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Abstract 
To capture the impact of skewness and increase kurtosis on Black’s [1] European put values, we 
first substitute a Gram-Charlier (GC) distribution and next a Johnson distribution for Black’s Gaus- 
sian one. We introduce next each distribution in the option payoff and develop until the closed- 
form expression of each put is arrived at. Finally, we estimate by simulations GC, Johnson and 
Black put options, choosing the latter one as benchmark. Simulation estimates encompassing both 
skewness and kurtosis show that, for at-the-money (ATM) or slightly in-the-money put values, 1) 
Black’s overvaluation with respect to Johnson puts is very significant and 2) its undervaluation 
with respect to GC ones remains moderate. Yet, by using the same skewness values for both GC and 
Johnson puts, we highlight the differences induced by increasing kurtosis between the two models. 
In this case, the GC overvaluation for ATM values is explained by value differences in the put time 
component. Yet, while both Black and GC values exhibit significant time decay close to expiry, 
Johnson’s ones remain stable up to maturity. 
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1. Introduction 
This paper offers a solution to the following problem: how to account for skewness and extremely large Pearso- 
nian kurtosis (up to 39) when estimating a European put option embedded in a non-traded asset (a bank’s credit- 
line commitment) subject to Basel III capital sufficiency? There are two steps to the solution: first to determine 
the four-parameter analytical solution of the put option and then to use it to value the credit risk of banks’ loan 
commitments. 
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In option finance, numerous empirical studies have shown that the log-return distribution exhibits positive or 
negative skewness coupled with various degrees of positive excess kurtosis. It thus makes sense to consider 
moving away from the Gaussian distribution underlying Black’s [1] European futures put option—the choice of 
this option type is dictated by the case study examined later on. The procedure oftentimes used to account si- 
multaneously for skewness and kurtosis is a Gram-Charlier (GC) type-A statistical-series expansion of the un- 
derlying asset log-return risk-neutral density function, truncated after the fourth moment. While widely used and 
often relevant, the expansion presents at least three significant limitations. Firstly, the values of the skewness 
and kurtosis parameters are restricted to an admissible elliptical region defined by Barton and Dennis [2] and re- 
visited more recently by Schlögl [3]1. Secondly, the truncated expansion may not converge to the true value and 
may only approximate the unknown distribution. Thirdly, adding more terms in an orthogonal expansion may 
not necessarily mean greater accuracy: it is known that higher-order approximations may become more and 
more oscillatory. 

So, as first improvement, let us consider replacing the GC expansion by a “true” GC distribution, namely a 
generalized GC distribution of which the density function is of the same form as the expansion—a normal den- 
sity times a polynomial. The latter true probability density function (pdf) has the advantage to be nonnegative, 
integrate to one and be of an even order—if it were odd the polynomial would take negative values for some x. 
Among the generalized GC distributions, we then focus on the GC four-moment family: The latter is then intro- 
duced in the option payoff which is developed until the closed-form expression of the European put option is ar- 
rived at. This expression will be referred to as the GC put option. The procedure is attractive as long as the lep- 
tokurtic distribution presents moderate kurtosis, namely no larger than 7. Yet, many of the distributions of 
well-known indices underlying options do exhibit positive or negative skewness combined with more severe 
kurtosis, in the range of 10 to 25. To wit, kurtosis values up to 10 are reported by Jha and Kalimipalli [5] for the 
distribution of S&P500 returns over the period 1990 to 2002. Kurtosis values of 10 are also reported by Polanski 
and Stoja [6] for the Dow-Jones daily returns over the period September 2000 to August 2008. In [7], Chalaman- 
drias and Rompolis are extracting the implied kurtosis values from European options on the S&P500 index for 
the years 1996 to 2007: some of the values are as high as 17.4. Recently finally, Del Brio and Perote [8] reported 
a kurtosis value as high as 25.0063 for the Dow-Jones returns over the very long period of October 1928 to April 
2009. The case study examined here differs from these studies to the extent that it deals with an embedded put 
option on an underlying non-traded bank instrument of which the log-return distribution exhibits kurtosis values 
as large as 39. 

In view of this empirical evidence, our quest then narrows down to finding another distribution that accom- 
modates more severe excess kurtosis. This distribution is based on Johnson’s translation method [9]2 by which 
the transformed variate becomes at least approximately normal. Matching frequency curves is used as follows. 
Select the appropriate translation system so that the first four moments of the true distribution of variable x 
match those of an approximated distribution, say z. Compute next the four parameters of the latter distribution, 
introduce it in the option payoff and develop so as to arrive at a closed-form expression of the European put op- 
tion. This analytical expression will be referred to as Johnson’s put option. The latter analytics show that excess 
kurtosis mainly affects the time component of the put value. 

To assess the benefits of GC and Johnson put options, the real-world case of the European put option embed- 
ded in banks’ credit line commitments is examined. It is first explained how the commitment value (to be re- 
ferred to as the indebtedness futures value) gives rise to the implicit European futures put option. The latter put 
is next valued by simulation under the Gaussian distribution, the true GC distribution and Johnson’s mo- 
ment-matching distribution, respectively. These put values are computed as a function of both indebtedness val- 
ue and option term, with Black’s put chosen as benchmark. Regarding the combined effect of skewness and 
kurtosis, the simulations reveal that, for at-the-money (ATM) or slightly in-the-money (ITM) indebtedness values, 
Black’s put values are greater than Johnson’s ones but smaller than GC’s ones. In the sequel, we speak of over- or 
undervaluation for the sake of simplicity and clarity. For deeper ITM indebtedness values, however, Black’s over- 
valuations with respect to both Johnson and GC estimates is minimal, though slightly more pronounced in GC’s case. 
The sole effect of increasing kurtosis is captured by the differences between GC and Johnson put values when 

 

 

1Barton and Dennis [2] and Jondeau and Rockinger [4] deal with the constrained four-moment GC expansion. For a GS expansion involving 
k moments with k even and larger than four, Schlögl [3] proposes a calibration algorithm that also yields a valid probability density. 
2Among previous applications in finance of Johnson’s translation system, consult Cayton and Mapa [10], Guldiman [11], Longerstaey and 
Spencer [12] and Simonato [13] for value-at-risk, and Posner and Milesky [14] for exotic options. 



J.-P. D. Chateau 
 

 
162 

the values of skewness and the other parameters are kept the same for both options. Here again, the GC over- 
valuation is greatest for ATM or slightly ITM values and an insightful explanation is provided. It is also worth- 
while examining how the put value is decaying over the option last two months for ATM or slightly ITM values. 
Does the rapid time decay of Black’s put value also extend to the GC and Johnson’s values? 

The layout of the paper is as follows. Section 2 is devoted to the derivation of the European put options based 
on GC or Johnson four-parameter distributions. Section 3 examines the real-world situation of the European fu- 
tures put option embedded in a credit-line commitment. In the first subsection, the credit-line indebtedness value 
is derived and the statistical evidence regarding its log-returns is presented. The second one explains the choice 
of simulation parameters as well as the meaning of the put estimates. The third one assesses value differences 
between GC, Johnson and Black put options arising from skewness and excess kurtosis. Short concluding re- 
marks close the paper in Section 4. 

2. Valuing the European Put Option under Skewness and Increasing  
Excess Kurtosis 

We choose Black’s [1] European futures put option, PB (a choice conditioned by the case-study illustration) as 
starting point as well as benchmark for future comparisons. Namely: 

( ) ( )2 0 1e ,rT
BP KN d F N d−= − − −                             (1) 

with [ ]{ }( ) 12
1 0ln 1 2 ,d F K T Tσ σ

−
= +  

where F0 denotes the date-0 underlying futures value; K, the exercise value; d1, the standard moneyness with 
2 1 ;d d Tσ= −  N(.), the cumulative distribution function of the standard normal distribution; r, the short-term 

risk-free rate of interest3; σ, the standard deviation of the futures value; and T, the put expiration date. The 
log-return distribution underlying Black’s put option being Gaussian, skewness is nil and Pearsonian kurtosis is 
equal to three. 

Our quest thus is: How can we improve on Black’s put option by varying skewness and kurtosis away from 
their Gaussian values? While a rich literature exits regarding option models with stochastic volatility, stochastic 
interest rate, with or without jumps (see Bakshi, Cao and Chen [16] or Heston and Nandi [17] among the nu- 
merous references), the most prevalent way of valuing options encompassing four moments is the Gram-Char- 
lier approach: see among others, Schlögl [3], Del Brio and Perote [8], Chateau [15], Backus, Foresi, Li and Wu 
[18], Bakshi and Madan [19], Corrado [20], Corrado and Su [21], Jurczenko, Maillet and Negrea [22], and Ta- 
naka, Yamada and Watanabe [23]. The procedure relies on an A-type Gram-Charlier truncated statistical-series 
expansion of the underlying price change relatives; yet the expansion only becomes an actual density if the Jon- 
deau-Rockinger [4] joint constraint on skewness and kurtosis coefficients is satisfied. Numerically, the skewness 
and kurtosis coefficients ought to lie in the intervals [−1.0493, 1.0493] and [3], [7] respectively, so as to prevent 
negative probabilities in the tail of the distribution. Beyond this limitation, there are at least another two other 
good reasons for substituting a “true” distribution to the GC expansion. Firstly, the truncated GC series expan- 
sion may not converge to the true value and may only approximate the unknown distribution. Secondly, adding 
more terms in an orthogonal expansion may not necessarily mean greater accuracy: it is known that higher-order 
approximations may become more and more oscillatory. Technically, we propose to go from a [truncated] ex- 
pansion to a generalized GC distribution, with both having a density function of the form of a normal distribu- 
tion times a polynomial: namely 

( ), , ,x an a b x p
b
− 

 
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3In an additive floating-rate commitment (cost of funds + spread), the commitment put only apprehends spread or credit risk; the cost of 
funds or interest-rate risk is borne by the borrower, not the bank. Any bank market risk is dealt with separately as operational risk in Basel III  
as in Chateau [15]. Moreover, cost of funds and spread being weakly and negatively correlated, it is appropriate using r as discount factor in 
the put equation. 
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and  

( ) ( ) ( )0 1 1 ,N Np x c c He x c He x= + + +  

with Hek referring to the Hermite polynomial of order k. We then introduce the GC distribution in the option 
payoff and derive the analytical form of the four-parameter GC European futures put value that satisfies the 
martingale constraint (see for instance Corrado [20] or Harrison and Pliska [24]), as is done in Appendix A. The 
resultant closed-form solution is labeled the GC put value: 

3 3 4 4 ,GC BP P Q Qµ µ= − −                                (2) 

where 

( ) ( )2 0 1e ,rT
BP KN d F N d−= − − −                             (3) 

with 

[ ] ( ){ }( ) 12
1 0ln 1 2 ln 1d F K T Tσ ω σ

−
= + − +  

and 

( ) ( )3 3 2 4 2
3 41 6 1 24 ,T Tω µ σ µ σ= +  

where μ3 and μ4
 
denote the centered moments of order i, for i = [3, 4], and ω accounts for these moments in the 

put standard moneyness. In addition 

[ ] ( ) ( )1
3 2 26 e ,rTQ K T T d n dσ σ− −  = −                         (4) 

and 

[ ] ( ) ( )1 2 2
4 2 2 224 e 1 .rTQ K T d d T T n dσ σ σ− −  = − + −                     (5) 

More concretely, the GC put value PGC in Equation (2) is a Black European put option, PB, minus terms for 
non-normal skewness and kurtosis. Here the GC distribution does influence directly the skewness and kurtosis 
coefficients. 

In practice, while skewness values oftentimes are falling within the constrained interval, kurtosis values range 
way beyond seven, the upper-bound value of the constrained GC distribution. A first improvement can be found 
in a subset of the order-2m GC family introduced by Leon, Mencia and Santana [25]. For semi-nonparametric 
distributions, the authors’ Figure 1 presents skewness-cum-kurtosis envelopes which are wider than the Jondeau- 
Rockinger admissible region. While their various regions can accommodate kurtosis values up to 15 for op- 
tion-relevant skewness values, the figure clearly shows that the frontier is open-ended for higher kurtosis values 
—more specifically values between 24 and 39 to be encountered in the subsequent case study. Such values are 
not unheard of as mentioned in the introduction. Yet even more extreme kurtosis values were recently reported 
by Cayton and Mapa (Table 4, Page 20) in [10]: coefficients of 115.22 and 43.30 of the distributions of the re- 
turn time series of the Philippines Peso-US$ and Philippines Peso-Euro exchange rates over the period January 
1999 to November 2011. 

Our quest thus then narrows down to: Does a distribution other than the generalized GC distribution exist that 
accounts for kurtosis values larger than 7 let alone 20? The solution is to be found in a particular family of fre- 
quency curves generated by Johnson’s translation system [9]. The steps are as follows. Use the relevant transla- 
tion system so that the first four moments of the distribution of variable x match those of any required distribu- 
tion, say here z. Compute next the four parameters of the approximated distribution, introduce the latter one in 
the option payoff and develop until the analytical expression of the European futures put option is arrived at. 
These travails are presented in Appendix B: the resultant closed form is labeled Johnson’s European futures put 
value, PJ: 

( ) ( ) ( ) ( )2
1

1 12e e e e ,
2

rT
JP K N Q N Q N Q

γ γ
δ δδλξ δ δ

     −     − − −     
   
  ≅ − + + − − 
      

             (6) 
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where γ, δ, ξ, and λ are the four parameters of the unbounded translation system SU defined in Appendix B,  
( )1sinhQ Kγ δ ξ λ−= + −    with sinh‒1 the inverse of the hyperbolic sine function, the other terms having  

been defined previously. In contrast with the GC distribution, Johnson’s SU distribution does not influence di- 
rectly the coefficients of skewness and kurtosis. Yet, Johnson’s put is appealing since it accounts for all kurtosis 
values versus a maximum of 7 for the constrained Gram-Charlier distribution. There is no pretense on our part 
that moment fitting be regarded as providing the “best” solution in any sense. The more modest claim is that fit-
ting by moments improves on the distribution-based GC approach and produces some significant put-value dif-
ferences as evidenced from the credit-commitment case study of the next section. 

3. Case Study: Of the Credit-Risk Put Option Embedded in Banks’ Credit Line  
Commitments 

3.1. The European Put Option Embedded in Short-Term Commitments and the  
Statistical Evidence Regarding Indebtedness-Value Change Relatives 

Since Thakor, Hong and Greenbaum [26], the credit risk of loan commitments is apprehended by an embedded 
put option that is used to compute the risk-weighted amount of commitments subject to Basel III capital re- 
quirements (see Basel Committee on Banking Supervision [27]). For understanding the case study, three fea- 
tures of this embedded European futures put option are reviewed: the origin of the implicit put option, why it is 
European, and how the put term to maturity also endogenizes credit line draw-down4. 

A bank credit-line commitment allows a borrower to draw, say, over a one-year period [0, T] up to K = $100 
at a floating prime rate defined as 0 ,Tm c+  namely a date-0 fixed markup plus a date-T (when funding takes 
place) stochastic cost of funds. It is the fixed markup 0m  of the floating prime rate that generates the embedded 
put option, for any prime-rate borrower can secure date-0 funding either through a credit-line commitment or a 
demand loan characterized by a stochastic spot markup 0 0 0m l c= −  ( 0l  denoting the spot floating prime rate 
and 0c  the bank’s funding rate in the banker’s acceptances market). Fixed and variable markups enable us to 
define the j-month-old indebtedness futures5 value Fj as: 

( )( ){ }* *
0exp with 0j jF m m T T K j T T= − − ≤ ≤ < ,                  (7) 

where ( )0 jm m−
 

is the difference between the date-0 fixed markup and the date-j variable markup, ( )*T T−
 is loan duration (one year) once the commitment has been exercised and K is the constant line par value. For in- 

stance, for an initially one-year commitment (to fix ideas, say, from July 1st to June 30th), F6 denotes a six- 
month-old indebtedness value which still has a remaining six-month term to maturity. The Fjs are the values of 
the banking instrument underlying the put in Equations (1), (2), and (6), of which the date-T payoff is 

( )max ,0 .T
jK F−  

Suppose next that: 
1) At year end, namely the date at which the bank’s audit under Basel III regulation takes place (see Basel 

Committee on Banking Supervision [27]), j-month old commitments have various remaining time to expiry. By 
making date j the option valuation date and by assuming for clarity that it coincides with Basel yearend audit 
date, then the time remaining to commitment expiry becomes the remaining life of contract—as Merton has ar- 
gued for related loan guarantees in [33]. For instance, our one-year (July to June) commitment is 6-month old at 
the end of December when the Basel audit takes place, so generating a 6-month put option. Thus, it is the Basel 
framework that makes the put option European6. 

2) At valuation date j, suppose that the fluctuations in the spot markup of the floating prime rate on demand 
loans result in 0 jm m< . According to Equation (7), the rational commitment holder then decides to draw on the 

 

 

4This cursory description only focuses on the analysis-relevant features of credit-line commitments. For more detailed developments, consult 
articles devoted to credit line commitments such as Thakor, Hong and Greenbaum [26], Chava and Jarrow [28], Saunders and Cornett [29], 
Standhouse, Schwarzkopf and Ingram [30] or Thakor [31]. 
5We speak of a futures value for at least three good reasons. Since the bank contracts up to $100 at date t = 0 and delivers up to $100 at T, it 
is better to speak of indebtedness forward/futures value than of indebtedness spot value as in Thakor, Hong and Greenbaum [26]. The spread 
is an additive quasi-market value since it is the difference between the prime rate and the rate on bankers’ acceptances, both being market 
variables. Finally, for short contracts of a few months, there always exists a zero-coupon bond or a Treasury note corresponding to the 
monthly maturity; differences between forward and futures prices then are sufficiently small to be ignored (see Hull [32]). 
6There also exits an American commitment put option of interest to the bank’s day-to-day management. But for computing Basel capital 
charge corresponding to commitment markup (credit) risk, the relevant put is the European one. 
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line because its fixed markup is less than the stochastic spot markup. To wit, if a 2.0% fixed markup is com-
bined with, say, a 3.0% spot markup, Equation (7) gives rise to an implicit put option as the borrower’s debt 
value Fj is less than the option strike price K. When 0 jm m> , the rational borrower chooses a spot loan instead 
of drawing on the credit line commitment; in that case, there is no embedded put and hence no impact regarding 
Basel risk-weighted assets. In short, spot markup fluctuations at valuation date j give rise to a j-month European 
put option embedded in an initially one-year line commitment. Moreover, the put term to maturity enable us to 
endogenize the credit line take-down: at date j, the borrower can still draw on the line unused portion for the 
forward period T ‒ j. And the longer this forward period, the greater the borrower’s potential line draw-down. 
The latter thus becomes a function of the line remaining term. In short, the commitment put being both a func- 
tion of indebtedness value and term, put estimates will be reported as a matrix or shown as a put-value surface. 

Given Equation (7), let us now consider the distribution of the monthly log returns of the indebtedness value. 
Namely 

( ) ( )1ln ,t tF j F j−                                    (8) 

where tF(j) is the date-t value of the j-month-old indebtedness value. Expression (8) thus generates a time series 
of monthly change relatives from an indebtedness value that remains continuously j-month-old. The log-F rela- 
tives from the third to the ninth month are listed in Exhibit 1. From the statistical evidence presented in the third 
column, the volatility of the empirical distributions fluctuates in the narrow range [1.51% p.a. to 1.63% p.a.] for 
log-F relatives computed for the selected months. The confidence intervals for the normal sample skewness and 
kurtosis coefficients with 300 observations are computed in the note at the bottom of the exhibit. According to 
the statistics shown in the fourth and fifth columns, several positive and negative skewness coefficients as well 
as all kurtosis values fall outside their respective confidence intervals. This indicates that the empirical distribu- 
tions present mostly weak asymmetry coupled with an extremely strong leptokurtic pattern (very severe Pearso- 
nian kurtosis). Since the indebtedness value is a non-traded banking instrument, the historical values of the vola- 
tility, asymmetry and kurtosis coefficients from Exhibit 1 will be used in the next subsection, in which the put 
option reflecting commitment credit or spread risk is priced. 

3.2. Simulation Parameters and Estimate Meaning 
The embedded put values are estimated by simulations based on the statistical evidence presented in Exhibit 1. 
From the information reported in its columns 6 and 7, nearly all indebtedness values vary between $96.2 and 
$104.1, with $100 being par value; we thus set Fj at $100, $99.5, $99, $98.5, $98, and $97.57 for a commitment 
put that moves progressively in the money. For these indebtedness values, the simulations are performed for 
commitments with strike price K = $100, short-term risk-free rate r = 3% p.a., remaining terms to maturity (T – j) 
from 3 to 9 months, and volatility and skewness values from Exhibit 1. Regarding Gram-Charlier puts, we 
choose a kurtosis value of 6.5 which, while just remaining under the Jondeau-Rockinger upper bound, still 
accommodates the skewness estimates of Exhibit 1. As for Johnson’s put values, we use Tuenter’s [34] iterative 
procedure which allows for the much greater kurtosis values reported in Exhibit 1. 

Before commenting on the simulation patterns, we clarify the meaning of our slightly in-the-money reference 
scenario, namely the European put value of which the entries are F = $99 and T – j = 6 months in the first 
matrix of Table 1. This cell corresponds to a credit-risk put of which the indebtedness value F = $99 is slightly 
ITM with six months remaining to commitment expiry. According to the (underlined) estimate PJ = $0.985, the 
Johnson put has an equilibrium value of slightly less than 1% per $100 of commitment if the floating prime-rate 
commitment with say a 2.0% p.a. fixed markup is priced when the same-date spot-loan stochastic markup is 3.0% 
p.a. On the other hand, Black and Gram-Charlier corresponding put values, PB = $1.101 and PGC = $1.092 in the 
table second and third matrices respectively, are larger and thus most likely overvalued in terms of PJ. Table 1 
matrices can be mapped into put-value surfaces, of which the base axes are risk (corresponding to the in- 
debtedness value down the matrix columns) and term (the remaining time to put maturity shown across the 
matrix rows), respectively8. For illustrative purpose, the first (Johnson) matrix is shown in Chart 1. Its visual  

 

 

7In-the-money indebtedness values below $97.5 are of limited interest since, according to the last column of Exhibit 1, there are never more 
than a few values (outliers) lower than $97.5 out of the 300 monthly observations. 
8Heuristically, the put value constitutes the cost incurred by the bank for carrying from Basel fixed audit date onwards unused lines with va- 
rying remaining term to maturity. The varying term captures the fact that borrowers can draw larger amounts if the credit line remaining time 
to expiry is longer. 
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Exhibit 1. Statistical analysis of the 300 monthly observations of the time series of indebtedness-value change relatives 
computed with Equation (8) for the period from 1988.01 to 2012.12.                                               

 Mean SigmaA Skewness Kurtosis Min Max Outliers 
Fj=3ms 1.38 -05 1.51 0.736 24.16 −0.025 0.034 6 
Fj=4ms 8.06 -06 1.60 0.205 30.51 −0.035 0.037 4 
Fj=5ms 1.86 -05 1.62 −0.061 31.08 −0.037 0.037 5 
Fj=6ms 1.22 -05 1.61 0.559 39.34 −0.037 0.041 4 
Fj=7ms 1.06 -05 1.55 −0.164 30.95 −0.037 0.033 5 
Fj=8ms 1.15 -05 1.63 −0.492 30.01 −0.036 0.035 4 
Fj=9ms 1.03 -05 1.56 −1.10 30.10 −0.038 0.030 5 

AMonthly unbiased (divided by n-1) value × √12 = sigma in percent per annum. Note: For a sample size n = 300 observations, the 95% confidence 
intervals for normal sample coefficients of skewness and kurtosis are: ±1.96 (6/300)1/2 = ±0.277 and 3 ± 1.96 (24/300)1/2 = 3 ± 0.554, respectively. 
Source: Statistics Canada monthly time series V122495 and V122504 of the prime credit rate and one-month banker’s acceptance rate of chartered 
(commercial) banks, respectively. 

 
Table 1. Johnson, Black and Gram-Charlier put values implicit in credit-line commitments subject to Basel III regulation.    

 Risk ↓ Term: → 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 
Pj F = 100.0  0.005 0.005 0.005 0.005 0.005 0.005 0.005 
 99.5  0.492 0.495 0.494 0.493 0.491 0.49 0.49 
 99.0  0.993 0.99 0.988 0.985 0.983 0.98 0.98 
 98.5  1.488 1.485 1.481 1.478 1.474 1.47 1.47 
 98.0  1.985 1.98 1.975 1.97 1.965 1.96 1.96 
 97.5  2.481 2.475 2.469 2.463 2.457 2.45 2.45 

PB F = 100.0  0.309 0.371 0.394 0.447 0.485 0.511 0.51 
 99.5  0.618 0.669 0.668 0.735 0.769 0.792 0.79 
 99.0  1.028 1.058 1.069 1.101 1.125 1.142 1.139 
 98.5  1.496 1.506 1.509 1.525 1.539 1.548 1.544 
 98.0  1.986 1.985 1.983 1.987 1.991 1.994 1.989 
 97.5  2.481 2.476 2.470 2.468 2.466 2.463 2.457 

PGC F = 100.0  0.393 0.473 0.501 0.568 0.616 0.649 0.647 
 99.5  0.687 0.746 0.763 0.805 0.87 0.893 0.875 
 99.0  1.036 1.067 1.073 1.092 1.158 1.171 1.143 
 98.5  1.478 1.475 1.47 1.463 1.509 1.511 1.481 
 98.0  1.975 1.956 1.943 1.917 1.935 1.926 1.90 
 97.5  2.478 2.462 2.448 2.419 2.415 2.399 2.38 

Note: Matrix PJ: Johnson’s European futures put values from Equation (6). Matrix PB: Black’s European futures put values from Equation (1). Matrix 
PGC: Gram-Charlier’s futures put values from Equation (2). Parameter definition: F = indebtedness futures value in $ computed from Equation (7); K 
= $100 the credit-line exercise value; r = short-term risk-free rate of interest, in % per annum; T = commitment maturity date; and T ‒ j = time 
remaining to commitment put expiry, in months. Common parameters: L = 100; r = 0.03; T

 
– j = 3,…, 9 months with T = 12 months. The volatility, 

skewness and kurtosis parameter values are from columns 3 to 5 of Exhibit 1. 
 
inspection reveals that the straight put-value surface is down-sloping implying that Johnson’s put values are far 
more driven by risk changes than by maturity changes (namely not significantly tilted in the term-to-maturity 
dimension). Similar but slightly curved down-sloping surfaces (not shown here) depict the GC and Black put- 
value matrices. 

3.3. Assessing Values Differences between Black, GC and Johnson Puts Arising from  
Skewness and Excess Kurtosis 

Value differences due to the joint impact of skewness and kurtosis on put values are examined first. Selecting 
Black’s put value as benchmark, the differences [PB

 
– PJ]/PB and [PB – PGC]/PB, namely Black’s percentage dif- 

ferences with respect to Johnson’s and GC put values, highlight the departures from the Gaussian distribution. 
These are shown in the first and second matrices of Table 2. The latter visual inspection reveals that, for ATM 
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Chart 1. Surface of Johnson’s at- and in-the-money European futures put values as a function of risk and term.             
 
Table 2. Differentials between Johnson, Black and Gram-Charlier put values; percentages computed from Table 1 estimates. 

 Term → Risk ↓ 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 

(PB ‒ PJ)/PB F = 100.0 98.38 98.61 98.76 98.90 98.95 99.02 99.07 

 99.5 19.66 26.08 28.27 32.99 36.08 38.09 38.13 

 99.0 3.49 6.40 7.59 10.51 12.65 14.15 14.18 

 98.5 0.51 1.41 1.86 3.13 4.21 5.03 5.04 

 98.0 0.06 0.26 0.39 0.85 1.29 1.67 1.68 

 97.5 0.00 0.04 0.07 0.20 0.36 0.51 0.52 

(PB ‒ PGC)/PB F = 100.0 −27.29 −27.19 −27.12 −26.92 −27.09 −27.00 −26.84 

 99.5 −11.21 −11.34 −10.79 −9.53 −13.21 −12.82 −10.69 

 99.0 −0.70 −0.89 −0.44 0.81 −2.93 −2.58 −0.29 

 98.5 1.24 2.04 2.60 4.10 1.91 2.35 4.09 

 98.0 0.58 1.50 2.02 3.51 2.83 3.39 4.45 

 97.5 0.13 0.59 0.90 1.95 2.05 2.59 3.14 

(PGC ‒ PJ)/PGC F = 100.0 98.73 98.91 99.02 99.13 99.18 99.23 99.21 

 99.5 27.76 33.61 35.26 38.83 43.54 45.13 44.11 

 99.0 4.17 7.23 8.00 9.77 15.14 16.31 14.43 

 98.5 −0.74 −0.65 −0.76 −1.01 2.34 2.74 0.99 

 98.0 −0.53 −1.26 −1.66 −2.75 −1.58 −1.77 −2.90 

 97.5 −0.12 −0.55 −0.84 −1.78 −1.72 −2.13 −2.71 

Note: Matrix (PB ‒ PJ)/PB: Johnson’s differentials with respect to Black’s put values. Matrix (PB ‒ PGC)/PB: Gram-Charlier’s differentials with respect 
to Black’s put values. Matrix (PGC ‒ PJ)/PGC: Johnson’s differentials with respect to Gram-Charlier’s futures put values. Parameter definition: PB: 
Black’s European futures put values from Equation (1); PGC: Gram-Charlier’s futures put values from Equation (2); PJ: Johnson’s European futures 
put values from Equation (6); F = indebtedness futures value in $ computed from Equation (7); and Term = time remaining to commitment put expiry, 
in months. 
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or slightly ITM indebtedness values, Black’s put values overestimate Johnson’s ones but underestimate GC’s 
ones. Percentage wise, Black’s overvaluation with respect to Johnson values is much greater (ranging up to 
99.07%) than the undervaluation with respect to GC values (ranging up to 27.29%). For deeper ITM indebted- 
ness values, Black’s overvaluations with respect to both Johnson and GC are minimal, with those with respect 
to GC’s values slightly larger than those with respect to Johnson’s values. By way of contrast, the table third 
matrix highlights the kurtosis-induced differences between GC and Johnson put values (skewness and the 
other parameter values being then kept identical for both puts), namely [PGC – PJ]/PGC. This matrix is also 
mapped into Chart 2 below. Recall that for GC put values, kurtosis was fixed at 6.5 while it ranges from 
24.16 to 39.34 for Johnson’s ones in Exhibit 1. In Chart 2, the GC largest overvaluation (99.23%, close to 
the front upper left corner of the chart) takes place when the indebtedness value is ATM with 8-month re- 
maining to maturity. Yet, overvaluation turns into slight undervaluation for deeper ITM indebtedness values, 
witness the 2.71% undervaluation for the longest remaining term (9 months)—in the front lower corner of the 
chart. 

Now why are the differences between Johnson and Black and Gram-Charlier put values largest for ATM in- 
debtedness values? According to the developments in Appendix B, it is the time value of the Johnson put that 
makes all the difference. As for any option, this time value usually happens to be largest for the ATM value. But 
as the ATM time value is smallest for the Johnson put relative to the Black and Gram-Charlier ones, this is 
where their value differences are greatest. But for deeper ITM put values, the time-induced value differences 
between the three procedures dwindle significantly. Moreover, changes in the ATM put values over the last two 
months before expiry provide some additional insight. For Black’s put, it is well-known that the ATM values are 
rapidly decaying over the option last two months. Exhibit 2 presents for the reference scenario (the put with six 
months left to maturity in Table 1) the values of Black, GC and Johnson puts two months, one month and two 
weeks before expiry. 

While both Black’s and GC’s ATM values decay rapidly over the two last months, Johnson values remain 
remarkably stable throughout at the much lower level of about half a cent. For the slightly in-the-money values, 
Johnson’s ATM put values also remain stable about 50 and 99 cents respectively. Yet, while Black’s and GC’s 
 

 
Chart 2. Over- and undervaluation of Gram-Charlier’s European futures put values with respect to Johnson’s corresponding 
ones: Values differences as a function of risk and term.                                                          



J.-P. D. Chateau 
 

 
169 

Exhibit 2. Black, GC and Johnson at- or slightly in-the-money put values, expressed in dollars.                         

  6 Months 2 Months 1 Month 2 Weeks 
Johnson $100 0.0049 0.0049 0.0049 0.0050 

 $99.5 0.4926 0.4975 0.4988 0.4994 
 $99 0.9851 0.995 0.9975 0.9988 

Black $100 0.4474 0.2609 0.1849 0.1258 
 $99.5 0.7351 0.5812 0.5318 0.5069 
 $99 1.1007 1.0128 1.000 0.9989 

G-C $100 0.5678 0.3313 0.2349 0.1598 
 $99.5 0.8052 0.5887 0.5166 0.4869 
 $99 1.0918 0.9716 0.9786 0.9967 

 
values remain larger than Johnson’s ones, they are slowly converging to Johnson’s ones, with two weeks re- 
maining to maturity. Practically, other things remaining constant, long-position holders of Black’s and GC puts 
should sell their positions preferably two months before maturity so as to avoid losing time value. On the other 
hand, holders of long Johnson’s puts can maintain theirs without any loss of time value. 

So, we suggest the following heuristic explanation for such ATM time differences. With a very leptokurtic 
distribution, Johnson put values are bunched close to the peak of a density function that does not exhibit much 
volatility, and may or may not have thick tails. Thus using a distribution that allows for increasing kurtosis val- 
ues reduces the time value of ATM or slightly ITM European futures put options; this is the case of Johnson’s 
approach as it is able to accommodate higher levels of kurtosis. In other words, Johnson distributions may be 
well-suited to time series in which value changes over time take place in a narrow band as for interest rates or 
are range-bound as in the case of many default-free bonds. Needless to say, additional empirical studies cover- 
ing traded options with different underlying financial instruments should be considered so as to corroborate the 
patterns evidenced for an embedded put option on a non-traded underlying bank instrument. 

4. Concluding Remarks 
To capture the impact of skewness and increasing kurtosis on values of Black’s [1] European put options, the 
paper proposes to first substitute a “true” Gram-Charlier (GC) distribution and next a moment-matching Johnson 
distribution for Black’s Gaussian one. In the first case, the generalized GC distribution substitutes for the often- 
used GC truncated expansion as the latter may not converge to the true value and may only approximate the un- 
known distribution. However, the GC four-parameter density function selected limits excess kurtosis to the val- 
ue of four. To account for more severe excess kurtosis, another distribution based on Johnson’s moment- 
matching approach is introduced: the four parameters of the translated distribution are then introduced in the op- 
tion payoff which is developed until the closed-form of the European futures put option is arrived at. 

Next Black, GC and Johnson estimates of the European put option embedded in credit line commitments are 
obtained by simulations, with Black’s put option selected as benchmark. Regarding the combined effect of 
skewness and kurtosis, the simulations reveal that, for at-the-money (ATM) or slightly in-the-money (ITM) in- 
debtedness values, Black’s European put values overestimate Johnson’s ones but underestimate GC’s ones. For 
deeper in-the-money indebtedness values, however, Black’s overvaluations with respect to both Johnson and GC 
are minimal, although slightly more pronounced in GC’s case. The sole effect of increasing kurtosis is captured 
by the differences between GC and Johnson put values when the values of skewness and the other parameters 
are kept the same for both options. Here again, the GC overvaluation is most significant for at- or slightly 
in-the-money indebtedness values because the time component of Johnson’s put is smaller than that of Black’s 
or GC’s. Thus using a distribution that allows for increasing kurtosis values reduces the time value of ATM or 
slightly ITM European futures put estimates; this is more evident for Johnson’s approach since it is able to ac- 
commodate higher levels of kurtosis. This pattern seems characteristic of very peaked distribution with low vo- 
latility. Such distributions can be found for default-free bonds or interest-rate time series in normal circums- 
tances. Additional empirical studies covering traded options with different underlying financial instruments 
should be considered so as to corroborate the patterns evidenced in this case study. This constitutes one of the 
avenues for further study. 
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Appendix A 
This appendix collects the developments leading to the analytic expression of the European futures put option 
under a generalized Gram-Charlier (GC) distribution, Equation (2) in the text. A detailed exposition as well as 
all proofs of the theorems presented in this appendix is to be found in Chateau and Dufresne [35]; some useful 
results are also presented in Schlögl’s [3] methodological article. Our starting point is the following definition. 

Definition. Let a ∈ ℜ, b > 0, ck
 
∈ ℜ, c0 = 1 and { }0,2,4,N ∈  . We write ( )1~ , ; , , NY GC a b c c  if the 

variable (Y − a)/b has probability density function 

( ) ( )
0

N

k k
k

n x c He x
=
∑ ,                                 (A.1) 

where n(x) is the standard normal pdf and Hek the Hermite polynomial of order k. The condition c0 = 1 ensures 
that Equation (A.1) integrates to one. As xk

 
is the leading term of Hek(x), we conclude that N (such that cN > 0) 

must necessarily be even, because if N were odd then the polynomial that multiplies n(x) would take negative 
values for some x. For the same reason cN cannot be negative. Expression (A.1) will be referred to as a 

( ), ,GC a b c  distribution with parameters a, b, c , with ( )1, , N
Nc c c= ∈ℜ

 . The normal distribution with 
mean a and standard deviation b is a ( )( ), ; 0, ,0GC a b   with order 0. 

Granted the definition, we state Theorem 1 and provide a heuristic explanation of its properties. 
Theorem 1. Suppose ( )~ , ;Y GC a b c , Nc ∈ℜ  with b > 0, c0 = 1, cN > 0. The order N of the distribution is 

necessarily even. Then 
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(c): The following holds for the ( ), ;GC a b c  distribution: 
Mean: 1a bc+  

Variance:
 ( )2 2

1 21 2b c c− +  

Skewness coefficient:
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Excess kurtosis coefficient: 
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(d): Suppose ( )~ , ; XX GC a b c , ( )~ , ; YY GC a b c . Then the first K moments of X and Y are the same, 
namely, 

if , and only if , , 1, , .j j X Y
j jEX EY c c j K= = =    

(e): Suppose ( )~ , ; XX GC a b c . Then 

1 0Xa EX c= ⇔ =  

( )22
2 0Xb E X a c= − ⇔ =  

{ } { }2
1 2, 0 .X Xa EX b VarX c c= = ⇔ = =  

when 1 2 0X Xc c= = , the skewness and excess kurtosis coefficients of X are 36 Xc  and 424 Xc , respectively, for  
any { }0,2,4, .N ∈   

In Theorem 1, property (a) gives the n-th moment of the GC distribution, property (b) is the moment-gener- 
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ating function (MGF), and in property (c) resulting from the expansion of the MGF one can check that, for N > 0, 
a and b2 are not necessarily the mean and variance of the distribution. Property (d) is required to derive property 
(e) which allows us to defined the GC(a, b; 0, 0, c3, c4) family. In this four-parameter GC distribution, the exact 
region for the (c3, c4) that leads to a true probability distribution has been found since Barton and Dennis [2]. 

We now proceed with an exponential change of measure. If ( )2~ ,
P

X N µ σ  and a change of measure is de- 
fined by 

e ,
e

qX

P qXP P
E

′ =                                  (A.2) 

then ( )2 2~ ,
P

X N qµ σ σ
′

+ , where q ∈ ℜ. Yet the same property may be expressed by the one-dimensional Ca- 

meron-Martin formula: namely if X ∼ N(µ, σ2) then for q ∈ ℜ and f ≥ 0, 

( ) ( ) ( )
2 21 2 2e e .

q qqXE f X Ef X q
µ σ

σ
+

= +  

Our next result, Theorem 2, is an application of the one-dimensional Cameron-Martin formula to GC distribu- 
tions. 

Theorem 2. Suppose ( )1~ , ; , ,
P

NX GC a b c c  and that P' is defined by Equation (A.2) for q ∈ ℜ. Then  
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Granted Theorem 2, we are now in a position to derive in Theorem 3 the value of the European futures put 
option under the generalized GC distribution. 

Theorem 3. Suppose that under the risk-neutral measure9 Q the log-return of the risky security paying a con- 

stant dividend yield δ over [0, T] is ( )1~ , ; , ,
Q

T NX GC a b c c , which satisfies the martingale condition (see  
Corrado [20] or Harrison and Kreps [36]) 

( )
2

2

0
e e .

b Na r Tk
k

k
b c δ+ −

=

=∑                               (A.3) 

When δ = r, the RHS in Equation (A.3) is equal to 1; we then have a futures option in which the spot underlying 
value S0 is replaced by the futures one, F0. Then the time-0 price of the European futures put option with matur- 
ity T is 

( ) ( ) ( ) ( ) ( )*
0 2 0 2 1 1 1 21

1
e

N
rT

k k k k
k

P KN d F N d Kn d c He d c He d−
− −

=

  = − − − − − − −   
∑      (A.4) 

where 20
1

1 ln
F

d a b
b K

  = + +  
  

, 0
2

1 ln ,
F

d a
b K

  = +  
  

 and *

0
, 1, , .

N N
k l k

k k k l
k l k

l
c c b c b c k N

k
−

= =

 ′= = = 
 

∑ ∑    

In Equation (A.4) d1 denotes moneyness with d2 = d1 − b, F0 is the indebtedness futures value, N(.) the cumu- 
lative distribution function of the standard normal distribution, n(.) the probability density function, r the 
risk-free rate of interest, T maturity, and K the strike price, namely here the credit line par value. For the four- 
parameter GC distribution, namely when N = 4, the summation in Equation (A.4) becomes 

 

 

9As is usually done in incomplete markets, we specify the underlying distribution under Q from the start, leaving P unspecified (see Harrison 
and Kreps [36], the finite case, Page 393). Pricing is done under a specific G-C distribution describing “the” risk-neutral measure. The log- 
returns distribution does not have to be of the same type under both measures; all that is needed is that the support of the log-returns distribu- 
tion under P be the whole real line, as it is under Q. 
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( ) ( ) ( ) ( )* 2 3 2 2
1 1 1 2 2 2 3 2 2 4

1

N

k k k k
k

c He d c He d bc b bd c b b d bd b c− −
=

 − − − = + − + − + − ∑        (A.5) 

and Equation (A.4) then reduces to 

( ) ( ) ( ) ( ) ( ){ }2 2
0 2 0 1 2 2 2 3 2 2 4e 1 .rTP KN d F N d bKn d c b d c b bd d c−  = − − − − + − + − + −       (A.6) 

In order to arrive at Equation (2) in the text, we set in Equation (A.6) 

3 43 4
2 3 4 3 40, , , and .

3! 4!
c b T c c c b c b

µ µ
σ ω= = = = = +  

Appendix B 
This appendix collects the developments leading to the analytic expression of Johnson’s European futures put 
option, Equation (6) in the text. Johnson’s method applies a transformation such that the transformed variate is 
at least approximately normal. To do this, first select the translation system so that the first four moments of the 
true distribution of variable x match those of an approximated distribution, say z. Compute next the four para- 
meters of the latter one, introduce it in the option payoff and develop until the closed-form expression of the 
European futures put option is arrived at. We now turn to the developments. 

We start with h(x) normally distributed and find values γ and δ such that ( )z h xγ δ= +  is a unit normal va- 
riable (by convention δ > 0). Next in z replace x by ( )x ξ λ−  so that 

( ) .z h xγ δ ξ λ= + −                                   (B.1) 

In Equation (B.1), z is a standardized normal variable determined by four parameters, γ, δ, ξ, and λ (λ ought to 
be positive). The values of β1 and β2 (the squared skewness and kurtosis coefficients, respectively) are also de- 
fined by this equation and more specifically by γ and δ. Depending of the choice of h[.], the (β1, β2) plane is di- 
vided in bounded and unbounded systems, SB and SU, with the lognormal system, SL, playing the role of transi- 
tional system. For an in-depth discussion, consult Johnson [9] or Johnson, Kotz and Balakrishnan [37]. 

The first task is to determine which of the systems is relevant for the problem at hand: the bounded system SB 
or the unbounded one, SU. Since in the lognormal system β1 forces the kurtosis coefficient β2, find the value of a 
new variable ω by solving the expression β1 = (ω – 1)(ω + 2)2. The only real root is 

 ( ) ( )
1 3 1 31 2 1 22 2

1 1 1 1 1 10.5 8 4 4 4 2 8 4 4 4 .ω β β β β β β
−

   = + + + + + + +      
       (B.2) 

But by the definition of kurtosis, ( ) 4 3 2
2 2

ˆ estimated 2 3 3.β β ω ω ω= + + −  If this estimated value is approx- 
imately the same as β2, the lognormal system SL is the appropriate translation system. Otherwise, if 2 2β̂ β< , as 
it is always the case for the loan commitments of the case study, the unbounded system SU becomes the relevant 
one. After choosing SU, we then turn to the computation of its parameters γ, δ, ξ, λ. To perform this, first com- 
pute γ and δ from 1β

 
and β2. When kurtosis is less than 15, use Johnson’s table 35 in Pearson and Hartley 

[38]; for values higher than 15 (as for the kurtosis coefficients ranging from 24 to 39 in Exhibit 1), use the itera- 
tive method suggested by Tuenter in [34]10. Once γ and δ are estimated, we then compute the two other ones, ξ 
and λ, as per Tuenter’s expressions on Page 330. 

At this juncture, we now apply the translation system to the distribution of the underlying asset, namely here 
the indebtedness value. More precisely, we approximate the true probability density function (pdf) of the indeb- 
tedness value, h(x) = h(F), by an approximate pdf conditioned on the first four moments of true and approximate 
pdfs be identical. We now define the European futures put value with exercise value K and underlying value x = 
F at date T, namely the indebtedness futures value. That is 

( ) ( )
0

e d ,
KrTP K F h x x−= −∫                              (B.3) 

 

 

10In Table 35 of Pearson and Hartley [38] as well as in Tuenter [34], the sign of γ must be opposite to that of 1β : for negative skewness γ 
is positive and for positive skewness it is negative. 
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where h(x) denotes the probability density function.  

Positing ( ) ( ) ( )
0

d d
x

h x x d h y y dH x= =∫ , we integrate by parts so that 

( ) ( ) ( )( ){ } ( )00 0 0
e d 1 d e d ,

x K KrT K rTP K F h y y H x x H x x− −= − − − =∫ ∫ ∫  

where the put value is but the discounted RHS integral, namely the option time value. Then we replace the true 
standard normal distribution function of the underlying indebtedness value by the approximate one resulting 
from Johnson’s translation system. Namely 

 ( )e d .
KrTP H x x−

−∞
≅ ∫                                 (B.4) 

Since the unbounded system SU is relevant for leptokurtic indebtedness values, the appropriate transformation 
of the standard normal distribution is: 

( )1sinh ,z xγ δ ξ λ−= + −                               (B.5) 

where sinh‒1 denotes the inverse of the hyperbolic sine function. And the density function of Johnson’s SU dis- 
tribution is: 

( ) 1

2
; , , , sinh ,

1

xf x n
x

δ ξγ δ ξ λ γ δ
λξλ

λ

− −  = +     − +  
 

                (B.6) 

where .x R∈  We now develop the integral in Expression (B.4). That is 

( ) 1Pr d Pr sinh d .
K K

T
xx x x z xξγ δ

λ
−

−∞ −∞

 −  ≤ = ≤ +    
∫ ∫                 (B.7) 

Posit now 1sinh x ξν γ δ
λ

− − = +  
 

, factor out x and differentiate x with respect to ν. This yields 

sinhx ν γξ λ
δ
− = +  

 
 and 

d cosh
d

x λ ν γ
ν δ δ

− =  
 

. Introducing this in Equation (B.7), it comes that 

( ) ( )
1sinh

Pr d e e d ,
2

K Q
z x N

ν γ ν γξγ δ δ δλ
λν ν ν
δ

− − −   −  −   +       
−∞ −∞

 
≤ = + 

  
∫ ∫               (B.8) 

where the RHS expression is based on the fact that 1sinh KQ ξγ δ
λ

− − = +  
 

 

and 
e ecosh

2

ν γ ν γ
δ δν γ

λ

− −   −   
   − +  = 

 
. Since ( ) ( )dN n y y

ν
ν

−∞
= ∫ , Expression (B.8) comprises a double integral 

that can be rewritten: 

( ) ( )e d d e d d .
2

x x
Q x Q x

n y y x n y y x
γ γ

δ δλ
δ

− −   −   
   

−∞ −∞ −∞ −∞

     +    
        

∫ ∫ ∫ ∫               (B.9) 

In Equation (B.9), the expression between flexible brackets comprises two terms; we now proceed with the 
development of the second one (the same methodology is applied subsequently to the first one). Without ac-
counting for λ/2δ and after inverting the order of the integrals of the second term, it comes that 

( ) ( )e d d e d d .
x x

Q x Q Q

y
n y y x n y x y

γ γ
δ δ
− −   − −   

   
−∞ −∞ −∞

   =       
∫ ∫ ∫ ∫               (B.10) 

To develop in Equation (B.10) the RHS integral between square brackets, we make the change of variable 
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xz γ
δ
− = − 

 
 with 1d dz x

δ
= − . It ensues that 

e d e d e e e .
Q Qx y Q

Q z z
y yy

x z
γ γγ γ γ

δ δδ δ δ
γ γ

δ δ

δ δ δ
− −− − −        − −− − −        

        
− −   − −   

   

 
 = − = − = −
 
 

∫ ∫         (B.11) 

Substitute Equation (B.11) in Equation (B.10) so that 
2

2e e e d .
2π

y Qy
Q

y
γ γ

δ δδ − −   − −−    
   

−∞

 
 −
 
 

∫                     (B.12) 

Consider now the first of the two terms in the integral in Equation (B.12): that is 
2

2e e
yy γ
δ
− −−  

  . Complete the 
square for the terms of the exponential and introduce the result in the integral. This gives 

2

2
1 1

2 22e e d
y

Q
y

γ
δ δδ

   + − +   
   

−∞∫ . 

Make the change of variable 
1 1
2 2

zy
δ

 + = 
 

, so that dy = dz. It then comes that 

( )
2

1
2 2

1 1
12 22e e d e .

2π

z
Q

y N Q
γ γ

δδ δδ δδ δ δ
−

   
+ +   −+ −   

−∞

   
   = +
   
   

∫                 (B.13) 

The same procedure is now applied to the second term in Equation (B.12). This gives  

( )( )
2

2e e d e .
2π

Q Qy
Q

y N Q
γ γ

δ δδ δ
− −   − −−    

   
−∞

 
 − = −
 
 

∫                   (B.14) 

Finally, upon collecting the various terms in Expressions (B.13) and (B.14), we arrive at 

2
1

( ) 12 ( ) ( ( )) .
Q

e e N Q N Q e
γ
δ δ δδ δ

−− 
+ + − 

 
                   (B.15) 

As announced above, the same procedure is now applied to the first term in Equation (B.9). The final result is: 

( ) ( ) ( )2
1

12e d d e e e .
x Q

Q Q

y
n y x y N Q N Q

γ γ
δ δ δ δδ δ
−   −    −   

−∞

   
= − −   

     
∫ ∫        (B.16) 

At this stage, we reintroduce λ/2δ and collect Expressions (B.15) and (B.16). This gives: 

( ) ( ) ( ) ( ) ( )( )2 2
1 1Q

1 12 2d e e e e e e  . 
2

Q
K

H x x N Q N Q N Q N Q
γ γ
δ δδ δ δ δλ δ δ

   − −   − −   
−∞

    = − − + + + −   
       

∫   

After we substitute this equation into Expression (B.4), the European futures put becomes 

( ) ( ) ( ) ( ) ( )( )2 2
1 1Q

1 12 2e d e e e e e e e .
2

Q
KrT rTP H x x N Q N Q N Q N Q

γ γ
δ δδ δ δ δλ δ δ

   − −   − − − −   
−∞

      ≅ = − − + + + −            
∫   

(B.17) 
In Equation (B.17), let us now focus on the RHS first and fourth terms and develop. This gives: 

( ) ( )( ) ( ) ( ) ( )e e e e sinh ,
2

Q Q QN Q N Q N Q K N Q
γ γ
δ δ δ δλ γλ ξ

δ

       − −       
       

   −  + − = = −         
          (B.18) 
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where the last RHS expression relies on the fact that in sinh(.) we replace Q by 1sinh K ξγ δ
λ

− − +  
 

. Finally, 

by substituting Equation (B.18) in Equation (B.17) in which the second and third terms are further rearranged, 
the analytical form of the European futures put option becomes:  

( ) ( ) ( ) ( )2
1

1 12e e e e ,
2

rT
JP K N Q N Q N Q

γ γ
δ δδλξ δ δ

     −     − − −     
   
  ≅ − + + − − 
      

         (B.19) 

where PJ denotes the Johnson's European futures put value: this is Expression (6) in the text. To validate our re- 
sult derived from first principles (namely by developing from scratch the payoff of the European futures put op- 
tion), we retrieve the analytical expression of the European call option derived in [14] by Posner and Milesky 
(Pages 115-118, where Equations (14) and (28) are combined). This, adapted to our context, gives the following 
expressions 

( ) ( ) ( ) ( ) ( )2
1

1 121d e e e
2

K
H x x K N Q N Q N Q

γ γ
δ δδξ λ δ δ

     −     − −     
−∞

 
= − + + − − 

  
∫   

and 

( ) ( ) ( ) ( ) ( )2
1

1 121e e e e .
2

rTC F K K N Q N Q N Q
γ γ
δ δδξ λ δ δ

     −     − − −     
   ≅ − + − + + − −  

    
      (B.20) 

But by substituting Equation (B.20) in the futures put-call parity ( )e rTP C K F−= + − , we arrive again at the  
requisite Expression (B.19), the analytical value of Johnson’s European futures put option.  
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