric Brownian 
motions with random volatilities 1σ , 2σ  and instantaneous correlation coefficient ρ  that are independently  

generated from truncated normal distributions: ( )
( )

2
1 0,

~ 0.1,0.01Nσ
∞

, ( )
( )

2
2 0,

~ 0.2,0.02Nσ
∞

,  

( )
( )

2
0 1,1

~ ,0.02Nρ ρ
−

, in which |A  denotes truncation to stay inside A. Similar to Example 1, we sample 

( ) ( )( ) ( )( ) ( )( )22
0log ~ log 20,100 ,diag 0.05log 20 ,0.1log 100N  ′

 
 

S , T
0 0B = w S  and the strike price for the 

basket is ( )2
0 0~ , 10X N B B , which those for the two assets are ( )( )21 1

1 0 0~ , 10X N S S ,  

( )( )22 2
2 0 0~ , 10X N S S . We simulate 300 call option prices for each asset and use them as data to compute via  

Algorithm 1 (for the 300 calls) the SPD 1̂f  and 2̂f . In addition, 1000 asset returns for each asset are also gen-
erated so that Algorithm 2 can be applied to compute basket option prices for comparison with 100 basket op-
tion prices generates for out-of-sample testing of the performance of Algorithm 2. The left hand side of Figure 3 
and Figure 4 provide the result of estimated option price surface using joint state price density estimation for 
case 0 0.3ρ =  and 0 0.7ρ = . The x- and y-axis are the asset current prices adjusted by basket option strike and 
z-axis is the option price adjusted by basket option strike. Also on the right hand side we provide the box plot of 
the residual between estimated and observed option prices adjusted by the strike price. Clearly the estimated op-
tion price surface using Algorithm 2 captures the observed option prices.  
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Figure 3. Basket option price using joint state price density for 0 0.3ρ =  (left); box 
plot for residual between estimated and observed option price (right). 

 

 
Figure 4. Basket option price using joint state price density for 0 0.7ρ =  (left); box 
plot for residual between estimated and observed option price (right). 

 
Estimating the joint SPD in this section seems to be much easier than estimating the joint density of a multi-

variate distribution in the statistics. It starts by estimating the marginal density of each component of the random 
vector and then combines them via an estimated correlation matrix in the Gaussian mixture model (6). For mul-
tivariate kernel estimators in the statistics literature (see reviews by Scott and Sain [13] and Hwang, Lay and 
Lippman [14]), choosing smoothing parameters means choosing a transformation matrix H, in particular the 
Gaussian kernel becomes ( )( ) ( )1 detiK H x x H− − , where ( ) ( ) { }222π exp 2nK x x−= − . The simplest 
choice is nH hI= , which means using no rotation and a global bandwidth h. A slightly more general choice 
suggested by Sain, Beggarly and Scott [15] is a diagonal matrix for H, which is tantamount to choosing different 
bandwidths for different coordinates. It has been found that using a predetermined H may give poor estimates of 
the joint density and methods to estimate H from the data by cross-validation or plug-in have been proposed [16]. 
These methods have been shown to work well when the dimension n is small, but suffer the `curse of dimensio-
nality’ in both accuracy and computation time for larger n.  

4. Conclusion  
The approach used in Sections 2 and 3 to estimate a density function (specifically the SPD) exemplifies an applica-
tion-driven density estimation methodology that has major differences from traditional density estimators in the 
statistics literature. Traditional density estimators use kernels of the form ( ) ( ) ( )( )1

ˆ n M
iif x hM K x x h−

=
= −∑ , in 
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which Rn
ix ∈  and 1, ,i M=   denote the observations sampled from a population with density f, or use basis 

functions such as log-splines to approximate f so that the coefficients associated with the basis functions can be 
estimated from the data ix . A central question is a choice of the smoothing parameters. For univariate ( 1d = ) kernel 
density estimators, an optimal choice of the smoothing parameter h is based on the integrated mean squared 

error (IMSE) ( )2ˆ df f x−∫ , which can be asymptotically approximated the asymptotic integrated squared error  

( ) ( ) ( )4 21 1AISE d ,
2

R K h R f x K x x
nh

 ′′= +  
 ∫                         (8) 

where ( ) ( )2 dR g g x x= ∫ . The asymptotically optimal bandwidth to minimize AISE is  

( )
( ) ( )( )

1
5

AISE 22
,

d

R K
h

nR f x K x x

 
 =  ′′  ∫

                             (9) 

but it cannot be implemented because ( )R f ′′  is unknown. Three classes of methods have been developed to 
overcome this difficulty: 1) assuming a parametric family for f so that f ′′  can be determined from the density 
associated with the optimal parameter; 2) cross-validation, which uses leave-one-out or k-fold cross-validation 
to pick the optimal bandwidth; 3) finding the optimal bandwidth h  for the problem of estimating ( )R f ′′  with 
a kernel estimator and then plugging the estimated ( )ĥR f ′′



 into (9). As reviewed in the last paragraph of Sec-
tion 3, extension of this idea to this case 1n >  should involve replacing h by a transformation matrix H, which 
may perform considerably better than the traditional choice nH hI= . However, this is actually irrelevant to the 
particular application of estimating the SPD because the data ix  having this joint density under the risk-neutral 
measure are not directly observable; the observed data in Section 3 are the option prices and the asset returns in-
stead. 
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