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ABSTRACT 

In this paper, a long-short beta neutral portfolio strategy is proposed based on earnings yields forecasts, where positions 
are modified by accounting for time-varying risk budgeting by employing an appropriate integration measure. In con- 
trast to previous works, which primarily rely on a standard principal component analysis (PCA), here we exploit the 
advantages of a probabilistic PCA (PPCA) framework to extract the factors to be used for designing an efficient inte- 
gration measure, as well as relating these factors to an asset-pricing model. Our experimental evaluation with a dataset 
of 12 developed equity market indexes reveals certain improvements of our proposed approach, in terms of an increased 
representation capability of the underlying principal factors, along with an increased robustness to noisy and/or missing 
data in the original dataset. 
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1. Introduction 

Markets constitute a highly dynamically evolving uni- 
verse, which undergoes through distinct time periods, 
and reacts in diverse conditions and phenomena, thus, 
monitoring the opportunities which appear for investors 
during these periods is of significant importance. An ap- 
proach to take this behavior into account in asset man- 
agement is to exploit the importance of the market factor 
to explain expected returns. More specifically, the part of 
the variance related to the global market component of 
risk can be considered as a proxy of market integration. 
In this context, integration implies that all barriers are 
eliminated and therefore risk premia associated with 
global factors are identical in any of such markets. 

Construction of optimal portfolios by accounting not 
only for the diversification across assets, but also across 
time, attracted the interest of the research community 
during the last decades [1-4]. In a recent work [5], an 
alternative way of taking the time-varying risk aversion 
of the investor into account was proposed. More specifi- 
cally, a simple and easily implemented two-stage process 
was introduced, where optimal weights are determined 
first by suitable optimization techniques and then the 
weights are adjusted according to a suitable integration 
measure. 

By adopting the same assumptions as in [5], based on 
the capital asset-pricing model (CAPM) [6], a portfolio 

can be decomposed in two individual components, name- 
ly, the beta component and the alpha component. The 
beta component corresponds to the part exposed to mar-
ket risk, while here we consider alpha as the portfolio’s 
return generated by a risk exposure unrelated to the mar-
ket risk, where the market portfolio is an international 
portfolio. A pure alpha strategy is employed, which is not 
related to the market risk. 

The developed strategy is based on the intuition that if 
global factors determine strongly the excess returns, then 
less alpha opportunities are left for long-short investors. 
It is then straightforward to use market integration as a 
guide for risk-budgeting decisions. Indeed, one would 
expect that an investment manager would allocate more 
risk to those decisions that he is most confidence in, 
rather than to those he feels less certain about. 

The standard principal component analysis (PCA) was 
employed in [5] as a method to construct a measure of 
integration based on the average percentage of variance 
explained by the first principal factor. However, the 
standard PCA approach may suffer from several draw- 
backs, such as, the sensitivity to outliers, the inaccuracy 
in case of noisy data, or when the original data are cor- 
rupted with missing values. In this study, we overcome 
these limitations by measuring integration in the frame- 
work of probabilistic PCA (PPCA) [7]. More specifically, 
the principal factors are extracted based on an associated 
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probabilistic model for the observed data, as well as for 
the potential noise which may corrupt the data. Then, a 
simple correlation-based integration measure is em- 
ployed, which is related to the market risk component, 
while being highly robust in case of noisy data and/or 
missing values in the original time-series. In addition, 
this process is carried out in overlapping time-windows 
to manage risk through time, in conjunction with an ad- 
aptation of our long-short weights at each date in a way 
such that when markets are strongly integrated, a more 
conservative position is taken, thus, protecting our strat- 
egy from the risk we would face during periods of high 
integration, when markets tend to exhibit a strong direc- 
tional trend. 

The rest of the paper is organized as follows: Section 2 
introduces the main principles of PPCA and analyzes in 
detail the proposed methodology for portfolio optimiza- 
tion. In Section 3, an experimental evaluation of the 
proposed approach is performed on a set of 14 developed 
equity markets, while Section 4 concludes and gives di- 
rections for further extensions. 

2. Market Integration via PPCA 

Market integration is a fundamental concept in financial 
economics [8,9]. Especially for investors, integration 
would provide a broader range of available assets and 
lower risk premia, but at the cost of fewer diversification 
opportunities. Markets are internationally integrated if 
the reward for risk is identical regardless the market one 
trades in. Previous works [10,11] exploited an increase in 
the common component of equity returns data as an in- 
dication of higher integration, although such approaches 
do not measure market integration in the strict sense. 

Motivated by [12], where several distinct measures of 
market co-movements were analyzed, a simple, though 
still efficient, integration measure is designed by extract- 
ing the main factors explaining the cross-sectional equity 
returns in terms of the average percentage of variance 
explained by the first significant principal components. 
However, the performance of the standard PCA may de- 
teriorate in several cases, such as, the presence of a noisy 
behavior in the original data, and/or the case where a 
portion of the original data values may be missing or we 
don’t have access to. The recently introduced framework 
of PPCA [7] is capable of overcoming such limitations, 
and it is exploited in our proposed market integration 
measure to build portfolios for pure alpha investors. 

2.1. Linear Multiple Factor Structure 

In the subsequent analysis, we consider an ensemble of 
M time-series  each one with N obser- 
vations representing equity returns. This ensemble is as- 
sumed to follow a linear multiple factor structure, as fol- 

lows: 

, 1, ,m m r  ,M

,N, , ,1
, 1, ,

L

m t m ml l t m tl
E b t


   r f       (1) 

where L is the number of common factors, which capture 
the systematic component of risk, m  denotes the ex- 
pected return on the m-th asset, 

E

,l tf  is the realization at 
time t of the l-th common factor, ml  is the sensitivity 
of the m-th asset to the movements of the l-th factor, and 

,m t  denotes the noise term. The assumption for a linear 
multiple factor structure yields that the factors can be 
estimated by employing a principal component analysis, 
in our case working in a probabilistic framework. 

b



2.2. Probabilistic PCA 

In this section, the main principles of PPCA are intro- 
duced in brief. A remarkable feature of the typical PCA 
is the absence of an associated probabilistic model for the 
observed data. A probabilistic formulation of PCA is 
obtained from a Gaussian latent-variable model, with the 
principal axes emerging as maximum-likelihood (ML) 
estimates. Moreover, the latent-variable formulation re- 
sults naturally in an iterative, and computationally effi- 
cient, expectation-maximization (EM) algorithm for per- 
forming PPCA. 

A further motivation is that PPCA is characterized by 
some additional practical advantages: a) the probabilistic 
model offers the potential to extend the scope of standard 
PCA. For instance, multiple PPCA models may be com- 
bined as a probabilistic mixture, increasing the explana- 
tory power of the principal factors, while also PPCA 
projections can be obtained in case of missing observa- 
tions, and b) along with its use as a dimensionality re- 
duction technique, PPCA can be employed as a general 
Gaussian density model. The benefit of doing this is that 
ML estimates for the parameters associated with the co-
variance matrix can be computed efficiently from the 
data principal components. Potential applications include 
detection and classification of abnormal changes, which 
may be further employed as an alerting mechanism for an 
investment manager. This later observation is left as a 
separate thorough study. 

Let T
1, , , M   X r r

T

 be the  data matrix 
whose columns are the observed time-series. A latent- 
variable model aims to relate an M-dimensional observa- 
tion vector (rows of 

N M

X ) to a corresponding K-dimen- 
sional vector of latent (or unobserved) variables (rows of 

) as follows: 

TY
T T T T T

1 1 ,N N   X Y W μ1 1 η


         (2) 

where  is the  matrix of latent 
variables, denotes a 

TY N K K M 
W M K  linear mapping be- 

tween the original space and the space of latent variables, 

1N1  is a vector of all ones, Tμ is an M-dimensional 
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parameter vector, which permits the model to have non- 
zero mean, and  is an M-dimensional vector, which 
stands for the measurement error or the noise corrupting 
the observations. 

Tη

T
In the following, let  denote an arbitrary row 

of the matrices 

T T,x y
X  and , respectively. Working in 

a probabilistic framework, we make the following as- 
sumptions for the parameters contained in Equation (2): 

TY

 The latent variables are independent and identically 
distributed (i.i.d.) Gaussians with unit variance, that 
is,  T ~ 0y I,N , where I  is the identity matrix.  

 The error (or noise) model is isotropic Gaussian, that 
is,  ,T 2η ~ 0 IN . 

 By combining the above two assumptions with Equa- 
tion (2), a Gaussian distribution is also induced for 
the observations, namely,   , where 
the observation covariance model is given by 

T 2

T T~ ,x μ CN

 C WW I . 
From the above we deduce that the model parameters 

can be determined by ML via an iterative procedure. We 
also emphasize that the subspace defined by the ML es- 
timates of the columns of W will not correspond, in 
general, to the principal subspace of the observed data. 

The isotropic Gaussian noise model, in conjunction 
with Equation (2), yields that the conditional probability 
distribution of  given  is as follows: 

Tx Ty

 T T 2~ , .x y y W μ IT T TN          (3) 

Then, the associated log-likelihood function is given 
by 

     1 2π ln tr ,
2

N     XC CL lnM     (4) 

where A and  tr A  denote the determinant and the 
trace, respectively, of a matrix A , and the sample co- 
variance matrix is given by 

  TT T T T
1

1
,

1
N

n nnN 
 

 X x μ x  μ       (5) 

with  denoting the n-th observation (row of T
nx TX ). 

Notice also that the ML estimate for Tμ  is given by the 
sample mean of the data. Finally, the estimates for the 
probabilistic principal components, that is, the columns 
of  and the noise variance W 2 , are obtained by it- 
erative maximization of Equation (4): 

2
1

1
,

M

ML j K jM K
 

 


             (6) 

 1 22 ,ML K K ML W E I R          (7) 

where the K columns of the M K  matrix KE  are the 
principal eigenvectors of X , with corresponding ei- 
genvalues , 1, ,j j K   , constituting the K K  di- 
agonal matrix K , and R  is an arbitrary K K  or- 

thogonal rotation matrix. In practice, R  is ignored by 
simply setting R I . Finally, the  matrix N K P  
whose columns are the probabilistic principal factors is 
simply obtained by projecting the data matrix on the 
probabilistic principal components, that is, 

T .MLP X W                 (8) 

2.3. Integration Measure via 2nd-Order  
Statistics 

One of the main aspects of the proposed approach is the 
time-varying management of the risk, through an integra- 
tion measure based on second-order statistics, which is 
applied on overlapping time-windows. More specifically, 
let h denote the window length and s the step size. Then, 
the integration measure we use at time t, Gt, is defined as 

  , ,, t h t1 2
, ,

ˆ ,t m t h tG
1

1 M

mM
  r P          (9) 

where  2ˆ ,  
P

 is the squared correlation between two 
variables,  1, ,t h t  denotes the first principal factor ex- 
tracted by applying PPCA in the time window [t − h, t], 
and  , ,m t h t  is the vector of returns of the m-th asset 
during the time interval [t − h, t]. The integration meas-
ure is computed by rolling the time window every s time 
steps, where the time-scale depends on our specific needs 
(e.g., daily, weekly, monthly).We interpret the periods 
when the returns are highly correlated to the first prob- 
abilistic principal component to be periods of high inte- 
gration. We emphasize again that measuring and moni- 
toring integration is crucial in the pure alpha framework, 
since a high integration period nominates decisions for 
decreased risk to be taken. Moreover, since our data have 
only equity indexes we can use this measure toassess 
integration assuming that most of the times equity mar- 
kets are positively correlated. 

r

2.4. Optimal Portfolio Strategies 

2.4.1. Optimal Long-Short Portfolios 
The construction of an optimal portfolio entails a mean- 
variance optimization over an ensemble of assets expected 
returns and a covariance matrix. For this purpose, accurate 
prediction of returns and covariances are required, with 
the former one, that is, the forecast of returns, being the 
most challenging part.  

Concerning the estimationof the sample covariance 
matrix, an initial estimate is computed for each time win- 
dow [t − h, t], which is then corrected using shrinkage 
(Stein’s estimator) [13,14] to improve the out-of-sample 
performance and reduce the estimation risk.  

Market neutral portfolios are portfolios uncorrelated 
with the market, delivering positive returns. This is only 
possible through the use of short sales, the optimization 
program will return the long and short positions, with the 
additional property of being beta neutral. Among the 
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advantages of market neutral investing, is its ability to 
enhance the performance of any index portfolio by com- 
bining an alpha strategy with an equity index. Our goal is 
to build a zero-beta portfolio by determining optimal long 
and short positions, under the constraint that portfolio’s 
beta should be equal to zero. 

According to modern portfolio theory, an investor is 
interested in maximizing his utility  U w , associated 
with a portfolio , with  being an M-dimensional 
vector of weights (one weight per asset). The vector of 
optimal weights is obtained by solving the following 
optimization problem: 

p w

 arg max U  ww w

p

              (10) 

   arg max ,p
w

E r Var r            (11) 

where   T
p  is the expected return of our port- 

folio, with 
E r  w z

z  being the vector of expected excess re-
turns of the assets, 

 
is the portfolio’s 

variance, with being the estimated covariance matrix 
of the returns, and 

  T ˆ
pVar r  w wΣ

2
Σ̂

0  is the desired portfolio’s variance. 
In Equation (11),   is a regularization parameter repre- 
senting the investor’s level of risk aversion. In order to 
eliminate the exposure to the market or main factor, a 
beta constraint should be introduced: 

T
p  β w β 0  

where β  is the M-dimensional vector of assets’ beta 
values calculated with an equally weighted index (EWI) as 
the market, and pβ  the portfolio’s beta. The constraint of 
zero portfolio’s beta yields an optimal portfolio which is 
not exposed to market risk. Motivated by [15], where it 
was shown that the principal orthogonal linear factor 
dominating the equity returns is highly correlated to an 
EWI, we justify the consistency of employing probabi- 
listic principal factors to quantify co-movements among 
the distinct assets. 

In addition, the EWI assumption results in the follow- 
ing simple expression for the vector of assets’ betas: 

1
T

1 1

,M

M M



 

β Σ1

1 Σ1
              (12) 

where  is the M-dimensional vector of all ones. 1M 

We modify the approach introduced by [5] where 
earning yields are used to estimate the expected returns 
and a beta neutral portfolio is constructed, we suggest 
building a portfolio strategy based on a minimum variance 
portfolio, which does not require an estimate of expected 
returns. We have analyzed the properties of the beta- 
neutral portfolio, which is a portfolio uncorrelated with 
the main factor explaining the returns of the set of assets in 
the system. We argue that this portfolio should be similar 
to a minimum variance portfolio. In fact, a beta neutral 
portfolio should neutralize the exposure to the principal 

factor or market factor, while a minimum variance port- 
folio will be the result of a mix of assets mainly related to 
the smallest risk factors. We can therefor build a mini- 
mum variance portfolio, which has been studied by other 
authors who argue that it is a more stable strategy than the 
full mean-variance optimization, in part because it does 
not rely on an estimate of expected returns. 

1

In the case of a minimum variance portfolio, the ob- 
jective function is modified such that only the risk part is 
optimized. The optimization problem in this case is then: 

 arg min .pVar r 
w

w             (13) 

As we mentioned above, we expected that the selected 
assets in the optimal minimal variance portfolios corre- 
spond to those highly related to the smallest factors and, 
in the same way, the market neutral portfolios will be 
composed of assets not highly related to the main factor, 
therefore related to factors of lower risk. The construc- 
tion of portfolios with minimum variance is therefore an 
indirect way to build an alpha strategy. 

2.4.2. Adjustment of Optimal Weights 
Having calculated the optimal weights (long and short 
positions) by solving the optimization problem expressed 
by Equations (11) and (13), the second stage aims in 
adapting these weights so as to keep a constant risk 
through the strategy or to achieve a time-varying risk 
allocation. Two adjustmentsare considered: 1) reduction 
of the exposure to the market and enforcement to constant 
volatility of our portfolio for the initial strategy, and 2) 
adaptation of the corresponding weights by employing the 
values of the computed integration measure Gt for the 
scaled strategies.  

As mentioned before, one the main purposes for moni- 
toring the degree of integration through time is to warn 
investors for periods of high integration, where fewer 
opportunities are left to generate alpha, and thus, they 
should take more conservative decisions. 

The approach introduced in [5] was the first attempt to 
account for time variations of a risk budgeting rule, which 
is of significant importance. This, in conjunction with the 
robustness of the extracted probabilistic principal factors 
against potentially distinct noise levels across time or 
among different assets, as well as the inherent property to 
account for corrupted values in the original data, make our 
proposed portfolio construction method even more power- 
ful when compared with the method introduced in [5]. 

More specifically, the integration measure Gt, given by 
Equation (9), is employed to decide for the units of risk, 
which could be taken at each period of time.The rule we 
propose for the adaptation of the weights  is as fol- 
lows: for small integration values, the portfolio is allowed 
to have the maximum risk exposure, which is equivalent 
to using the optimal weights obtained from the solution of 

w
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the optimization problem defined by Equation (11). On 
the other hand, for high integration values, the risk is 
reduced by reducing the weights of every position pro- 
portionally to its integration value.  

The vector of optimal weights  is scaled by an 
appropriate scaling factor resulting in the following 
scaled weights 

w

min

max

1 t
S

G G

G
  
 
 

w ,w            (14) 

where tG  is the integration value at time t after remov- 
ing the mean computed over all the overlapping windows, 
so as to use the same thresholds for the whole time pe- 
riod of study. The lower and upper bounds of the integra- 
tion, min and max , respectively, are thresholds which 
specify when the integration is low, and therefore higher 
possibilities to generate alpha exist, and when the inte- 
gration reaches an upper limit, above which there are 
very few chances to generate alpha. Equation (14) im- 
plies that the optimal weights  are modified linearly 
for integration values ranging in the interval 

G G

w
 min max,G G , 

while for integration values larger than max the weights 
are set equal to zero and for integration values smaller 
than min  the optimal weights are left unchanged. In 
practice, the values of the two thresholds minG  and 

max  can be set based on the quantiles of the distribution 
of the historical integration measure. 

G

G

G

3. Experimental Evaluation 

The proposed PPCA-based approach to analyze a dataset 
is used to measure integration and build alpha generating 
portfolio strategies for a set of financial data. We ana- 
lyzed a group of 12 developed equity markets (Austra- 
lia, Canada, France, Germany, Hong Kong, Japan, Sin- 
gapore, Spain, Sweden, Switzerland, United Kingdom, 
and USA), for which liquid index futures contracts are 
available in order to enable short positions in the port- 
folio strategies.  

Closing prices at a daily frequency for the main futures 
indexes of each country have been collected, expressed 
in local currency, covering the period between January 
2001 and January 2013. The use of data in local curren- 
cies can be advantageous in terms of diversification of 
international portfolios, however any undesired exposure 
to a specific currency can be hedge using several meth- 
ods which do not need to be considered in this study. 

During the selected time period, all markets had un- 
dergone through the two main markets crisis of recent 
years: the IT-bubble and the subprimes and debt crisis. 
Both crises are followed by a recovery period, thus, of- 
fering a good opportunity to study integration and long- 
term portfolio strategies. We note also that, in order to 
emphasize the short-run movements of the data, the rela- 

tive change between consecutive time instants is used. 
This can be measured by computing the first difference 
of the natural logarithm (dlog) of the time-series samples. 
Thus, a preprocessing step is applied on the original en- 
semble of the M time-series as follows: 

   , , , 1ln ln , 1, , .m t m t m t m  r r r  M        (15) 

Besides, to overcome the limitation of significantly 
different variances or expression in different units (as it 
is the case in our dataset with the different currencies) 
between the several time-series, a further normalization 
to zero mean and unit variance of the dlog time-series is 
performed. The performance of the proposed method is 
evaluated for a window length h = 250 and step-size s = 
25. 

3.1. Performance Measures 

To analyze the risk-adjusted performance of the different 
portfolio strategies we use three different indicators [16]: 1) 
the Sharpe ratio (SR), 2) the Sortino ratio (SoR) and 3) the 
maximum drawdown (MDD). For all these three measures 
we define Pr  as the portfolio’s return and Fr as the return 
of a risk free asset.  

The Sharpe ratio is defined as the ratio of the average 
excess return of an asset over the risk-free rate and the 
volatility of this excess return: 

 
 

SR .
p F

p

E r r

r


               (16) 

This ratio is the most common risk-adjusted perfor- 
mance measure used in financial studies. Its main draw- 
back is that it is only useful for symmetrical distributions 
of returns.  

The Sortino ratio is a variation of the Sharpe ratio, 
where the return is adjusted by the downside volatility, 
the volatility calculated only with negative returns. The 
Sortino ratio is defined as 

 
 

SoR .
p F

p

E r r

r 


               (17) 

Since it takes into account the skewness of the distri- 
bution of returns, it would therefore be a better risk-ad- 
justed performance indicator for payoffs with higher 
downside risk. 

The maximum drawdown, which is defined as the 
maximum cumulated continuous loss over a given period, 
measures the degree of extreme losses. We also present 
the ratio of the maximum drawdown divided by the vola- 
tility, which indicates the degree of extreme loss in terms 
of the standard deviation of the returns. In particular, a 
lower maximum drawdown could be associated with 
lower overall risk. Moreover, this ratio standardizes the 
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MDD measure in order to make it possible to compare 
payoffs with different volatilities. 

3.2. Extraction of Probabilistic Principal Factors 

In this section, the characteristics of the probabilistic 
principal factors extracted with PPCA are exhibited for 
the complete dataset. Figure 1 shows the correlation co- 
efficients for the 12 market indexes from the initial data 
set. As it can be seen, all markets are positively corre- 
lated, with the highest correlation appearing between the 
CF1 and GX1 indexes compared to Z1 and ES1 indexes. 

For a visual inspection of the difference between the 
principal components extracted with PCA and PPCA, 
Figure 2 shows the loadings of the original data TX  in 
the space of the first two principal components, for the 
whole time period. We observe that the effect of the 
probabilistic approach for the specific dataset results in a 
scaling and rotation of the principal axes, when com- 
pared with the typical PCA. Concerning the discrimina- 
tive capability of both PCA and PPCA, at least for the 
first two principal components, the same behavior is ob- 
served, that is, the second principal components can be 
used to split the original variables (indexes) into the same 
two subsets. 

However, one of the major advantages of PPCA, in 
contrast to PCA, is its ability to estimate simultaneously 
the underlying noise variance 2 . This feature can be 
very important for further processing, such as, for de- 
signing adaptive and more accurate predictors of the 
local or global trends, by taking into account the spurious 
variations caused by the underlying noise. In Figure 3, 
the time-varying estimated noise variance is shown for (h, 
s) = (250, 25). As it can be seen, large variations of the 
estimated noise variance appear across time, thus, reveal- 
 

 

Figure 1. Correlation coefficient matrix of the 12 indexes. 

 

 

Figure 2. PCs for each variable (index) and PC score for 
each observation. 
 

 

Figure 3. Estimated noise variance for (h, s) = (250, 25). 
 
ing the significance of its accurate estimation for further 
actions, such as, trend estimation and forecasting. More- 
over, interestingly, the noise variance acquires its local 
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maximum values in periods close to the periods of crises. 
Concerning the evolution of the integration measure Gt, 

Figure 4 shows the values of Gt for the PCA and PPCA, 
for (h, s) = (250, 25). As it can be seen, the dominant 
principal component extracted by both PCA and PPCA 
results in the same mean squared correlations with the 12 
market indexes. This was expected, since from Figure 2, 
PPCA results in scaled and slightly rotated principal 
components. 

Although the integration measure defined by Equation 
(9) results in similar values for both PCA and PPCA, we 
emphasize once again the superiority of our PPCA-based 
approach, which is also capable of monitoring the time- 
varying behavior of the underlying noise component, as 
well as its robustness against corrupted data, as it will be 
shown experimentally in a subsequent section. 

3.3. Long-Short Strategies Payoffs 

In this section, the efficiency of the proposed optimal 
portfolio construction method is evaluated. More spe- 
cifically, the portfolio positions are calculated as the 
minimum variance optimal weights. Besides, the risk is 
controlled after each optimization by adjustment of the 
weights to a target volatility of 10%. As our optimized 
portfolio has long and short positions, it is possible to 
decrease (increase) the overall portfolio risk by reducing 
(enlarging) each position by a given proportion. 

In the optimization process, the matrix  is used, 
which is obtained from a historical covariance matrix 
adjusted with a shrinkage method. We build a minimum 
variance portfolio at each estimation date with the shrunk 
covariance matrix estimated from the matrix of excess 
returns for each window. The proposed strategy has a 
Sharpe ratio of 0.20%, a Sortino ratio of 0.35%, and a 
maximum drawdown of 44.3%. The results are summa- 
rized in Table 1. 

Σ̂

Integration is calculated for rolling windows of one 
 

 

Figure 4. Integration measure Gt for PCA and PPCA, with 
(h, s) = (250, 25). 

year length (h = 250) every 25 observations. As we men- 
tioned before, we have observed that high integration 
allows very few opportunities to generate alpha. This is 
illustrated in Figure 5, which shows the time-relation be- 
tween our proxy of market integration and the mini- 
mum variance strategy. 

We observe that the strategy suffers during periods of 
high integration of the equity markets. In addition, inte- 
gration spikes during periods of crisis, which make this 
information useful to adjust the total risk taken at each 
date. 

We construct a scaling factor for our long-short weights- 
based on the level of integration in order to structure a 
downside protection that alerts during periods of high inte- 
gration, when the market is highly drifted and there are few 
possibilities of alpha generation. The idea is to transform 
the integration measure, which is a variable defined in the 
range [0,1], where 1 indicates perfect integration and 0 
indicates no integration, into a variable defined in the same 
range but where 1 indicates that the optimal weights from 
the optimization should be considered and 0 indicates that 
no risk should be taken.   

Three simple scaling methods are employed to transform 
the integration level: 1)  1 tG , 2) using Equation (14), 
for levels of Gt between minG d maxG d outside their 
 

 an an

Table 1. Risk adjusted performance measures. 

 Scaled by integration strategies 

 

 
MV (1 − Gt t min max) (1 − (G  − G )/G )  det

t1 G

Return 2.25 2.02 1.20 2.53 

V

− − −  −  

olatility 10.22 4.74 5.90 4.07 

SR 0.20 0.25 0.43 0.55 

SoR 0.35 0.39 0.44 0.21 

MDD 44.33 18.36 22.75 14.96

MDD/S −4.34 −3.87 −3.85 −3.68 

 

 

Figure 5. Minimum variance strategy and integration. 
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ran al ge we set the levels equal to 0 for maxtG G  and equ
to 1 for min ,tG G  and 3)  1 de

tG det
tG is the 

linearly de eries of ptimal w ts are 
scaled according to these thre ethods and the perform- 
ance of each strategy is computed. For the second scaling 
method, we set the parameters minG to be the 20th percent- 
tile of tG  observed up to the es tion point and maxG to 
be equa he 80th percentile that we consider a high el 
of integration.  

The average v

t ,where 
e o-trended s

to t

tG . Th
e m

tima

eigh

l lev

alue of for the whole period of study is 
0.

ods is shown to be the 
th

t to note that all the scaled strategies 
ha

re 6 presents the basic minimum variance portfolio 
str

3.4. Performance of PPCA with Missing Data 

 of PPCA to extract 
pri

tG

n  
x  

rat

56. The minimum miG for the whole series of observa- 
tions is 0.43 and G is 0.66. We compare the basic 
minimum variance egy with the different proposed 
strategies with the risk adjusted by integration. Sharpe ra- 
tios improve from 0.2 to 0.41 on average for the scaled 
strategies. The Sortino ratio is equal to 0.35 for the basic 
strategy and does not change on average for the risk budg- 
eting strategies. However, it is different for each of the 
three scaling methods. The ratio of maximum drawdown 
over volatility varies from 4.34 to 3.80, resulting in a 0.54 
improvement of standard deviation. 

The best of the three scaling meth

ma

st

ird one, which improves the Sharpe ratio of the standard 
minimum variance strategy from 0.20 to 0.55 and the ratio 
of maximum drawdown over volatility from 4.34 to 3.68, 
while the size of the extreme loss of the strategy is reduced 
by 0.66 standard deviations. All the above results are sum- 
marized in Table 1. 

It is also importan
ve improved the risk-adjusted performance indicators. As 

a general conclusion we see that the use of a time-varying 
risk budgeting, based on an integration measure expressed 
in terms of the dominant probabilistic principal factor, im- 
proves the payoff of the basic minimum variance strategy 
with the protection against loses during certain critical pe- 
riods. 

Figu
ategy compared to the improved by integration scaling 

strategies. We observe that the risk-budgeting strategies are 
characterized by reduced levels of risk during the periods 
of high integration, which was exactly our desired goal. 

In this section, we study the robustness and efficiency of 
PPCA to extract the dominant principal factors, and sub- 
sequently to calculate the integration measure tG  in 
case of missing data. This is often the case whe we 
don’t have full access to some closing values of the mar- 
ket indexes, or when those values may be hidden on 
purpose. We emphasize that, in contrast to previous ap- 
proaches, it is not required to fill in the missing data, but 
PPCA proceeds by fitting the remaining data with a 
probabilistic model. This capability is not available with 
the standard PCA, which would need the reconstruction 

of the missing observations in some way, prior to the 
construction of the optimal portfolio. We also note that 
the advantage of PPCA to extract accurately the principal 
factors to be used for the calculation of the associated 
integration measure in case of missing data cannot be 
incorporated in the current portfolio optimization strat- 
egy. The reason is that, apart from the integration meas- 
ure, the proposed risk-budgeting strategies also employ 
the full data prior to the current date, which requires fill- 
ing in the missing data. However, the design of appropri- 
ate strategies without necessitating the recovery of miss- 
ing values is left as a separate study. 

In order to evaluate the efficiency

n 

ncipal factors and estimate accurately the underlying 
noise variance in case of missing data, a varying per- 
centage  10%, ,50%  

 
of missing elements from 

the origin trix al log-returns ma T
1, , MX r r 

 
is ig- 

nored uniformly at random. 
Figure 7 shows first that oach is the PPCA-based appr

ro

4. Conclusions and Future Work 

 optimization 

bust in estimating accurately the variance of the un- 
derlying noise component, even in the extreme scenario 
of 50% of missing values. Finally, and most importantly, 
Figure 8 verifies the efficiency of the proposed simple 
integration measure between the given market indexes 
and the dominant probabilistic principal factor, even for 
an extreme situation of missing observations at the order 
of 40% of the original data. 

In this paper, we introduced a portfolio
method for pure alpha investments, by exploiting a mar- 
ket integration measure based on second-order statistics 
between the original data and the dominant probabilistic 
principal factor. The proposed time-varying risk-budget- 
ing strategies were characterized by reduced levels of 
risk during the periods of high integration, thus, verifying 
the efficiency of our method to be used as an alerting 
 

 

Figure 6. Minimum variance strategy compared to s aled 
strategies with the integration measure Gt based on PPCA. 

c
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Figure 7. Estimated noise variance for (h, s) = (250, 25), and 
for a varying percentage of missing observations  

 θ 10%, ,50%  . 

 

 

Figure 8. Integration measure Gt for PPCA, with ( , s) = 
(250, 25), and for a varying percentage of missing observa-

h
 

tions  θ 10%, ,50%  . 

 
mechanism for pure alpha investors. 

ing estimated noise
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