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ABSTRACT 

In this paper we discuss the importance sampling Monte Carlo methods for pricing options. The classical importance 
sampling method is used to eliminate the variance caused by the linear part of the logarithmic function of payoff. The 
variance caused by the quadratic part is reduced by stratified sampling. We eliminate both kinds of variances just by 
importance sampling. The corresponding space for the eigenvalues of the Hessian matrix of the logarithmic function of 
payoff is enlarged. Computational Simulation shows the high efficiency of the new method. 
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1. Introduction 
Monte Carlo simulation is a numerical method based on 
the probability theory. Its application in finance becomes 
more and more popular as the demand for pricing and 
hedging of various complex financial derivatives, which 
play an important role in the field of investment, risk 
management and corporate governance. The advantage 
of Monte Carlo method is that its convergence rate is 
independent on the number of state variables. Monte 
Carlo simulation is often the only way available for the 
pricing of complex path-dependent options if the number 
of relevant underlying assets is greater than three. 
However, Monte Carlo simulation is constantly criticized 
for its slow convergence. Let  be a random variable 
and we want to calculate 
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It is clear that the convergence rate of Monte Carlo 
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hence, in order to reduce the err by a factor of 10 one 
has to generate 100 times as mu  as samples as well as 
computation time. For this reason, Monte Carlo simu- 

or 
ch

lation needs to be run on large parallel computers with a 
high financial cost in terms of hardware and software 
developments. The computational demands of simulation 
have motivated substantial interest in the financial 
industry in demands for increased efficiency. Another 
way to improve the accuracy is to reduce the standard 
deviation  . Motivated by this thought, several tech- 
niques to reduce the variance of the Monte Carlo simu- 
lation have been proposed, such as control variates, 
antithetic riables, importance sampling and stratifi- 
cation(see Boyle, Broadie and Glasserman [1], and Gla- 
sserman [2]. These techniques aim to reduce the variance 
per Monte Carlo observation so that a given level of 
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accuracy can be obtained with a smaller number of 
simulations. Control variates and antithetic variables are 
the most widely used variance reduction techniques, 
mainly because of the simplicity of their implementations, 
and the fact that they can be accommodated in an exist- 
ing Monte Carlo calculator with a small effort. Examples 
of successful implementations of control variates for 
pricing the derivatives include Hull and White [3], 
Kemna and Vorst [4], Turnbull and Wakeman [5], Ma 
and Xu [6].  

Importance sampling has the capacity to exploit 
detailed knowledge about a model (often in the form of 
asymptotic approximations) to produce potential variance 
re

o

tantially by increasing the drift in simulation 
fo

ampling combined with stratified sampling to 
dr

ampling attempts to reduce variance by 
hich samples 
, consider the 

duction. Unfortunately, importance sampling technique 
has not been widely used as other variance reduction 
techniques in pricing financial derivatives until recently. 
This is mainly because there is no general way to 
implement importance sampling. If the transformation of 
probability measure is chosen improperly, this method 
does not work. Importance sampling attempts to reduce 
variance by changing the probability measure from 
which paths are generated. Our goal is to obtain a more 
convenient representation of the expected value. The idea 
behind the importance sampling is to reduce the statis- 
tical uncertainty of Monte Carlo calculation by focusing 
on the most important region of the space from which the 
random samples are drawn. Such regions depend both on 
the random process simulated, and the structure of the 
security priced. Just as mentioned by Glasserman [2], an 
effective importance sampling density should weight 
more points to the region where the product of their 
probability and their payoff is large. For example, for a 
deep out-of-the-money call option, most of the time the 
payoff from simulation is 0 , so simulating more paths 
with positive payoffs should reduce the variance in the 
estimation. 

An early example of imp rtance sampling applied to 
security pricing is Reider [7], where the variance was 
reduced subs

r deep out-of-the-money European call options. Gla- 
sserman, Heidelberger and Shahabuddin [8] applied 
importance sampling to reduce substantial variance by 
combining stratification in the stochastic volatility model. 
Other recent work on importance sampling methods in 
finance has been done for Monte Carlo simulations 
driven by high-dimensional Gaussian vectors, such as 
Boyle, Broadie and Glasserman [1], Vázquez-Abad and 
Dufresne [9], Su and Fu [10], Arouna [11], Capriotti [12],  
Xu and Zhang [13]. In this framework, Importance 
Sampling is applied by modifying the drift term of the 
simulated process to construct a new measure in which 
more weight is given to important outcomes thereby 
increasing sampling efficiency. The different methods 
proposed in the literature mainly differ in the way where 
such a change of drift is found, and can be divided into 

two families based on the strategy adopted. The first one 
is proposed by Glasserman, Heidelberge and Shaha- 
buddin in a remarkable paper [14] (GHS for short), relies 
on a deterministic optimization procedure which can be 
applied for a specific class of payoffs. Xu and Zhang [13] 
improve the optimization algorithm of the importance 
sampling by Newton Raphson algorithm based on direct 
simulation. The second one is the so-called adaptive 
Monte Carlo method, such as Vázquez-Abad and Du- 
fresne [9], Su and Fu [10], Arouna [11], that aims to 
determine the optimal drift through stochastic optimi- 
zation techniques that typically involve an iterative algo- 
rithm. 

Most closely related to our work is Glasserman, 
Heidelberge and Shahabuddin [14], who applied impor- 
tance s

amatically reduce variance in derivative pricing. In this 
paper, we propose a new importance sampling method by 
modifying the drift term and the quadratic term of the 
simulated process simultaneously. In the previous 
literature, the variance for the linear part is eliminated by 
importance sampling and those for the quadratic part is 
reduced by stratification. However, we eliminate both 
kinds of variances just by importance sampling. The 
corresponding space for the eigenvalues of the Hessian 
matrix of the log function of payoff is enlarged. Illu- 
strations of the use of the method with European options 
and Asian options are given, which show the high effi- 
ciency of the method. The method proposed in the paper 
can be extended to the pricing of other financial deriva- 
ives directly. 

2. Importance Sampling Method 
Importance s
changing the probability measure from w
are generated. To make this idea concrete
problem of estimating  
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payoffs  financial derivatives. The ordinary Monte 
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1 2, , , MX X Xwith  independent draws from . Let  f
g  be any other prob n  satisfying  ability density on 

   > 0 > 0,x g x          (3) 

r all nx . Then we can obtain b hanging mea- 

f  

fo y c
sure  
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is the likelihood ratio evaluated at 

 

iX . 
 It follows from (1) and (4) that 
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Depending on the choice of g , this could be larger or 
smaller than the second mo  w
importance sampling. Succe pling 
lies on t
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ssful
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ithout 

he art of selecting an effective importance 
sampling density g . 

From (2), the variance of ˆ
fV  is  
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here  Var f  denotes the riance va  under the measure 
with density function f . Similarly, from (5) and (6), the 
variance of ĝV  is  
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he optimal density function. 
This choice of density is precluded unless the estimated 
quantity is known from the outset. N
observation provides a useful insight: An effective im- 

V  evertheless, this 

portance sampling density should weight points ac- 
cording to the product of their probability and payoff.  

Generally, the key of importance sampling lies to find 
g  satisfying (3) to solve the following optimal problem,  
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3. New portance Sampling S mulation 

In this section, we propose new importance sampling 
simulation following the i
problem of estimating the expectation of the payoff  
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where the likelihood ratio is  
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then  

Denote 

 ,X N   . 
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We can choose ̂  and  satisfying  ̂
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and 
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where we assume that all the eigenvalues of the Hessian 
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of Rogers and Talay 

are less than . (Following the analysis 
[15], th ondition

most of options including Asian option

1
e c  is satisfied for 

, barrier option 
and various path-dependent options with stochastic vola- 
tility.) 

(15) can be solved using iteration method in GHS. 
Then, ̂  is easily obtained by direct substitution of ̂ . 
So the linear and quadratic part of the function F  is 

may be

removed. Our choice of drift vector and variance matrix 

 viewed as eliminating the variance contribution 
due to the linear and the quadratic part of F . We 
conside the new density function 
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estimator with smaller variance can be obtained b

In GHS, the variance caused by
y 

tic part of
(5). 

 the quadra  
F  is reduced by use of stratification whi
relatively complicated numerical calculation. Meanwhile, 

ch needs 

the efficiency of the stratification demands that all the 
eigenvalues of the Hessian matrix of F  at the value ̂   

are less than 
1

2
. Obviously, the new method can be  

applied to more types of financial derivatives. 

4. Numerical Simulation 

In this section, we illustrate the results developed in the 
previous sections. We use two examples in 
compare our method with GHS method to 

w we 
re the 

 the price of un rlying 

hich 
veal 

de
efficiency of the new method. 

In the Black-Scholes model,
asset  S t  obeys  

       d d d ,S t rS t t S t W t       (18) 

where r  is the risk free rate    , is the volatility and 
 t  is a standard Brownian motion. 
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W
os  0, T  e is the period of t e option  
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where  

   T

1 2, , , 0,nX X X X N I   . 

For simplicity, we set  

1 ,  1, 2, ,i it t t T n i n      . 

Experiment 1: Consider European call option under 
the Black-Scholes model. The discounted pa ff function yo
is 

    e max ,0rTG X S T K  . 

We set  0 50, 0.05, 1.0, 16S r T n     and use 
1,000,000M   paths to estimate the variance reduction 

ratio between  Varf G X    and    w X   . Varg G X
rical results are illustrated in Table 1. The nume
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Numerical results in Table 1 show est ated prices 
and variance ratios, relative to ordinary Monte Carlo 
m g importance sampling with GH
and the new m

f the proced r this problem, es- 
eduction 

ra

im

ethod, usin S method 
ethod respectively, which confirm the 

effectiveness o ure fo
pecially for in-the-money options. Variance r

tio is the variance per replication using standard Monte 
Carlo method divided by the variance per replication 
using the above two methods. The large ratio, the great 
the improvement. 

In Figure 1, the optimal density denotes the density 
represented by (7). The GHS density figure can be 
obtained through translating the original density figure 
right by  . After modifying the quadratic term, we can 
change the shape of the GHS density figure and get the 
new density figure. Obviously, the new density figure is 
closer

e

 to the optimal one than the GHS density figure, 
thus achieving greater variance reduction.  

Experiment 2: As a typical test case treated in recent 
papers, w  will consider arithmetic Asian call option. 
The discounted payoff function is  

   
1

1
e max ,0 .

n
rT

i
i

G X S t K
n





   
 
  

We set  0 50, 0.05, 1.0, 16S r T n     and use 
1000000M   paths to estimate the variance reduction 

ratio between  Var f G X    and    w X  . 
. 

Varg G X
rical results are illustrated in Tables 2-6



These tables above show the simulation results for 
different volatilities and strike prices. Firstly, GHS 
m es larger variance ratios when th
deeper out o

 deep out-o y Call option, mos
. By 

ch

The nume

ethod achiev e option is 
f money, which coincides with results in 

Reider [7]. For a f-mone t 
paths with zero payoff are sampled in simulation

anging the drift of sampling density, a large part of 
zero-payoff paths are replaced by positive-payoff paths. 
Hence, simulating more samples with positive payoff 
reduces the variance. The effect of variance reduction by 
changing the drift will be strengthened or weakened by 
changing the form of the sampling density figure. 
 
Table 1. Estimated variance reduction ratios for European 
call option. 

Parameters IS (GHS method) IS (new method) 

  K Price VarRatio Price VarRatio

0.1 30 21.463 103.3 21.463 931.2 

 45 7.317 8.2 7.316 15.9 

 50 3.404 7.2 3.405 12.1 

 

0.

 55 1.087 11.2 1.088 12.5 

3 30 21.602 14.9 21.601 30.0 

 45 9.869 9.5 9.855 15.9 

 50 7.118 10.3 7.121 15.8 

 55 5.010 11.8 5.014 5.9 

 

Figure 1. Sampling probability density function for Euro- 
pean call option with ,0.1 50K  . 

 
Table 2. Estimated variance reduction ratios for arithme- 
tic Asian call option with 0.05 . 

Parameters IS (GHS method) IS (new method) 

K Price VarRatio Price VarRatio

45 6.042 39.8 6.042 931.2 

7 13 0.007 35.9 

50 1.437 6.4 1.438 11.5 

55 0.00 8.1 

 
Table 3. Estimated va  r  ra or - 
tic Asian w

riance eduction tios f  arithme
 call option ith 0.1 . 

Par s S me  meameter IS (GH thod) IS (new thod) 

K Price V  V oarRatio Price arRati

45 6.055 10.8 6.055 24.5 

2 0.202 13.3 

50 1.919 7.0 1.919 11.9 

55 0.202 21.

 
Table 4. Estimated va  r  ra or - 
tic Asian w

riance eduction tios f  arithme
 call option ith 0.2 . 

Para s  met  memeter IS (GHS hod) IS (new thod) 

K Price V  V oarRatio Price arRati

45 6.418 7.7 6.419 14.5 

50 3.028 8.2 3.028 13.4 

55 1.106 13.0 1.106 14.0 

 
Table 5. Estimated v e  r or - 
tic Asian w

arianc reduction atios f  arithme
 call option ith 0.3 . 

Par s S me   meameter IS (GH thod) IS (new thod) 

K Price V o V oarRati Price arRati

45 7.150 8.3 7.151 15.0 

50 4.169 9.2 4.169 14.9 

55 2.211 12.2 2.210 15.4 
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Tabl ted v n ra e-
tic Asian w

http://dx.doi.org/10.2307/2331065 e 6. Estima ariance reductio tios for arithm  
 call option ith 0.5 . [4] A. G. Kemna and A. C. F. Vorst, “A Pricing Method for 

Options Based on Average Asset Values,” Journal of 
Banking & Finance, Vol. 14, No. 1, 1990, pp. 113-129. 
http://dx.doi.org/10.1016/0378-4266

Par s S me  meameter IS (GH thod) IS (new thod) 

K Price (90)90039-5Va o V orRati Price arRati  

- 

45 8.996 10.6 8.996 18.6 

50 6.459 11.

[5] S. Turnbull and L. Wakeman, “A Quick Algorithm for 
Pricing European Average Options,” Journal of Financial 
and Quantitative Analysis, Vol. 26, No. 3, 1991, pp. 377
389. http://dx.doi.org/10.2307/2331213 

6 6.457 18.7 

55 4.455 13.5 4.543 18.9 

 
Secon , for an in o n ew

achieves larger vari atio n th S m d
With th ecrease o

[6] J. Ma and C. Xu, “An Efficient Control Variate Method 
for Pricing Variance Derivatives under Stochastic Vola- 
tility and Jump Diffusion Models,” Journal of Computa- 
tional and Applied Mathematics, Vol. 2

dly -the-m ney optio , the n  method 
. ance r s tha e GH etho

e d f  , 35, No. 1, 2010, the rior com b-
vious. T  is beca e fact that path

ositive payoff are sam  when simulating an in-the- 

 supe ity be es o  
pp. 108-119. http://dx.doi.org/10.1016/j.cam.2010.05.017 

[7] R. Reider, “An Efficient Monte Carlo Technique for 
Pricing Options,” Working Paper, Wharton School, Uni- 
versity of Pennsylvania, Philadelphia, 1993. 

[8] P. Glasserman, P. Heidelberger and P. Shahabuddin, “Im- 

his use th most s with 
p
m

pled
oney option makes it ineffective just by changing the 

drift. When the volatility   gets smaller, the under- 
lying asset changes mor  slow so that most payoffs are 
positive. This leads to the GHS method in vain and 
makes the new method effective. 

Thirdly, for an out-of-the-money option, the GHS 
method performs better than the new method especially 
when the volatility 

e

 
  is small. In this case, by chang- 

ing the drift, most paths with zero payoff are replaced by 
nonzero-payoff paths, leaves no room for more variance 
re

portance Sampling in the Heath-Jarrow-Morton Frame- 
work,” Journal of Derivatives, Vol. 7, No. 1, 1999, pp. 
32-50. http://dx.doi.org/10.3905/jod.1999.319109 

[9] F. J. Vázquez-Abad and D. Dufresne, “Accelerated Simu- 
lation for Pricing Asian Options,” Proceedings of 1998 
Winter Simulation Conference, Washington DC, 13-16 
December 1998, pp. 1493-1500. 
http://dx.doi.org/10.1109/WSC.1998.746020 

[10] Y. Su and M. C. Fu, “Simulation in Financial Engineering: 
Importance Sampling in Derivative Securities Pricing,” 
Proceedings of the 32nd Confer
tion, Society for Computer Simulation Interna

duction by changing the form of the sampling density 
function. 

5. Concluding Remarks 

In this paper, a new importance sampling Monte Carlo 
method for pricing options is proposed. Unlike the 
classical i

ence on Winter Simula- 
tional, 2000, 

Least-squares Importance Sampling for 

762435

pp. 587-596. 

[11] B. Arouna, “Robbins-Monro Algorithms and Variance 
Reduction in Finance,” Journal of Computational Fi- 
nance, Vol. 7, No. 2, 2004, pp. 35-62. 

[12] L. Capriotti, “

mportance sampling procedure, both kinds of
art and the quadratic part
ayoff are eliminated

ntrol, Vol. 21, No. 8, 1997, pp.1267-1321. 
http://dx.doi.org/10.1016/S0165-1889(97)00028-6

 
 variance caused by the linear p

of the logarithmic function of p . The Monte Carlo Security Pricing,” Quantitative Finance, Vol. 
8, No. 5, 2008, pp. 485-497. 
http://dx.doi.org/10.1080/14697680701

corresponding space for the eigenvalues of the Hessian 
matrix of the logarithmic function of payoff is enlarged. 
Computational Simulation shows the high efficiency of 
the new method. 
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