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Abstract 
In this paper, we present a multi-name incomplete information structural model which possess 
the contagion mechanism and its efficient Monte Carlo algorithm based on Interacting Particle 
System. Along with the Credit Grades, which is industrially used single-name credit model, we 
suppose that investors can observe firm values and defaults but are not informed of the threshold 
level at which a firm is deemed to default. Additionally, in order to model the possibility of crisis 
normalization, we introduce the concept of memory period after default. During the memory pe- 
riod after a default, public investors remember when the previous default occurred and directly 
reflect that information for updating their belief. When the memory period after a default finish, 
investors forget about that default and shift their interest to recent defaults if exist. One of the va- 
riance reduction techniques, relying upon Interacting Particle System, is combined with the stan- 
dard Monte Carlo method to address the rare but critical events represented by the tail of loss 
distribution of portfolio. 
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1. Introduction 
Interaction of default events play a central role for systemic risk measurement as well as the credit risk manage- 
ment and portfolio credit derivative valuation. Recent financial crisis has revealed a necessity of quantitative 
methodology to analyze default contagion effects which are observed in several financial markets. Default 
contagion is a phenomenon where a default by one firm has direct impact on the health of other surviving firms. 
Since the contagion effects heavily influence the correlations of defaults, capturing them in quantitative models 
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is crucial. Existing dynamic credit risk models which deal with default contagion include, among others, Davis 
and Lo [1], Fan Yu [2], Frey and Backhaus [3], Frey and Runggaldier [4], Giesecke [5], Giesecke and Goldberg 
[6], Giesecke et al. [7], Schönbucher [8], Takada and Sumita [9] and comprehensive surveys can be found in 
Chapter 9 of McNeil, Frey and Embrechts [10]. Generally, credit risk modeling methodologies are categorized 
to either reduced form approach or structural approach. In the reduced form approach, by introducing interacting 
intensities, default contagion can be captured by the jump up of the default intensity immediately after the 
default as in Davis and Lo [1], Fan Yu [2], Frey and Backhaus [3], Giesecke et al. [7] and Takada and Sumita 
[9]. However, it is not easy to incorporate the mechanism where the crisis mode would resolve after some period. 
Information based default contagion described in Chapter 9 of McNeil, Frey and Embrechts [10] and Frey and 
Runggaldier [4] might be promising methods that allow to represent normalization of crisis via belief updating, 
however, explicit formulation of normalization and its effects to future defaults are not thoroughly studied. On 
the other hand, Giesecke [5] and Giesecke and Goldberg [6] have studied multi-name structural model under 
incomplete information and proposed a simulation method for sequential defaults without covering the explicit 
formulation of normalization. Unfortunately, since the closed formula for joint distribution of the first-passage 
time of correlated multivariate Brownian motion is unknown, the proposed algorithms therein are not directly 
applicable to correlated firm value cases. 

In this paper, we present a multi-name incomplete information structural model which possess a default 
contagion mechanism in the sense that the sudden change of default probabilities arise from the investors’ 
revising their perspectives towards unobserved factors which characterize the joint density of default thresholds. 
Here, in our model, default thresholds are assumed to be unobservable from public investors and a firm is 
deemed to default when firm value touch this level of threshold for the first time. This formulation is a slight 
generalization of Giesecke and Goldberg [6]. Also, to analyze the contagion effects under general settings, we 
consider the dependence structure of firm value dynamics as well as the joint distribution of default thresholds. 
Additionally, in order to model the possibility of crisis normalization, we introduce the concept of memory 
period after default. A preliminary version of this study is reported at RIMS Workshop on Financial Modeling 
and Analysis (FMA2013) by Takada [11] which introduced the concept of memory period first. As Takada [11] 
pointed out, the model is designed so as to confine investors’ attention to the recent defaults. During the memory 
period after a default, public investors remember when the previous default occurred and directly reflect that 
information for updating their belief. When the memory period after a default terminate, investors attach little 
importance to that default and shift their interest to recent defaults if exist. When all the existing memory 
periods terminate, we can consider the situation as a complete return to the normal economic condition. In order 
to evaluate the credit risk under the presence of the default contagion and possibilities of normalization, Monte 
Carlo simulation is the most reasonable method because of their non Markovian environment. However, the 
previous study, relying on standard Monte Carlo method, performed slow convergence. We examine that the 
Interacting Particle System (IPS) is a powerful tool to overcome the slow convergence. Intuitively, Interacting 
Particle System works in a following mechanism. On a discrete time grid, IPS evolves a collection of particles 
representing the states of our interest, including firm values. At each time step, particles are randomly selected 
by sampling with replacement, placing more weight on particles that experienced increase in default probability 
in the previous period. The new generation of selected particles is then evolved over the next period based on 
the standard transition lows and at the end of the period a selection takes place again. The selection procedure 
adaptively forces the process into the regime of interest and therefore reduces variance. 

The rest of this paper is organized as follows. Section 2 introduce our model and deduces an expression for 
the conditional joint distribution of the default thresholds. Section 3 develops standard Monte Carlo simulation 
algorithm. Section 4 gives an overview of Feynman-Kac path measure which plays a central role of the 
Interacting Particle System and how the algorithm can be applied to the model. Section 5 provides numerical 
examples and Section 6 concludes. 

2. Incomplete Information Credit Risk Model 
Uncertainty is modeled by a probability space ( ), ,Ω    equipped with a filtration ( ) 0t t≥

  that describes the 

information flow over time. We impose two additional technical conditions, often called the usual conditions. 
The first is that t  is right-continuous and the second is that 0  contains all  -null sets, meaning that one 
can always identify a sure event. Without mentioning it again, these conditions will be imposed on every 
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filtration that we introduce in the sequel. The probability measure   serve as the statistical real world measure 
in risk management applications, while in derivatives pricing applications,   is a risk-neutral pricing measure. 
On the financial market, investors can trade credit risky securities such as bonds and loans issued by several 
firms indexed by ( )1,2, ,i i n=  . In the following, we extend the CreditGrades model in the sense that we 
consider more than two firms in the portfolio and their asset correlation as well as the dependence structure of 
the default barriers. Furthermore, we give a slight modification of the CreditGrades model reflecting the fact that 
the surviving firm’s default barrier is lower than its historical path of asset value. 

2.1. Model Setting 

Let ( ) ( )1,2, ,iV t i n=   represent the time t  asset value of the firm i  on a per share basis which solves the 
next stochastic differential equation 

( )
( ) ( )

d
d , 1,2, , ,i

i i
i

V t
W t i n

V t
δ= =                              (0.1) 

( )0 ,i iV v=                                     (0.2) 

where iδ ∈  is the asset volatility and iv  is the firm value at time 0 at which we stand. We assume that the  
asset value processes have correlations, i.e., ( ) ( )d , di j ijt

W W tρ⋅ ⋅ = , where ( ) ( ),i jW W⋅ ⋅  is the quadratic  

covariation. Filtrations generated by observed asset values are denoted by ( )( ): 0i
t iV s s tσ= ≤ ≤ . There is a  

random default threshold i iL D  such that firm i  default as soon as the asset value falls to the level i iL D , 
where iL  denotes the recovery rate at default and iD  is a positive constant representing debt per share, which 
may given by accounting reports. Then the default time of the firm i  is a random variable ( ]0,iτ ∈ ∞  given by  

( ){ }inf 0 : .i i i it V t L Dτ = > ≤                             (0.3) 

Here random variables ( )1,2, ,iL i n=   are mutually independent of the ( ) ( )1,2, ,iV t i n=  . More 
complicated stochastic processes for ( )iV t  such as stochastic volatility may be possible, however, we shed  
lights to the multi-name setting and model the so-called default contagion. Let ( ) { }ii tH t τ ≤= 1  be a right-continuous 

process which indicate the default status of the firm i  at time t  and we denote by ( )( ): 0i
t iH s s tσ= ≤ ≤  

the associated filtration. 

2.2. Incomplete Information 
With the view to analyzing how the period of past default memories affect succeeding defaults, we consider the 
incomplete information framework which is known to represent default contagion. In order to depict the 
incomplete information structure more concretely, in addition to the assumption of the randomness of the default 
threshold, we postulate the following assumptions. 

Assumption 1 Public investors can observe firm values and default events although they can not directly  
observe the firm’s default thresholds ( )1, 2, ,i iL D i n=   except for the default time iτ . 

Define the set of survived firms { }{ }1,2, , ;t ii n tτ= ∈ >  and the set of defaulted firms  

{ }{ }1,2, , ;t ii n tτ= ∈ ≤  at the time t . We write #t tr =  , the number of elements in the set t . Since  

investors have knowledge that the surviving firms have lower default barrier than their running minimum of the 
firm value processes, it is natural to suppose the next assumption. 

Assumption 2 At time 0t = , we assume every firm in the portfolio are surviving, i.e., 0r n=  and then the  
inequality i i iv L D>  holds for all { }0 1, 2, ,i n∈ =   under the condition 1

0 0 0
n= ∨ ∨   .  

Let ( )* *
1log , , log nL L

Τ
  be normally distributed random variable with mean vector  

11
1log , , log

2 2
nn

nL L
γγ Τ

 = − − 
 

µ  and variance-covariance matrix ( )1 ,ij i j n
γ

≤ ≤
=Γ . Here, , 1, 2, ,iL i n=  , are 
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some constants. And we assume that ( )1log , , log nL L Τ
  be the truncation of ( )* *

1log , , log nL L  above 

( ) ( )( )1 1log , , log n nv D v D
Τ

=c  . We denote 
def

logi iL= . 

Remark 1 The definition of the mean vector 11
1log , , log

2 2
nn

nL L
γγ Τ

 = − − 
 

µ  is given along the line of  

original CreditGrades model. Finger, Finkelstein, Pan, Lardy and Ta [12] proposed that the random recovery  
rate iL  is modeled as 

2 2e ii iiZ
i iL L γ γ−=  with ( )0,1Z N , where [ ]i iL L=  . 

Assumption 3 There is a consensus on the prior joint distribution of firm’s default thresholds among the 
public investors. More concretely, investor’s uncertainty about the default thresholds *

i iL D  is expressed by  

( ) ( )* *
1log , , log ,n nL L N

Τ
  µ Γ  

where nN  is a n -dimensional Normal distribution.  
Assumption 4 For each default time iτ , public investors update their belief on the joint distribution function 

of surviving firm’s default thresholds based on the Assumption 3 and newly arrived information, i.e., the 
realized recovery rate ( )i i iV Dτ . 

Remark 2 Since public investors observe all the history of the firm value, they know that the unobservable 
threshold should be located below the running minimum of the firm value. Despite these knowledge, we assume 
that public investors treat the logarithm of the recovery rate * *logi iL=  as normally distributed random 
variable.  

Assumption 1, Assumption 3 and Assumption 4 provide the default contagion mechanism; The default of a 
firm reveals information about the default threshold and then public investors update their beliefs on surviving 
firm’s joint distribution of thresholds. From public investors’ perspective, this naturally causes the sudden 
change of default probabilities of survived firms, which is just what we wanted to model. The situation of 
contagious defaults can be translated to the recession, however, it will not continue forever. In our model, we 
further assume that public investors view the crisis will return to normal condition after some finite time interval. 

Assumption 5 The covariance parameter jumps from ijγ  to 0  at time { }min ,i i j js sτ τ+ +  for some  

constants ( )0,is ∈ ∞  and ( )0,js ∈ ∞ . This can be captured by introducing time-depending covariance 
parameters ;ij tγ  defined as  

{ } { }; , 1 , ,
i i j jij t ij t s t s

i j nτ τ
γ γ < + < +

= ≤ ≤1 1                           (0.4) 

and then assume that the elements of the variance-covariance matrix Γ  are given by (0.4). We call is  the 
memory period of i  after iτ .  

Thus the mean vector tµ  and the variance-covariance matrix tΓ  at time t  can be defined as 

( )

11; ;
1

; 1 ,

log , , log
2 2

t nn t
t n

t ij t i j n

L L
γ γ

γ

Τ

≤ ≤

 
= − − 
 

=

µ

Γ

 

Assumption 6 ( ) ( )i i iV t V τ=  for i it sτ≤ + .  

Define the set { }{ }1,2, , ;t t i i ii n t sτ τ= ∈ ≤ < +

    at time t  and let #t tr =   be the number of  

elements in the set t
 . Rearrange the order of firm identity numbers in such a way that the elements of t

   
come after the elements of t  and the elements of t t

   are located the last. Let tΓ  be a ( ) ( )t t t tr r r r+ × +   

submatrix formed by selecting the rows and columns from the subset t t   and let t  and tµ  be corres-  
ponding ( )t tr r+  -dimensional vectors respectively. 

( )* *
1 1log , , log , log , , log

t t t tt r r r rL L L L
Τ

+ +=
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, ; , ;11;
1log , , log , , log

2 2 2
t t t t

t t

r r t r r r r tt t t
t r r rt

L L L
γ γγ

Τ

+ +
+

 
= − − −  
 

 



 µ  

Assumption 6 implies that during the memory period, public investors remember the firm values at which the 
defaults occurred. We note that  

{ } ( ){ }0
min , .i i i i ts t

t V s L D iτ
≤ ≤

≤ = ≤ ∀ ∈                             (0.5) 

By virtue of Assumption 3, we can deduce the conditional joint distribution of the default thresholds as 
follows. Here we don’t eliminate the possibility of simultaneous defaults, i.e., we don’t need to assume 
( ) 0i jτ τ= = . 
Proposition 1 Let 

tD  be a tr -dimensional vector consists of the logarithm of the realized recovery rate at 
time t . Partition the vector t , tµ  and the matrix tΓ  into  

, , ,t tt t t t

t t t t t t

t t t

    
 = = Γ =             



 

  

    

     

µ
µ

µ

Γ Γ

Γ Γ







 

where 
t

  and 
t

µ  are tr  dimensional vectors, 
t

  and 
t

µ  are tr  dimensional vectors, 
t t Γ  is a  

t tr r×  matrix, and 
t t  Γ  is a t tr r×   matrix. Then t -conditional joint density of 

t
  is given by 

( )
( ) { }d

t t

t tt
t tt

f

f ≤

−∞∫
c c





1


 

 



 

  

                                 (0.6) 

where  

( )
( )

( ) ( )1
1, 11.2, 1,

11.2,

1 1exp ,
22π det

t t tt t t t tr

t

f − ′= − − − 
 

   µ µΓ
Γ

     

( )1
1, ,

t t t t t t tt
−= + −

          µ µ µΓ Γ   

1
11.2, ,

t t t t t t t tt
−= −

          Γ Γ Γ Γ Γ  

( )( ) ( )( )( )1 10 0
log min , , log min .

t tt r rs t s t
V s D V s D

Τ

≤ ≤ ≤ ≤
=c                         (0.7) 

Proof 1 From the continuity of the asset process ( )iV t  and Equation (0.5), public investors know that  
( )0min

ii i s iL D V sτ< ≤=  for all defaulted firms ti∈   and ( )0mini i s t iL D V s< ≤<  for all survived firms ti∈ .  

Here, whenever defaults occur, let the order of the firms be rearranged in such a way that the elements of t  
come after the elements of t . Define the set 

( )
1

def
0 0

1

min min
0, 0,

t

t

r
s ss t s t

t
r

V V
R

D D
< ≤ < ≤

  
  = × ×
  

   
                        (0.8) 

1

0 0

1

min min
,

t t t

t t t

r r r
s ss t s t

r r r

V V

D D

+ +

< ≤ < ≤

+ +

      × × ×   
      





                            (0.9) 

with the special case  

( )
1

0 0

1

min min
0, 0,

n
s ss t s t

n

V V
R

D D
< ≤ < ≤

   
   ∅ = × ×
   
   


 

to be the possible range of the recovery rate vector ( )1 2, , , nL L L L=   under the condition of t . In particular, 
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for ti∈  , iL  takes value 0<min i
s t s

i

V
D

≤ . Let 1 2 n
t t t t= ∨ ∨ ∨    . As in the proof of the Lemma 4.1 of [5],  

from Bayes’ Theorem,  

( ) ( ) ( )( )
( )( )

( )( )
( )( )

( )( )

, ,

.

t t t t t

t t t

t t t

L A F L A D G L A L R D G

L A R D G L A R D

L R D G L R D

∈ = ∈ = ∈ ∈

∈ ∈
= =

∈ ∈

 

  

 
 

 

The last equality holds because L  is independent of t . Hence the joint distribution of the surviving firm’s  
logarithm of recovery rates are given by the conditional distribution of 

t
  given 

t
  at which the realization  

( )0min
ii i s iL D V sτ< ≤=  hold for all ti∈  . Conditional distributions of the multivariate normal distribution are  

well known. See for example [13] for details. However, from Assumption 1, public investors have already know 
the following inequalities hold.  

( )
0
min , .i i i ts t

L D V s i
< ≤

< ∈  

Therefore the conditional distribution ( )t t
f

    should be truncated above tc  given by (0.7).  

Remark 3 In the case 0ijρ =  for all i j≠ , the problem become quite easy because first-passage time of 
1-dimensional Geometric Brownian motion is well known. In fact, in such a case, Giesecke and Goldberg [6]  
showed that the counting process ( )1

n
ii H t

=∑  has intensity process and they proposed the simulation method  
based on the total hazard with the case , 1, 2, ,iV i n=   are not observable.  

Let 1 2, , , nT T T  be an ordered default times of { }1 2, , , nτ τ τ . Figure 1 illustrate an example of sequence of  
defaults with 5n =  and the corresponding memory periods. At time 0, since all the firms are active and then  
the unconditional joint density of ( ) ( )1 5 1 5, , log , , logL LΤ Τ=     is given by  

( )
( ) { }

0

0 00
0 0

.
d

f

f ≤

−∞∫
c c

1




 




 

 

For example, square bracket [ ]1 2 3 4 5| Τ
      bottom of the figure indicate that the random vector 

( )1 2 3 4, , , Τ
     should be sampled under the condition ( )( )5 5 5 5log V Dτ=  at time 1T . At the first default 

time 1 5T τ= , updated default threshold is sampled under the condition ( )( )5 5 5 5log V Dτ=  and this 
 

 
Figure 1. Sequence of defaults and the corresponding memory periods.                                             
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condition remains effective until 5 5sτ + . This is shown by a square bracket [ ]1 2 3 4 5, , , | Τ
      which  

indicate that the random vector ( )1 2 3 4, , , Τ
     should be sampled under the condition ( )( )5 5 5 5log V Dτ=   

at time 1T . If the second default occurred at time 2 3 5 5T sτ τ= < + , then the updated default threshold at  

2 3T τ=  should be sampled under the condition ( ) ( )( ) ( )( )( )3 5 3 3 3 5 5 5, log , logV D V Dτ τ=  . However, at the  

third default time 3 1T τ= , investor’s interest have changed from the first default to the second default  
completely, i.e., the memory period of 5 after 5τ  have finished. Therefore updated default threshold should be  

sampled under the condition ( ) ( )( ) ( )( )( )3 1 3 3 3 1 1 1, log , logV D V Dτ τ=  . Notice also that { }
1

1, 2,3, 4 ,T =   

{ }
1

5 ,T =  { }
2

1, 2, 4 ,T =  { }
2

5 .T =  

2.3. Default Contagion 
In this subsection we see how the conditional distribution of the default threshold change at the default time.  
Suppose that the first default occurred at time 0jτ > . Let ( )ig x  denote the unconditional density of i iL D   
and let ( )1i jg x T τ=  denote the conditional density of i iL D  given ( )j j j jL V Dτ= . The distributions of  

i iL D , { }1,2, ,i n j∈    change at 1 jT τ=  from ( )ig x  to ( )1i jg x T τ=  then the default probabilities  

( )2i t t Tτ < < , which is restricted before 2T , change from  

( ) ( )( ) ( )dic t
i iV t x g x x

−∞
<∫   

to 
( ) ( )( ) ( )1 d .ic t

i i jV t x g x T xτ
−∞

< =∫   

Figure 2 and Figure 3 show the conditional distribution of i iL D  at jτ −  and jτ  with 
( )0.4, 0.85, 0.95i i i jL D c τ= = − = . Distributions are truncated above the running minimum of the firm value  

0.95. We see that the ijγ  control the contagion impact effectively.  
Remark 4 Giesecke [5] showed that iτ  does not admit the default intensity. Define the supermartingale 
( )iL t  with respect to i

t  as  

( ) ( ) ( )( ): i i
i t i i i tL t t L D tτ= > = <     

where ( ) ( )0: mini s t it V s≤ ≤=  then ( )iL t  can be expressed as  

( ) ( )i i tL t G=   

where iG  is cumulative distribution function of i iL D . Define the nondecreasing process ( )iA t  by the Stiel- 
tjes integral  

( ) ( )
( )0

d
:

t i
i

i

K s
A t

L s
=

−∫  

where iK  is the compensator of iL . Therefore  

( ) ( )
( ) ( )( ) ( )( )

0

d
log log .

t i
i i i i

i

L s
A t L t G t

L s
= − = − = −

−∫   

Consequently, by introducing the density function ig  of iG , one can obtain  

( )
( )( )
( )( ) ( )d d ,i i

i i
i i

g t
A t M t

G t
= −




 

which implies that iA  is singular because iA  is concentrated on the set ( ) ( ){ }0 : i it V t t≥ = , which has  
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Figure 2. gi(x) and gi(x|T1 = Tj) whith rij = 0.01.                                      

 

 
Figure 3. gi(x) and gi(x|T1 = Tj) whith rij = 0.04.                                      

 

Lebesgue masure 0. Therefore iA  does not admit the representation ( ) ( )
0

d
t

i iA t s sλ= ∫ . This is the reason why 

we argue the default probabilities instead of the default intensities in our model. 
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3. Monte Carlo Method 
This section develops a numerical method to compute the distribution of the number of defaults via Monte Carlo 
simulation. Complicating matters is the fact that new information of defaults changes the mean and covariance 
of the joint distribution of the thresholds. At each moment, covariance matrix should be calculated relying upon 
whether the memory period have terminated or not. Therefore, the simulation depends on the path, i.e. the order 
of occurrence of sequential defaults. 

The time interval [ ]0,T  is partitioned into sub-intervals of equal length ∆  and firm value processes evolve 
along the discretized time step , 1, 2, ,k k n∆ =  , where n T∆ = . With the discretization of the time variable, 
we redefine the default time as 

( ){ }inf 0 :i i i ik V k L Dτ = ∆ > ∆ ≤                           (0.10) 

in analogy with its continuous time version (0.3). As mentioned in Carmona, Forque and Vestal [14], we do 
not have to correct for the bias introduces by the discretization of a continuous time boundary crossing 
problem. 

Algorithm 1 To generate a one sample path of the total default { }iti t T
H

≤∑ , perform the following: 

Step 0. Initialize 0V , 0H . Set { }0 1, 2, ,n=  , 0r n= , 0 = Φ  and 1k = . Draw the random barrier  

i iL D  for all firms in portfolio and fix them until the first default occurred.  
Step 1. Generate the ( )1kr − ∆ -dimensional path ( )( )11 , , kr

k k kV V V − ∆
∆ ∆ ∆=   and calculate the running minimum  

def

0mini i
k s k kV∆ ≤ ≤ ∆ ∆=  for each ( )1ki − ∆∈ . 

Step 2. Determine whether default occurred or not at time k∆ and renew the set k∆  as follows.  
If i

k i iL D∆ ≤ , then the firm i  gets default at time k∆ , and then set 1i
kH ∆ = .  

Else, set 0i
kH ∆ = .  

Let { }1 2, , , mi i i  be a set consists of defaulted firms at time k∆  and go to Step 3. 

If i
k i iL D∆ >  hold for all ki ∆∈ , set 0i

kH ∆ =  for all i  and go to Step 1.  

Step 3. Determine { }1 2
, , ,

mi i is s s  for all defaulted firms and calculate the realized barrier for the defaulted  

firms and store { }1 2
, , ,

mi i i    .  

Step 4. Renew the matrix ( ), 1 ,k ij k i j n
γ∆ ∆ ≤ ≤

=Γ  and the set k∆
 . Draw the random barrier i iL D  for all  

survived firms ki ∆∈  and fix them until next default occurred. Sampling is based on the distribu-tion truncat-  
ed above ( )1 2, , , kr

k k k
∆

∆ ∆ ∆   .  

Step 5. Set 1k k= +  and go to Step1. 

4. Interacting Particle System 
In credit risk management, it is important to measure how often the rare but crucial events will occur. However, 
standard Monte Carlo algorithm in Section 3 may be inefficient in some situations such as the portfolio 
constituents have small default probabilities. This is because, in order to estimate accurately the probability of 
rare events, a large number of trials may be required with Algorithm 3.1. 

In an effort to estimate the accurate probabilities within a reasonable computational time, we embed IPS to 
original standard Monte Carlo simulation algorithm. In the following two subsections, we provide a quick 
overview of the IPS inspired by the pioneering work Del Moral and Garnier [15] and subsequent papers 
Carmona, Forque and Vestal [14], Carmona and Crepey [16] and Giesecke et al. [7]. 

4.1. Feynman-Kac Path Measures 
Let 0T >  be the time horizon. Partition the interval [ ]0,T  into m  subintervals of length T m . Let X  be  
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the discrete time Markov chain given by , 0,1, , ,p pT mX M p m= =   where, in our model, continuous time 
Markov chain tM  is given by  

( )( )0
min , , , ,t s t t d ts t

M V V H
< ≤

=   

which will be discussed later. In general, the random element pX  takes values in some measurable state space  
( ),p pE   that can change with p . We denote by ( )1,p p pK x dx−  the transition kernels of the Markov chain  

{ } 0p p
X X

≥
=  at time p , and we denote by { } 0p p

Y Y
≥

=  the historical process of X  defined by  

( )
def def

0 0, , .p p p pY X X F E E= ∈ = × ×   

Next, we let ( )1,p p pM y dy−  denote the transition kernels of the inhomogeneous Markov chain Y . We  

finally let ( )b E  be the space of all bounded measurable functions on some measurable space ( ),E  , and we 
equip ( )b   with the uniform norm. 

The Interacting Particle System consists of a set of N  path-particles ( )( )
1

i
p i N

X
≤ ≤

 evolving from time  

0p =  to p m= . The initial generation at time 0p =  is a set of independent copies of 0X  and the system 
evolves as if strong animals produce many offsprings, however the rest die. 

For each 0p ≥ , we consider non-negative measurable functions pG  defined on pF  equipped with the 
product σ -algebra, and we call these functions as potential functions. We associate to the pair of potentials and  
transitions ( ),p pG M  the Feynman-Kac path measure defined for any test function ( )p b pf F∈  by the  

formula  

( ) ( ) ( )
1

.p p p p k k
k p

f f Y G Yγ
≤ <

 
=  

 
∏                          (0.11) 

We also introduce the corresponding normalized measure  

( ) ( )
( )

( ) ( )

( )

1

1

.
1

p p k k
p p k p

p p
p

k k
k p

f Y G Y
f

f
G Y

γ
η

γ
≤ <

≤ <

 
 
 = =

 
 
 

∏

∏




                     (0.12) 

Note that  

( ) ( ) ( ) ( ) ( )1
1

1 1 .p p p p p p k k
k p

G G Gγ γ η γ η+
≤ ≤

= = = ∏  

Therefore, for any given bounded measurable function ( )p b pf F∈ , we have  

( ) ( ) ( )
1

.p p p p k k
k p

f f Gγ η η
≤ <

= ∏                               (0.13) 

The above relationship has the merit of relating the un-normalized expectations in the left hand side to nor- 
malized expectations in the right hand side. Furthermore, for any path ( )0 , ,p p py x x F= ∈ , we define the  

weighted indicator function  
( ) ( )( )

( ) ( )( )

( ){ } ( )

0

def

0
1

, ,

, , ,
p p

a
p p

a
p p

k kV X a
k p

T y

T x x

G x x−
≥

≤ <

=

= ∏

1

1

1





 

def
1 .k kG G− =  
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Then we see that  

( ){ }

( ){ } ( ) ( )

( ){ } ( )

( ) ( )( ) ( )

0 0
1 1

0
1

1

, , , ,

, ,

.

p p

p p

p p

k k k kV X a
k p k p

p k kV X a
k p

a
p p k k

k p

V X a

G x x G x x

G x x

T G

γ

η η

−
≥

≤ < ≤ <

−
≥

≤ <

≤ <

≥

 
= × 

 
 

=  
 

=

∏ ∏

∏

∏

 



1

1

1





                 (0.14) 

This formula can be applied to the situation that the ( ){ }p pV X a≥  are the rare events and it can be  

computed via computation of normalized measures. It is known (see Del Moral and Garnier [15]) that the 
computation of the sequence of normalized measures is achieved by the following non-linear recursive equation 

( ) ( ) ( )
( ) ( )

1

def 1 1
1 1 1 1

1 1

, ,
p

p p
p p p p p p pF

p p

G y
dy M y

G
η η η

η−

− −
− − − −

− −

= Φ = ⋅∫                   (0.15) 

starting from ( )1 1 0 ,M xη = ⋅ . Equation (0.15) has the differential form  

( ) ( ) ( ) ( )
( )

1 1 1 1 1

1 1

,p p p p p p p
p p

p p

dy G y M y dy
dy

G

η
η

η
− − − − −

− −

=  

which can be easily seen by substituting  

( )
( )

( )

1
1 1

1 1

k k
k p

p p

k k
k p

G Y
G

G Y
η ≤ <

− −

≤ < −

 
 
 =
 
 
 

∏

∏




 

and  

( )
( ) ( )

( )

1
1 1 1

1 1

1 1

,k k k k k
k p k p

p p

k k
k p

G y M y dy
dy

G Y
η

−
≤ < − ≤ <

− −

≤ < −

=
 
 
 

∏ ∏

∏
 

into the integrand of the right hand side of (0.15). 

4.2. Interacting Particle Interpretation 
For the purpose of numerical computations of the rare events of the form (0.14), we introduce an interacting 
particle system. We choose a large integer N  which we shall interpret as the number of particles. We construct  
a Markov chain { } 0p p

ξ
≥

 whose state ( )
1

j
p p j N

ξ ξ
≤ ≤

=  at time p  can be interpreted as a set of N  samples of  

particles with respect to the measure pη ,  

( ) ( )0, 1, , 0, , , .j j j j
p p p p p p pF E Eξ ξ ξ ξ= ∈ = × ×   

We start with an initial configuration ( )1 1 1

j

j N
ξ ξ

≤ ≤
=  that consists of N  independent and identically distri- 

buted random samples from the distribution  

( )( ) ( )( ) ( ) ( )
01 0 1 1 0 0 1 0 1 0 1, , , , ,Xd x x M X d x x dx K x dxη δ= =  

i.e., ( ) ( )1 0,1 1,1 0 1,1 1 0 1, ,j j j jX F E Eξ ξ ξ ξ= = ∈ = ×  where the 1,1
jξ  are drawn independently of each other from the 
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distribution ( )1 0 ,K X ⋅ . The transitions of particles from 1 1
N

p pFξ − −∈  into N
p pFξ ∈  are defined by  

( ){ } ( )( )( )1
1 1

1
, , ,

N
N j

p p p p p p p
j

d x x dxξ ξ ξ− −
=

∈ = Φ∏ m                       (0.16) 

where ( )1pξ −m  is the empirical measure defined by  

( )
1

1
1

1
j
p

N

p
jN ξ

ξ δ
−

−
=

= ∑m  

and ( )1 , , N
p pd x x  represents an infinitesimal neighborhood of the point ( )1 , , N N

p p pd x x F∈ . By the definition 

of pΦ , one sees that (0.16) is the superposition of two identifiable transitions, a selection followed by a 
mutation as shown below. 

selection mutation
1 1 1 1

ˆ .N N N
p p p p p pF F Fξ ξ ξ− − − −∈ → ∈ → ∈  

The selection stage is performed by choosing randomly and independently N  particles  

( )1 0, 1 1, 1 1, 1 1
ˆ ˆ ˆ ˆ, , ,j j j j

p p p p p pFξ ξ ξ ξ− − − − − −= ∈  

according to the Boltzmann-Gibbs measure  

( )
( ) ( )0, 1 1, 1 1, 1

1 0, 1 1, 1 1, 1

, , ,
1

1 0, 1 1, 1 1, 1
1

, , ,
.

, , ,
j j j

p p p p

j j jN p p p p p

N
k k kj

p p p p p
k

G

G
ξ ξ ξ

ξ ξ ξ
δ

ξ ξ ξ − − − −

− − − − −

=
− − − − −

=

×∑
∑







 

During the mutation stage, each selected particle 1
ˆ j

pξ −  is extended in time by an elementary pK -transition. 
In other words, we set  

( ) ( )( )1 , 0, 1 1, 1 1, 1 ,
ˆ ˆ ˆ ˆ, , , , , .j j j j j j j

p p p p p p p p p pξ ξ ξ ξ ξ ξ ξ− − − − −= =   

where ,
j
p pξ  is a random variable with distribution ( )1

ˆ ,j
p pK ξ − ⋅ . The mutations are performed independently. 

A result of [17] reproduced in [15] states that for each fixed time p , the empirical measure converges in 
distribution, as N →∞ , toward the normalized Feynman-Kac measure pη , i.e.,  

( ),0, 1, 1

def

, , ,
1

1 .j j j
p pp p

N
NN

p p
jN ξ ξ ξ

η δ η
−

→∞

=

= →∑


                           (0.17) 

Mimicking (0.13), unbiased particle approximation measures N
pγ  of the un-normalized measure pγ  are 

defined as  

( ) ( ) ( )
1

N N N
p p p p k k

k p
f f Gγ η η

≤ <

= ∏  

and then, by (0.14), we can get the particle approximation of the rare event probabilities. More precisely, if we 
let  

( ) ( )( ) ( ) ( )( ) ( )
1

,a aN N N
p p p p k k

k p
T T Gγ η η

≤ <

= ∏1 1  

then ( ) ( )( )aN
p pTγ 1  is an unbiased estimator of the rare event probabilities ( ){ }p pV X a≥  such that 

( ) ( )( ) ( ){ } . .a NN
p p p pT V X a a sγ →∞→ ≥1                       (0.18) 

We refer to Del Moral [17] and Del Moral and Garnier [15] for the details of the convergence results. Their 
complete proofs rely on a precise propagation of chaos type analysis and they can be found in Section 7.4 on 
Pages 239-241 and Theorem 7.4.1 on Page 232 in Del Moral [17]. 
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4.3. IPS Algorithm and Potential Functions 
We introduce special notations X̂  and Ŵ  which indicate that these are the input to the selection stage, while 
another notation X



 and W


 indicate that these are the input to the mutation stage of the IPS algorithm. Here, 
as we will describe later, ˆ

pW  indicate the parent of pX . 
According to Del Moral and Garnier [15], one of the recommended potential functions are of the form  

( ) ( ) ( )( )( )1expp p p pG y V x V xα −= − −                        (0.19) 

for some 0α >  and suitable function V  so as to satisfying  

( )

( )
( )2,

.sup
p p p

p p

y y F p p

G y

G y∈

< ∞  

This regularity condition ensures that the normalizing constants ( )1pγ  and the measure pγ  are bounded 
and positive. Thanks to the form of this potential function, we note that we need only to keep track of pX  and 

1pX − , and then the selection would be implemented with those two particles. The form of the distribution (0.17) 
shows that in order to have more simulation paths realizing great many defaults, it is important to choose a 
potential function becoming larger as the likelihood of default increases. To meet our purpose, we choose the 
function V  as follows. 

( ) ( )01
log min .

n
i

p m tm pi
V X V ∆≤ ≤=

= ∑                              (0.20) 

Then our potential function is given by  

( ) ( ) ( )( )( ) 0
1

1
0 1

min
exp exp log .

min

i
n m tm p

p p p p i
i m tm p

V
G Y V X V X

V
α α

∆≤ ≤
−

= ∆≤ ≤ −

  
  = − − = −     

∑           (0.21) 

The first term of (0.21) reflects the fact that the high weights are assigned to the particle which had renewed 
the running minimum during the period [ ]1,p p− . When iL  is not random, i.e., the default barrier is  
observable, it is known that the IPS is effective to simulate the counting process 1

n i
ti H

=∑  with reasonable  
accuracy by Carmona, Fouque and Vestal [14]. We borrowed the form of potential function from Carmona, 
Fouque and Vestal [14]. Detailed IPS algorithm is summarized as follows. 

Algorithm 2 Assume that we have a set of N  particles at time p  denoted by ( ) ( )( )ˆ ˆ,j j
p p p pW X E E∈ × . We  

define the Markov process  

( )( )0
min , , , ,t s t t d ts t

M V V H l
≤ ≤

=  

where ( ) ( )1 1, , , , ,n n
t t t t t tV V V H H H= =  , and define the discrete time Markov process p pT mX M= . 

To generate an estimate of ( )i
TiH k=∑  for 0,1, 2, ,k n=  , perform the following:  

Step 0. Initialize the particles ( ) ( )
0 0

ˆ ˆ,j jX W  and indicators 0H . Choose t∆  as a discretized time step for the  

firm value processes, to be some small value. We start with a set of N  i.i.d. initial conditions ( )
0

ˆ ,1jX j N≤ ≤ ,  
chosen according to the initial distribution of 0X .  

Set ( )
0 0

ˆ jW x=  (initial value of 0X ) for all j  and then form a set of N  particles ( ) ( )( )0 0
ˆ ˆ, ,j jW X   

1 j N≤ ≤ . 
Step 1. For each step ( )1p p m≤ ≤ , repeat the following steps. 

• Selection.  
Compute the normalizing constant  

( )( ) ( )( )( )( )
1

1 ˆ ˆˆ exp ,
N

j jN
p p p

j
V X V W

N
η α

=

= − −∑                      (0.22) 
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and choose independently N  particles according to the empirical distribution  

( ) ( )( ) ( )( )( )( ) ( ) ( )( ) ( )ˆ ˆ,1

1 ˆ ˆ, exp , .
ˆ j j

p p

N
j j

p pN W Xjp

dW dX V X V W dW dX
N

µ α δ
η =

= − −∑
   

           (0.23) 

The new particles are denoted by ( ) ( )( ), ,1j j
p pW X j N≤ ≤
 

. 

• Mutation. 
For every 1 j N≤ ≤ , using the Algorithm 3.1, the particle ( ) ( )( ),j j

p pW X
 

 is transformed into 

( ) ( )( )1 1
ˆ ˆ,j j

p pW X+ +  independently by  

( ) ( )1 ˆ ,pKj j
p pX X+→


                                (0.24) 

and set ( ) ( )
1

ˆ j j
p pW X+ =



. 

Step 2. The estimator of the probability ( ) ( ){ } { }
def

i
m miP a f X a H a= ≥ = ≥∑   is given by  

( ) ( )( ){ }
( )( ) ( )( )( ) 1

0ˆ
1 0

1 ˆ ˆexp .j
m

mNN j N
m pf X aj p

P a V W V x
N

α η
−

≥= =

= − ×∑ ∏1                    (0.25) 

It is known that this estimator is unbiased in the sense that ( ) ( )NP a P a  =   and satisfies the central limit  

theorem. (Refer to [15] [17]) 
Instead of explicit calculation of the asymptotic variance, we notice that the approximate variance ( )NQ a   

defined by  

( ) ( )( ){ }
( )( ) ( )( )( ) 1

0ˆ
1 0

1 ˆ ˆexpj
m

mNN j N
m pf X aj p

Q a V W V x
N

α η
−

≥= =

= − ×∑ ∏1                   (0.26) 

can be easily calculated within the above IPS algorithm. This provides criteria to choose the parameter 0q <  
to be a suitable level. 

5. Numerical Examples 
This section demonstrates the performance of the IPS algorithm through numerical examples with a sample 
portfolio consists of 25 firms. We consider portfolio consisting of high credit quality names with high 
correlations ( )ijρ  of their firm value processes, as well as high correlations ( )ijγ  of the default thresholds. 
The parameters of the model are summarized as follows. 
• ( )0 1, 0.2, 0.85, 0.4i i i i iV v D Lδ= = = = =  for all 1, 2, , 25i =  , 

• 0.7ijρ =  for i j≠  and 1iiρ = , 0.04ijγ =  for i j≠  and 0.09iiγ = . 
Those parameters are set with the intention to notice rare default events. As Carmona, Fouque and Vestal [14] 

reports, the number of selections/mutations which is equal to m  in Algorithm 4.1 will not have so significant 
impact to numerical results then we set 5m =  per one year. Here we set 0.005t∆ = . 

First we compare the results of the IPS algorithm to the results obtained by the standard Monte Carlo 
algorithm in case of 3T =  years. For the standard Monte Carlo, we run 10,000 trials and in addition, 500,000 
trials that will be expected to achieve reasonably accurate values. As for IPS algorithm, we set 15m =  and 

0.3q = −  and take 10,000N =  for number of the particles. Figure 4 illustrates the probability of defaults 

{ }25
1

i
Ti H k

=
=∑  for 1, 2, , 25k =   for 3T =  with 3is =  for all i . Thus the market participants memorize 

all the default by the time horizon. Figure 5 plot the log scale for these three cases of probabilities for 
comparison. One can see that the standard Monte Carlo with 10,000 trials has oscillating results for rare events 
although the IPS results shows similar shape as 500,000 trials of Monte Carlo. For this numerical calculation, 
500,000 trials took about 8000 seconds, whereas the IPS algorithm took about 275 seconds with 3.4 GHz Intel 
Core i7 processor and 4 GB of RAM. 



H. Takada 
 

 
202 

 
Figure 4. Default probabilities.             

 

 
Figure 5. Default probabilities in log-scale.                 

 
These numerical results show that the standard Monte Carlo with 10,000 trials can not capture the occurrence 

of rare default events such as over 20 defaults, however, one sees that there exist very small probabilities for 
such events via 500,000 trials which is indicated by solid blue line in Figure 5. As expected, IPS algorithm can 
capture these rare event probabilities which are important for the credit risk management. 

Next, we investigate how variance would reduced by IPS with following two cases 
• Case 1: 1T =  and 1is =  for all i , 
• Case 2: 3T =  and 1is =  for all i , 
to see the difference with respect to time horizon with the same memory period. Preliminary version of this 
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paper, Takada [11] illustrated how the default distributions change in response to the memory period is  based 
on the standard Monte Carlo. One sees that the first default occurs with the same probability for different ijγ s 
but the second default occurs with different probability because contagion effects are different in response to the 
memory period s ; The larger the memory periods get, the more tail gets fat. 

In contrast, current study focuses on how the variance is reduced with IPS algorithm compared to the standard 
Monte Carlo. Due mainly to the computation of sampling with replacement according to the distribution (0.23) 
in the selection stage, IPS algorithm generally requires more time than the standard Monte Carlo. Although it 
obviously depends on input parameters, with the above parameter set of 25 names and in case of 1, 1iT s= = , 
the calculation in IPS took approximately 1.03 times longer than that of standard Monte Carlo. Thus, in the rest 
of the paper, for comparison for accuracy, we take the number of trials in Monte Carlo equals to the number of 
the particles in IPS. In order to see the effectiveness of the IPS, we run both the Monte Carlo with 10000  trials 
and the IPS with 10000N =  particles for 1000 times for each, and then compare the sample standard deviation  

of the 1000 outcomes of the probabilities { }25
1

i
Ti H k

=
=∑  for all ( )1,2, , 25 .k =   More specifically, let  

( )MC
kq   be  -th outcome of { }25

1
i
Ti H k

=
=∑  obtained by the standard Monte Carlo and ( )IPS

kq   be  -th  

outcome of { }25
1

i
Ti H k

=
=∑  obtained by the IPS. Calculate the sample standard deviation of  

( )MC , 1,2, ,1000kq =   , denoted by MSTD C
k , and also calculate the sample standard deviation of  

( )IPS , 1, 2, ,1000kq =   , denoted by IPSSTDk . Finally compare the two values MCSTDk  and IPSSTDk  for each 
k  and then we see which algorithm achieves low standard deviation. Figure 6 and Figure 7 illustrate the  
differences between MCSTDk  and IPSSTDk  in Case 1. 

And Figure 8 and Figure 9 illustrate the differences between MCSTDk  and IPSSTDk  in Case 2.  
Remarkable feature is that the IPS algorithm reduces variance for the rare events, i.e., more than 10 defaults 

in our example, while instead, demonstrates weak performance for 9k ≤ . Therefore, whether to chose IPS 
depends on the objective and its assesment(division) might depends on the portfolio and the parameters. Thus, 
although we need several trial runs for the first time with given portfolio, once we get the suitable control 
parameters such as 0q < , reliable results would be obtained. 
 

 
Figure 6. Case 1: 1 ≤ k ≤ 7.                                                  
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Figure 7. Case 1: 8 ≤ k ≤ 25.                                                          

 

 
Figure 8. Case 2: 1 ≤ k ≤ 7.                                                           
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Figure 9. Case 2: 8 ≤ k ≤ 25.                                                       

6. Conclusion 
This paper proposed incomplete information multi-name structural model and its efficient Monte Carlo 
algorithm based on the Interacting Particle System. We extend naturally the CreditGrades model in the sense 
that we consider more than two firms in the portfolio and their asset correlation as well as the dependence 
structure of the default thresholds. For this purpose, we introduced the prior joint distribution of default 
thresholds among the public investors described by truncated normal distribution. Numerical experience 
demonstrated that the IPS algorithm can generate rare default events which normally requires numerous trials if 
relying upon a simple Monte Carlo simulation. Finally we verified the IPS algorithm reduces variance for the 
rare events. 
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