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ABSTRACT 

This paper considers efficient set mathematics for the case where the covariance matrix of asset returns is assumed 
known but ex ante the vector of expected returns is replaced by an estimated or forecast value. It is shown that the ex 
post mean and variance differ from the standard results. Consequently the maximum Sharpe ratio portfolio also differs 
from the standard result. However, even with uncertainty about the vector of expected returns, subject to the assump- 
tions made about the joint distribution of actual returns and estimated mean returns, ex post Sharpe ratio maximisers 
hold the ex post market portfolio. The properties of the zero beta portfolio are similar to the standard results leading to a 
capital market line. The ex post Capital Asset Pricing Model incorporates an intercept and the betas are not the same as 
those computed ex ante. The results are illustrated with an example. 
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1. Introduction 

Portfolio selection introduced by Markowitz [1] has many 
supporters and many detractors. Broadly, the former are 
those who use his methods successfully and the latter are 
those who do not. Since its introduction, traditional port- 
folio selection has undergone much refinement and de- 
velopment. Nonetheless, many of these developments are 
very similar to or essentially identical to the original 
method. That is, a portfolio selector remains on a mean- 
variance efficient frontier. The original theory assumes a 
quadratic utility function or that the multivariate prob- 
ability distribution of asset returns is characterized by 
expected returns and the covariance matrix. Stein’s Lem- 
ma, Stein [2], and its modern extensions (Liu, [3]; Lands- 
man and Nešlehová, [4]) mean that these remarks are 
valid under a range of elliptically symmetric distribu- 
tions and, subject to regularity conditions, for all utility 
functions. Thus, the efficient frontier should be a robust 
place to be. 

In the previous paragraph, the phrase “a mean-vari- 
ance efficient frontier” is used deliberately to remind that 
in practice all efficient frontiers are based on estimates of 
the underlying parameters, the vector of expected returns 
and the covariance matrix. Even when consistent estima- 
tors of the underlying parameters are used, all efficient 
frontiers are in reality estimated efficient frontiers. It is 
well known, by both practitioners and academic re- 
searchers, that the ex-post performance of an efficient 
portfolio often differs substantially from that anticipated 
at the time of construction. The celebrated papers by Best 

and Grauer [5] and Chopra and Ziemba [6] document 
that portfolios which are mean-variance efficient ex ante 
are sensitive to the inputs; that is to the estimators that 
are used. As Adcock [7] reports “even in the situation 
where the user is equipped with good estimates of the 
input parameters, the outputs are likely to produce re- 
sults that are different from those expected. In circum- 
stances where the estimates of the inputs are poor, it is 
inevitable that ex-post performance will be inferior”. The 
recent paper by Kan and Zhou [8] confirms this. These 
and other difficulties are documented widely, notably in 
Michaud [9,10].  

The use of estimated values for the model parameters 
means that it is desirable, even necessary, to use statisti- 
cal methods to study the behaviour of portfolios which ex 
ante are mean variance efficient. There is an early work 
due to Bawa, Brown and Klein [11]. In many papers, the 
starting point for the use of statistical methods in con- 
junction with mean-variance portfolio selection is often 
the work by Jobson and Korkie [12]. This work, in com- 
mon with other later papers, is concerned with the 
maximum Sharpe ratio portfolio. If asset returns are IID 
normal and the usual sample estimators are used, Jobson 
and Korkie [12] show how to derive expressions for the 
expected values and variances of the components of the 
efficient frontier reported in Merton [13]. This version of 
the efficient frontier allows short positions; that is only 
the budget constraint is imposed on the expected utility 
maximization. The resulting formulae in Merton’s paper 
define the shape of the frontier and ex-ante portfolio ex- 
pected return and variance. They are often referred to  
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collectively as efficient set mathematics. Gibbons, Ross 
and Shanken [14] present a test of the mean-variance 
efficiency of a portfolio. This test, which employs a fun- 
damental property of the efficient frontier, is based on a 
variant of the market model. Under the IID normal as- 
sumptions, it results in Hotelling’s T2, which apart from a 
scaling constant has an F distribution. There are similar 
tests in Huberman and Kandel [15] and Britten-Jones 
[16]. More recently, Kan and Smith [17] derive expres- 
sions for the joint distribution of the components of the 
efficient frontier given the standard assumptions. To 
achieve this, they reparameterise the frontier and con- 
sider components which are functions of those in Mer- 
ton’s original representation. The results that they derive 
depend on the Chi-squared and non-central F distribu- 
tions. Knight and Satchell [18] derive further extensions, 
specifically for institutional investors. There are several 
other related works, notably by Bodnar and Schmid 
[19-21], Hillier and Satchell [22] and Okhrin and Schmid 
[23]. 

Under the assumption that the vector of expected re- 
turns and the covariance matrix are known, the ex post or 
actual return on a portfolio is an affine transformation of 
the vector of asset returns. If returns follow a multivari- 
ate normal distribution or any member of the elliptically 
symmetric class, the distribution of portfolio returns is a 
member of the same class. The aim of this paper is to 
present results for the case where the covariance matrix 
is known, but the vector of expected returns is an esti- 
mate or forecast and is therefore a random vector. To 
avoid duplication, henceforth such a vector is referred to 
as a forecast. When the joint distribution of returns and 
the forecast used for portfolio selection is multivariate 
normal, it is shown that the distribution of ex-post portfo- 
lio returns is an extended quadratic form in normal vari- 
ables. It is shown that this changes the shape of the effi- 
cient frontier and leads to different insights into the 
maximum Sharpe ratio or market portfolio. The results in 
this paper substantially extend those reported in Adcock 
[7,24,25].  

The paper is set out as follows. Section 2 contains a 
summary of traditional efficient set mathematics and the 
assumptions used. Section 3 present the main results of 
the paper, namely that ex post returns are distributed as 
an extended quadratic form. Given that the number of 
possible specifications for the structure of the covariance 
matrix of asset returns and forecasts is large, Section 4 
presents two examples. In Section 5, there are results 
which examine the effect of the estimated expected re- 
turns or forecasts on the Sharpe ratio, the market portfo- 
lio and the Capital Asset Pricing Model. Section 6 con- 
tains concluding remarks and a brief discussion of poten- 
tial developments. 

2. Traditional Efficient Set Mathematics 

Let R  be an n-vector of asset returns, which has the 
multivariate normal distribution . The notation  ,N μ Σ

pR denotes portfolio return and fr the risk free. The no- 
tations n0 d mn0 te respectively an n-vector 
of ones, an n-vector of zeros and an m n  m of ze- 
ros. Subscripts are generally omitted. It is assumed that 
the covariance matrix Σ  is non-singular. Maximising 
expected utility subject only to the budget constraint in 
the usual way and recalling Stein’s Lemma, the first or- 
der conditions for portfolio selection lead to the well 
known expression for the portfolio weights 
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The vector 0  is the minimum variance portfolio and 
satisfies the budget constraint . The vector  
is a self-financing portfolio. In general, risk appetite  
is defined as 

w
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The expected return and variance of portfolio return, 
which has a normal distribution given the assumptions, 
are 

2 2
0 1 2,p p 1           

respectively, where the standard constants are defined as 
T 1

0 T 1

1 T 1
T 1

1 T 1

2 T 1

,

1
.











 








 
  

 



μ

μ μ,

Σ 1

1 Σ 1

Σ 11 Σ
Σ

1 Σ 1

1 Σ 1

 

Note that these definitions of the standard constants 
differ from those in Merton [13]. They are the same as 
those used in Kan and Smith [17] and are more suitable 
for the purposes of this paper. The equation of the effi-
cient frontier is 

2
0 1p p 2        

The market or maximum Sharpe ratio portfolio arises 
when 

 2 0 2M fr 0        , 

as long as 0 fr  . If 0 fr   the market portfolio does 
not exist in any meaningful sense.  

3. Distribution of Portfolio Returns 

This section presents the main results of the paper, in 
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which it is shown that when μ  is replaced by a forecast, 
denoted by , portfolio return is distributed as an ex- 
tended quadratic form in normal variables. It is assumed 
the 2n-vector 

F

 
  
 

R
X

F
, 

has a non-singular multivariate normal distribution 
 with   ,N τ Γ
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respectively. Non-zero entries in the vector  mean that 
the forecast is biased. It is assumed that the covariance 
matrix is known. The vector of portfolio weights based 
upon the forecast  is 

δ
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Portfolio return is then  
T 1 T2pR  b X X AX ,  
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Portfolio return is distributed as an extended quadratic 
form in normal variables. The properties of these are 
described in detail in Mathai and Prevost [26]. Relevant 
results for financial applications are in Appendix B of 
Adcock et al [27]. Specifically, Corollary 2 of their 
Theorem 2 leads to the following. 

Proposition 1 
Apart from an additive constant, portfolio return pR  

is distributed as the weighted sum of independent non- 
central Chi-squared variables, each with one degree of 
freedom, and an independently distributed normal vari- 
able. That is 

   
 2 1

2
0 01 ,

1

,
n

p j jj
j

R Z    

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where the jλ  are the  non-zero eigenvalues of 
the matrix 

2 1n  
AΓ , 0  and  are 

scalar functions of elements of the vector τ  and the 
eigenvectors of 

, 0,1, , 2 1j n  j

AΓ  and Z is a standard normal vari- 
able. 

As further technical details of this result are not re- 
quired for the material that follows below, they are omit- 
ted. Briefly, it may be noted that the probability density 
function of pR  is intractable, although the central limit 
theorem means that, ceteris paribus, the distribution of 

pR  will tend to normality as the number of assets in- 
creases. This provides support to a finding of Tu and 

works for the evaluation of portfolio performance. The 
characteristic function of the extended quadratic form, 
however, may be inverted numerically using a procedure 
due to Imhof [29]. Mathai and Prevost [26] note that this 
procedure may be considered to be exact. The character- 
ristic function is tractable and leads to the following re- 
sults for the mean and variance of portfolio returns. An 
outline proof of the following proposition is in Appendix 
A. It was first reported without proof in Adcock [25]. 

Proposition 2 

Zhou [28] who suggests that the normality assumption 
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de
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The covariance between the returns of an arbitrary 
portfolio with given weights qw  and an efficient port- 
folio with risk appetite θ  is 

    0 0q p q RR RF RRθ  D μ wΣ Σ  cov , TR R  w Σ

Substitution gives the following: 

 the efficient frontier is 
Corollary 2.1 
The equation of

  2
0 1 1pf pf 0A A B B    , 

where 
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 From Proposition 2 and Corollary 2.1, it is clear that 
the ex-post expected return and variance of an efficient 
portfolio constructed using estimates or forecasts of ex- 
pected returns are different from those based on standard 
efficient set mathematics. The effect on the maximum 
Sharpe ratio portfolio is described in Section 5. The de- 
tailed effects on mean and variance, and hence the shape 
of the efficient frontier, depend on the constants 0,1,2 . 
These in turn depend on δ , the bias in the estimates, and 
the structure of the cova ance matrix Γ . To illustrate 
the effects, two examples are presented in Section 4. 

ri

4. Two Examples 

The matrices RRΣ  and FFΣ  may be written as 
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T T,RR FF ΗΗ ΚΚΣ Σ , 

where Η  and Κ are full rank m trices. The co- 

where is the matrix of cross-correlations be- 
etu  fore



In the two examples below, it is assumed that the co- 
va

n n  a
variance matrix of returns and forecasts is 

T
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riance matrix of the estimates or forecasts is propor- 
tional to RRΣ , the covariance matrix of asset returns. 
This is loo  equivalent to assuming that the vector of 
forecasts is based on simple times series methods. It is 
also assumed that forecasts are unbiased, δ 0 . 
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These are affected by the covariance matrix of asset 
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turns through their dependence on Η . Note that 1) by 
the Cauchy Schwarz inequality 2

2 0n    , expected 
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t 

(negative) 
and 2) that the requirement tha Γ be positive semi- 
definite imposes a restriction on  . 
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 example was first reported in conference proceed-
ings in Adcock [24]. In this case Ρ I , where I  is 
the n n  unit matrix, in which case  
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A special case of this is the use of the sample mean 
returns based on a time series of length . In this case T

1T   and 0  . There is no effect on mean return, 
but there is an increase in variance. In articular, the 

 is an sing function of the number of as- 
sets.  

To illustrate these results a data set consisting of 
weekly ret

p

urn  13 FTSE indices is used. The fore- 

variance

ca

increa

s from
st of the mean returns and the covariance matrix used 

are shown in Tables A1 and A2 of Appendix C. The 
illustration considers five values of correlation  = 
−0.05,−0.01,0,0.01,0.05. The parameter set for   cor-
responds to sample sizes of 1,5,10,50,100,1000T  . 
The value 1T   may be interpreted as meaning t at the 
covariance matrix associated wit -
tive, which corresponds with a sensible practice. The 

0,1,2

h
preh the forecasts is dic

  and 0,1,2  are computed using the formulae 
above. These are shown in Table 1. Panel 1) of Table 1 

 the st  constants. Panel 2) shows the com-
puted values of 0,1,2

shows andard
  corresponding to values of   

from −0.05 to 0.05. Note that the values of 2  are two 
orders of magnitud eater than those for 0e gr  . In pan  
3) the column entitled mult0 shows the multiplier to be 
applied to the Standard Sharpe ratio. Note t  for 0

el

hat    
the maximum Sharpe ratio occurs at a lower level of risk 
than the standard case, but that for 0   the maxim  
Sharpe ratio portfolio is the minimum variance portfolio 
(MVP). A graph of the efficient fro for 3 values of 

um

ntier 
 , namely −0.01, 0.01 and 0.05 and for 1   is shown 
in Figure 1. The figure also includes a graph of the con- 

ntional efficient frontier. As the figure ws, when ve sho
  is less than zero the efficient frontier is downwards 
sloping: more risk leads to lower expected return. 

Table 1. Parameters of the efficient frontier. 
 

1) Standard Constants 

    

 0.0004 0.0009 0.0057 

2) New Compon s ent

      

−0.05 12.0351 −0.6000 0.0000 

−0.  0000 12. 8 

0.  

ters of Efficient Frontier 

01 −0.

3

1200 0. 006

0 0.0000 0.0000 12.0057 

0.01 0.1200 0.0000 12.0070 

05 0.6000 0.0000 12.0363 

) Parame

         mult0 

−0.05 −0.0494 −0.5943 12.0408 

−0.  1 −  

0.  

01 −0.1143 2.0125 0.0095

0 0.0057 12.0114 0.0005 

0.01 0.1257 12.0127 0.0105 

05 0.6057 12.0420 0.0503 
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Figure 1. The efficient frontier based on forecasts. 
 

For 0.01   the frontier is upwards sloping, but th
ient is always less than that for the ex ante effic

e 
rad ient g

frontier 0.05. When   , the gradient is higher. That is, 
this value of correlation provides a sufficient signal to 
outperform the ex ante frontier. To avoid cluttering the 
figure other values of   are omitted. However, as   
increases so does the gradient of the frontier. Conversely 
as   decreases from zero, the negative trade-off between 
risk and expected return becomes progressively worse. 

The case 0   may be interpreted as the use of sam- 
ple returns as a forecast is also omitted. In this case, the 
corresponding efficient frontier is effectively flat. Figure 
2, which is in Section 5, shows the Sharpe ratios plotted 
against risk appetite θ  for the same values of   and 
for the ex ante case. 

5. The Sharpe Ratio and the Market  
Portfolio 

In standard efficient set mathematics, the Sharpe ratio is  

  2
0 1 2 1SR         . 

For 0 0 
lio is giv

 the maximum Sharpe ratio or marke  t
portfo en by 2 0M    . Sectio  5.1 and 5.2 
consider t

ns
he Sharpe ratio and the market portfolio for the 

case when unbiased forecasts of μ are used, that is 
δ 0 . Section 5.3 considers the distribution of returns 

on the conventional maximum Sharpe ratio portfolio for 
the c se where the estimate F is used in place of a μ . 

5.1. Properties of the Sharpe Ratio 

Table 2 shows the differences between the standard 
ith those when 

bi  

Sharpe ratio and its properties compared w
the effects of forecasts are taken into account. Specifi- 
cally, in the rows labeled 1) the table shows the value of 
θ  that maximises the Sharpe ratio, in 2) the value of the 
Sharpe ratio at the maximum and in 3) the limiting value 
as θ . The corresponding results for the case of 

ased forecasts are substantially more complicated and 
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Figure 2. Sharpe ratios based on forecasts. 
 

Table 2. Comparison of the sharpe ratio. 

 Standard 

(1) 2 0M     

2) 2

1 0
(

2MSR     
 

(3) 1SR    

 Forecasts 

(1)    1 0 1 2Mf M       
 

2)   2

0 1
( 2

1 2 0 2MSR            

(3)  1 0 1 2fSR       
 

 
so are omitted, but are available on request. In the stan- 
dard c , a necessary and sufficient condition for the 

aximum Sharpe ratio to exist in a meaningful sense is 
ase

m
that 0 0  . For the ex post Sharpe ratio the correspond- 
ing condition is 

   1 0 0 1 2 0.Mf          

Figure 2 shows examples of the Sharpe ratio for  = 
−0.01, 0.01 and 0.05 and for . The standard Sharpe 
ratio is also shown. When  = −0.01 the max m Shar- 
pe

r  =

arket portfolio under forecast un- 
 lead to 

rtfolio is the ex post market portfolio.  

1 
imu

 ratio occurs at the MVP and the ratio declines mono- 
tonically as risk increases. Fo  0.01 the maximum is 
close to the MVP and the Sharpe ratio is always inferior 
to the ex ante case. When  = 0.05, however, the Sharpe 
ratio is superior to the standard case, but the maximum is 
attained at lower risk. 

5.2. The Market Portfolio and the CAPM 

The question of the m
certainty naturally arises. Standard manipulations
the following. 

Proposition 3 
Given the assumptions above, the maximum ex post 

Sharpe ratio po
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C. ADCOCK 206 

Thus, although the ex post market portfolio differs 
fr

he 
ar

1

om that found ex ante, there is a corresponding capital 
market line, whose intercept is the risk free rate. T

gument that investors will hold a combination of lend- 
ing/borrowing and the market portfolio still holds. This is 
subject to the assumption that the joint distribution of 
returns and forecasts is the same for all market partici-
pants. This result leads in turn to the question of the 
CAPM. Under the assumptions of the paper, is the ex- 
pected excess return on an asset or portfolio given by the 
product of beta and the expected excess return on the 
market portfolio? The treatment below follows that in 
Chapter 3 of Huang and Litzenberger [30] and requires 
the following result. 

Proposition 4  
The covariance of two efficient portfolios p and q is 

 cov ,p qR R    2 1 2p q p q            . 

io 
with respect to portfolio p if its risk appetite is 

This leads to portfolio q being a zero-beta portfol

    2 1 1 1 2z p p            . 

Note that for the case where forecasts are biased 

1 0 
minimu
de

and portfolio p may be any portfolio includ g the 
m variance portfolio. For the case considered in 

in

tail in this section, 1 0   and portfolio p can be any 
io except the minimum variance portfolio. For this 

case, the expected return on the zero beta portfolio is 

   

portfol

 0 2 1 0 1 2z pE R            

Standard manipulations, similar to those in Chapter 3 
of Huang and Litzenberger, lead to the following

Proposition 5 
 

The intercept of the straight line that is the tangent to 
the efficient frontier at portfolio p is equal to  zE R . 

Proposition 6 
If portfolio p is the market portfolio, the expected re- 

turn on the zero beta portfolio equals the risk free rate 

fr . 
In the standard case where μ  is given, consideration 

of the covariance between the returns of portfolio p and 
 aran bitrary portfolio leads to the CAPM if portfolio p is 

in

 portfolio and let 

 fact the market portfolio. For the case considered in 
this paper, Proposition 2 leads to a modified version of 
the CAPM 

Proposition 7 
Let q be any portfolio with weights qw , M  be the ex 

post market q  and M
n 

 
δ

be their re- 
sp  excess ret Whe , it fol- 
lo

ective expected urns.  0
ws that 

q MA B    , 

where Β  

  0 1 0 2 1 ,T
q M q RF MB            w w Σ  

where 

       0 2 0 1 2 1 1 0 1 2,               . 

Note μ that this reduces to the standard case when  is 
given, but that for this case the intercept is not zero  
general. 

 in

Continuing the example, Table 3 contains values of 
alpha and beta for two portfolios for the values of   
and   used above. The first portfolio is an e
w

qually 
eighted portfolio of returns on the 13 FTSE indices. 

The second is the conventional market portfolio for 
whic he weights are proportional to 1

RR
h t μΣ . Panel 1) of 

Table 3 shows the alphas and betas for the equally 
weighted portfolio. These are computed for the standard 
efficient frontier (table rows called E ey are also 
computed for the specified values of 

F). Th
  and  . As the 

table shows, the values of alpha are non-zero. They are 
numerically small, but of comparable magnitude to the 
return forecasts shown in appendix Ta  A1. T e values 
of beta decrease as 

ble h
  increases. Both alpha and beta 

approach their standard values as   decreases to zero, 
equivalently the implicit sample size increases. Similar 
behaviour is observed n Panel 2), although it is notable 
that the alphas are substantial when

 i
 0.05  . It is also 

notable that beta is a non-linear function of both   and 
 , with the phenomenon being more apparent for the 
conventional market portfolio. 

3. Property of the Maximum Sharpe Ratio  
Portfolio 

5.

When F  is used as the forecast of expected return, 
maximum Sharpe ratio portfolio has weights given by 

the 

1 T 1
M RR RRw F FΣ 1 Σ . 

The return on the market portfolio is 

 

T 1 T 1
Mf RR RRR   R F FΣ 1 Σ . 

The following interesting result is proved in Appendix 
B. 

Proposition 8 

market portfolio based on forecast of the expected 
re .  

based on estimates may in practice 
be

considers efficient set mathematics for the 
case where the covariance matrix of asset returns is as-  

Given the assumptions above, the expected value of 
the 

turn is undefined
Strictly speaking, the result is of theoretical interest. 

Nonetheless, it suggests that returns on the maximum 
Sharpe ratio portfolio 

 volatile. 

6. Discussion and Concluding Remarks 

This paper 
is the beta of portfolio q with respect to M  
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Table 3. Behaviour of alpha and beta. 

Sample Size Equivalent 

 +1e6 1 10 50 500 

(1) Equally weighted portfolio 

Alphaq0 

EF 0.0000 0.0000 0.00000.0000 0.0000 

−0.05 0.0004 0.0004 0.0005 0.0006 0.0000

−0.01 0.0004 0.0004 0.0004 0.0000

Betaq0 

 0.0004 

0 0.0004 0.0004 0.0004 0.0003 0.0000

0.01 0.0004 0.0004 0.0003 0.0002 0.0000

0.05 0.0003 0.0003 0.0002 0.0000 0.0000

EF 0.3520 0.3520 0.3520 0.3520 0.3520

−0.05 0.0590 0.0589 0.0595 0.0780 0.4016

−0.01 0.6307 0.6776 7690 1.0027 0.3615

(2) Stan  Mark olio 

0.

0 0.9988 0.9878 0.9434 0.6832 0.3523

0.01 0.5907 0.5515 0.4916 0.3621 0.3435

0.05 0.0593 0.0600 0.0617 0.0733 0.3114

dard et Portf

Alpham0 

EF 0.0000 0.0000 0.00000.0000 0.0000 

−0.05 0.0142 0.0119 0.0002

−0.01 0.0005 0.0004 0.0000 0.0001

m0

0.0149 0.0155 

0.0002 

0 0.0000 0.0000 0.0001 0.0004 0.0000

0.01 0.0006 0.0007 0.0009 0.0012 −0.0001

0.05 0.0134 0.0122 0.0097 −0.0015 −0.0003

Beta  

EF 1.0000 1.0000 1.0000 1.0000 1.0000

− − −

−0.01 0.6299 0.6771 7743 0.9981 0.9828

0.05 0.0142 0.0794 0.2300 −0.5201 0.9241

 0.

0 0.9986 0.9859 0.9358 0.7028 0.9984

0.01 0.5926 0.5599 0.5220 0.5690 1.0144

0.05 0.1059 0.2091 0.4016 1.0876 1.0810

 
s  t ow x an vector of e d
returns i fo a is

 th ex post nce d fr

those 
co

e correlations damage it; volatility 
ex

 model for the multivariate 
pr

 “Portfolio Selection,” Journal of Finance, 
Vol. 7, No. 1, 1952, pp. 77-91. 

[2] C. M. Stein, “  of a Multivariate 
Normal Distri tics, Vol. 9, No. 6, 

umed o be kn n but e te the xpecte  
 s replaced 

at the 
by an estim

mean and 
ated or 

varia
recast v

iffer 
lue. It 

om the shown
standard results. Consequently the maximum Sharpe ra- 
tio portfolio also differs from the standard result. This 
portfolio remains the market portfolio. Thus, even with 
uncertainty about the vector of expected returns, subject 
to the assumptions made about the joint distribution of 
actual returns and estimated mean returns, ex post Sharpe 

ratio maximizers hold the ex post market portfolio. 
The properties of the zero beta portfolio are also simi- 

lar to the standard results. A notable exception, however, 
is that the capital asset pricing model incorporates an 
intercept and the ex post betas are not the same as 

mputed ex ante.  
The numerical example provides a demonstration of 

well-known empirical features: positive correlations be- 
tween returns and estimates improve ex post portfolio 
performance; negativ

 post may be expected to be higher than that predicted 
ex ante. 

The assumption of multivariate normality with known 
covariance matrix is a limitation of the results, except 
perhaps for those of low frequency. The results presented 
here imply that a tractable

obability distribution of returns and estimates is re- 
quired. Scale mixtures of the multivariate normal distri- 
bution are an obvious candidate. The use of multivariate 
distributions which incorporate skewness is an open re- 
search question. 
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Appendices Table A1. Forecast Mean Weekly Returns for 13 FTSE 

Indices. 
A—Moments of Extended Quadratic Forms in 
Normal Variables No. Index Forecast 

1 FTSE100 0.0012 

2 FTSE250 0.0017 

3 FTS250-ex-Inv 0.0017 

4 FTSE350 0.0013 

5 FTSE350-ex-Inv 0.0013 

6 FTSE350-HY 0.0013 

7 FTSE350-LY 0.0011 

8 FTSE-SC 0.0012 

9 FTSE-Sex-Inv 0.0010 

10 FTSE-All-Share 0.0013 

11 FTSE-AS-ex-Inv 0.0013 

12 FTSE-AS-ex-mult 0.0011 

13 FTSE-Aim 0.0006 

In the notation of section 3, portfolio return is 
T 1 T2pR  b X X AX  

This may be written as the quadratic form 
1 T2pR  X AX  , 

where 

,
   

    
   

X A I
X A

b I


0
. 

The vector X  has a singular multivariate normal dis- 
tribution with mean vector and covariance matrix 

,
   

    
   

τ
τ

b


Γ 0
Γ

0 0
, 

 respectively. For a random vector which has the gen-
eral multivariate normal distribution  standard 
results are that the cumulants of the quadratic form 

 are  

Y
N  ,μ Σ ,

,

TY BY

Table A2. Sample Covariance/Correlation Matrix. 

      1 T2 1 ! trace
k kk

k k k    
μ μΣB B  

where and so on, and that     1 2, Β Β Β Β ΒΣ

 T T Tcov , d Y Y BY d BμΣ . 

Substitution of , , τ Γ A
  

and  gives the results 
of Proposition 2.  

qw

B—Proof of Proposition 8 

The return on the market portfolio is  
T 1 T 1

Mf RR RRR   R F FΣ 1 Σ , where  and  have the 

multivariate normal distribution  as defined in 

Section 3. Conditional on 

R

N τ

F

 ,Γ

F f , the expected value of 

 is MfR

  T 1 1 T 1 T 1 .RR RF RF RF
       f μ μ δ f f fΣ Σ Σ Σ 1

  

Index 1 2 3 4 5 

1 0.0007 0.0006 0.0006 0.0007 0.0006 

2 0.8440 0.0007 0.0008 0.0006 0.0006 

3 0.8271 0.9954 0.0008 0.0006 0.0006 

4 0.9774 0.8649 0.8501 0.0007 0.0006 

5 0.9627 0.8478 0.8346 0.9670 0.0007 

6 0.8848 0.7628 0.7466 0.8698 0.8762 

7 0.9176 0.8430 0.8312 0.9089 0.9271 

8 0.6515 0.7884 0.7809 0.6736 0.6872 

9 0.5913 0.7630 0.7617 0.6174 0.5894 

10 0.9617 0.8493 0.8354 0.9544 0.9791 

11 0.9559 0.8454 0.8323 0.9459 0.9716 

12 0.8747 0.8703 0.8652 0.8739 0.8950 

13 0.6445 0.7265 0.7176 0.6656 0.6458 

 6 7 8 9 10 

1 0.0006 0.0007 0.0004 0.0004 0.0006 

2 0.0005 0.0006 0.0005 0.0005 0.0006 

3 0.0005 0.0007 0.0005 0.0005 0.0006 

4 0.0006 0.0007 0.0004 0.0004 0.0006 

5 0.0006 0.0007 0.0004 0.0004 0.0006 

6 0.0006 0.0005 0.0003 0.0003 0.0006 

7 0.7598 0.0008 0.0004 0.0004 0.0007 

8 0.6093 0.6714 0.0005 0.0005 0.0004 

9 0.5245 0.5918 0.8130 0.0006 0.0004 

10 0.8755 0.9327 0.6966 0.5990 0.0006 

The first term is the ratio of two variables which have 
a bivariate normal distribution. Cedilnik, Košmelj and 
Blejec [31] show that such a variable does not have an 
expected value or higher moments. This is sufficient to 
ensure that the unconditional moments of MfR  are un- 
defined. 

C—Forecast Mean Vector and Covariance  
Matrix 
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Continued 

11 0.8667 0.9254 0.6903 0.5934 0.9701 

12 0.8206 0.8403 0.7181 0.6468 0.8943 

13 0.5298 0.6745 0.7548 0.7508 0.6617 

 11 12 13   

1 0.0006 0.0006 0.0004   

2 0.0006 0.0006 0.0005   

3 0.0006 0.0006 0.0005   

4 0.0006 0.0006 0.0004   

5 0.0006 0.0006 0.0004   

6 0.0006 0.0005 0.0003   

7 0.0007 0.0006 0.0005   

8 0.0004 0.0004 0.0004   

9 0.0004 0.0004 0.0005   

10 0.0006 0.0006 0.0004   

11 0.0007 0.0006 0.0004   

12 0.8896 0.0007 0.0004   

13 0.6472 0.6434 0.0006   

Correlations are shown below the leading diagonal. 
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