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ABSTRACT 

This paper examines optimal portfolios with discounted stochastic cash inflows (SCI). The cash inflows are invested 
into a market that is characterized by inflation-linked bond, a stock and a cash account. It was assumed that inflation- 
linked bond, stock and the cash inflows are stochastic and follow a standard geometric Brownian motion. The vari- 
ational form of Merton portfolio strategy was obtained by assuming that the investor chooses constant relative risk 
averse (CRRA) utility function. The inter-temporal hedging terms that offset any shock to the SCI were obtained. A 
closed form solution to our resulting non-linear partial differential equation was obtained. 
 
Keywords: Optimal Portfolio; Stochastic Cash Inflows; Inflation-Linked Bond; Variational Form; Intertemporal 
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1. Introduction 

This paper consider the optimal portfolio strategies with 
valuing expected discounted cash inflows. It was assumed 
that the underlying assets and cash inflow process follow 
a standard geometric Brownian motion. The investment 
of the investor’s SCI into a cash account, an inflation- 
linked bond and a stock was considered. The SCI and 
stock price were correlated with inflation and stock mar- 
ket risk. 

In a related literature, [1] studied an optimal invest- 
ment problem in a continuous-time framework where the 
interest rate follows the Cox-Ingersoll-Ross dynamics. 
They obtained a closed form solution for the optimal 
investment strategy under a complete market framework. 
They assumed that the investor chooses CRRA utility 
function. [2] considered the process of finding the opti- 
mal portfolio, optimal consumption and the efficient 
frontier for a small agent in an economy. They also 
considered financial market that composed of two 
sources of uncertainties: an m-dimensional Brownian 
motion and a continuous time Markov chain. They found 
theoretically, that the regimes of an economy have a sig- 
nificant impacts on the portfolio and consumption deci- 
sion as well as on the efficient frontier of a small investor. 
[3] studied the present value and overcome the difficulty 
of independence by reversing the order of the cash flow. 
He found that similar recursive formulas for the present 
value is also applicable to the future value of the ex- 

pected returns. [4] considered the problem of construct- 
ing a portfolio of finitely many assets whose returns are 
described by a discrete joint distribution. They proposed 
a new portfolio optimization model involving stochastic 
dominance constraints on the portfolio return. [5] studied 
how portfolio composition changes with individual wealth. 
[6] considered the present value of expected future con- 
tribution into the pension fund. [7] investigated the sto- 
chastic dynamics of depository financial institution assets, 
liabilities and capital under the influence of macroe- 
conomic factors. They adopted dynamic programming 
techniques in their optimization process. They provided 
an analysis of the economic aspects of the depository 
financial institution modeling. [8] studied a portfolio pro- 
blem of a fund manager who wants to maximize the ex- 
pected utility of his terminal wealth in a complete finan- 
cial market. He found that the optimal portfolio is formed 
by three components: a speculative, an hedging, and a 
preference-free hedging component. He obtained a close 
form solution to the asset allocation problem. [9] con- 
sidered the optimal portfolio selection problem with port- 
folio constraints. They derived the general utility func- 
tion using the martingale approach. They found that 
using CRRA utility function, optimal policies can be 
obtained explicitly when there are minimum capital re- 
quirements. ([10,11]) studied the optimal portfolio ma- 
nagement in the accumulation phase of a defined con- 
tribution pension scheme. They obtained portfolio values 
with hedging strategies for a pension plan member. In 
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this paper, we consider the optimal portfolio and invest- 
ment strategies involving cash inflow valuation over time. 
We obtain explicitly, analytical solution to our resulting 
HJB equation. The risk-free rate is assume to be deter- 
ministic. 

The remaining parts of the paper is structured as 
follows: In Section 2, we described the structure of the 
financial market; In Section 3, we consider the dynamics 
of the discounted present value of expected SCI process; 
In Section 4, we consider the wealth process of the 
investor; In Section 5, we consider the valuation of the 
discounted present value of expected SCI process of the 
investor as well as the sensitivity of the present value of 
the SCI; In Section 6, we consider the optimization pro- 
gram and optimal portfolio and optimal solution of the 
investor’s wealth using CRRA utility function; Section 7 
concludes the paper. 

2. The Model 

Let  , ,F P

 
 be a probability space. Let 

  : 0,tF F t  TF , where 

    , :t F S s I s s t
I S




. The Brownian motions  

      ,W t W t W t  is a 2-dimensional process, de- 
fined on a given filtered probability space  
 , , ( ),F F PF ,  0,t T

t


, where  is the real world 
probability measure,  the time period,  the terminal 
time period, 

P
T

IW

 SW t

t  is the Brownian motion with re- 
spect to source of uncertainty arising from inflation and 

 is the Brownian motion with respect to source of 
uncertainty arising from the stock market. It is assumed 
that the market is arbitrage-free, complete and con- 
tinuously open between time period  and T . 0

Financial Model 

The dynamics for the cash account with the price  Q t  
at time  is given by t

   
 

d

0 1;

Q t rQ t t

Q




d ,
             (1) 

where  is the short term interest rate. The stock price r
 S t  at time t  is given by the dynamics: 

      
 

1

0

d d d

0 ;

S t S t t W t

S s

   



,
   (2) 

where,   is the expected growth rate of stock price,  

 2
1 , 1S S      and 0 1.   S  is the vola-  

tility of stock. The price of the inflation-linked bond 
  ,B t I t

  
 is given by the dynamics: 

      
  

, d d ,

0, 0 ;

I I BB t I t r t W t

B I b

       


d ,B t I t
 (3) 

where,  ,0B I   is the volatility of inflation-linked 
bond, I  is the market price of inflation risk,  I t  is 
the inflation index at time  and has tha dynamics: t

     d d d I
I   ,I t qI t t I t W t   

where  is the expected rate of inflation, which is the 
difference between nominal interest rate,  real interest 
rate 

q
r

r  and I  is the volatility of inflation index. Since 
the market is complete, we have that  

2
1

0
: ,

1

IB

S S


   

  
          

     (4) 

: ,I I r       .           (5) 

Therefore, the market price of market risk is given by 

1

2

: ,

1

I

I
S I

S

S

r


    


 



 
          
    

    (6) 

where, S  is the market price of stock market risk. The 
exponential process 

    21
: exp ,0 ,

2
Z t W t t   t T      

 
is assumed  

to be a martingale. We now define the state-price density 
function by  

   
     : exp

0 .

Z t
t Z t

Q t

t T

   

 

,rt
 

3. Dynamics of Stochastic Cash Inflows 

The dynamics of the stochastic cash inflows with price 
process,  D t  is given by  

      
  0

d d d

0 ;

D ,D t D t k t W t

D D

   


     (7) 

where,  1 2,D D
D     is the volatility of the cash in-  

flows and  is the expected growth rate of the cash 
inflows. 1

k
D  is the volatility arising from inflation and 

2
D  is the volatility arising from the stock market. Fi- 

gure 1 presents the simulated diffusion paths of (7). 
Figure 1 was obtained by setting , 0.099k 

1 0.25D  , , , 2 0.36D  0 100D  0t t
dt

nt


 , 10t  ,  

0 0t   and 1000nt  . 
Applying It o  lemma to (7), we obtain ˆ

   2

0

1
exp .

2 D DD t D k t W t         
  

   (8) 
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Figure 1. Simulated diffusion paths of the stochastic cash 
inflows. 

4. The Wealth Process 

Let  X t  be the wealth process and  

      ,I St t     t  be the portfolio value at time ,  t

where  is the portfolio value in inflation-linked 
bond and  is the portfolio value in stock at time t. 
Then, 

 I t
S

 
t

   t 
t

0 1t I S  is the portfolio value in 
cash account at time . Therefore, the dynamics of the 
wealth process is given by  

t

     

   
  
  

        
   

 

( )

( )

,

,

1

0 .

S

I

I S

dS t
dX t X t t

S t

dB t I t
X t t

B t I t

dQ t
,X t t t D t

Q t

X x

 

 

    



dt

 (9) 

Substituting (1), (2) and (3) into (9), we obtain 

         
      

 
,

0 .

dX t X t r t D t dt

X t t dW t

X x

   

  



      (10) 

5. The Discounted Value of SCI 

In this section, we determine the value of expected 
discounted SCI. 

Definition 1: 
The discounted value of the expected future SCI is 

defined as 

   
   dT

t t

u
t E D t u

t

 
     

       (11) 

where,  |tE E F   t is the conditional expectation with 
respect to the Brownian filtration  tF   

0t
 and

     expt Z t rt    is the stochastic discount factor 
which adjusts for nominal interest rate and market price 
of risks for stock and inflation-linked bond. 

Proposition 1: 
Suppose  t  is the discounted value of the ex- 

pected future SCI, then 

 
      exp 1

.
D

D

D t k r T t
t

k r

 

 

    
 

  
  (12) 

Proof. By definition 1, we have that 

       
   

d
T

t t

u D u
t D t E u

t D t

 
     

       (13) 

Applying change of variable on (13), we have 

       
   0

= d
0 0

T t D
t D t E

D

 


 
    

      (14) 

Applying parallelogram law and martingale principles 
on (14), we have 

   
      exp .
0 0 D

D
E k r

D

 
  

 
      

 

Therefore, 

       0
exp d .

T t

Dt D t k r    


      (15) 

Integrating, we have 

 
      exp 1

.
D

D

D t k r T t
t

k r

 

 

    
 

  
 (16) 

Figure 2 was obtained by setting , k = 0.099, 
r = 0.04, , , 

0 100D 
0.091 0.25D  2 0.36D    , 0.4S  , 

0.3I  , 0.6   and 0.08I  . 
At 0t  , we obtain the present discounted value of 

future SCI to be 

 
   0

0

exp 1
0 .

D

D

D k r T

k r

 

 

   
   

  
   (17) 

If Dr k     and we allow T  i.e., 

   0

0

exp 1
lim lim ,

D

T T
D

D k r T

k r

 

  

    
  

    
 

0 , .

D

D
D

r k

D
r k

r k

 

 
 

  

   
  

 

For a deterministic case, we have the present dis- 
counted value future deterministic cash inflows to be 
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Figure 2. The flow of the discounted value of SCI. 
 

   0

0

exp 1
.

D k r T

k r

 
 


    (18) 

Hence, 

   0

0

0

exp 1
lim lim ,

, .

T T

D k r T
r k

k r

D
r k

r k

 

  
   

  

 


 

This shows that as ,  converges to  T  0
0

D

D

r k   
, provided Dr k    . 

For the deterministic case, it shows that as , T 

0  converges to 0D

r k
, provided . r k

Figure 3 was obtained by setting , k = 0.099, 
r = 0.04, , , 

0 100D 
0.091 0.25D  2 0.36D    , 0.4S  , 

0.3I  , 0.6   and 0.08I  . 
Figure 2 represents the flow of the discounted value of 

stochastic cash inflow in the investment at time  and 
Figure 3 represents the present value of discounted 
future SCI at time  

t

.t
We now consider the sensitivity analysis of 0 .

 
Pro- 

position 2 establishes this fact. 
Proposition 2: 
Let Dk r      , then 

 0
0 exp .D T

T






 

Proof. The results follow by taking the partial deri- 
vatives of 0  with respect to T , , ,  0D r D  and 

, respectively. k

0 0

0 0

1 1
1 ;

D D T
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Figure 3. The present discounted value of future SCI.

  

 0 0
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1
1 ;T D

r T



       

 

0 0 ;
D r



 


 

 

 0 0
02

1
1 .T D

k T



0

r

       


   
 

Table 1 shows the sensitivity analysis of the dis- 
counted value of the SCI. 

Proposition 3: 
Suppose that Proposition 1 holds, then  

        
  .

D Dd t t r dt dW t

D t dt

         


 (19) 

Proof. Finding the differential of both sides of (16) 
and then substitute (7), we have 

 
     

  

     
        

      

     
  

 
        

exp 1

exp

exp 1

exp 1

exp 1

.

D

D

D D

D D

D t T t
d t kdt dW t

D t
T t dt

D t
T t kdt dW t

T t dt D t dt

D t T t
r dt dW

D t dt

t r dt dW t D t dt






 


 


 


  



  

 
    

  

    

   

 
  



      

 t 

 

Let  V t  be a value process at time . We defined  t
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Table 1. Simulation of the sensitivity analysis. 

T 0

0D




 0

1

D



 0

2

D



 0

T




 0

r




 0

I



 0

S



 0

k




 

1 1.0022 −16624 −20005 0.4359 −207850 −51962 −74826 207850 

2 2.0087 −14857 −17875 0.8738 −185720 −46429 −66858 185720 

3 3.0197 −13079 −15736 1.3136 −163490 −40872 −58855 163490 

4 4.0350 −11293 −13587 1.7552 −141160 −35290 −50818 141160 

5 5.0548 −9499 −11429 2.1988 −118740 −29685 −42746 118740 

6 6.0790 −7697 −9261 2.6444 −96220 −24054 −34638 96220 

7 7.1077 −5888 −7084 3.0918 −73600 −18400 −26495 73600 

8 8.1408 −4070 −4897 3.5413 −50880 −12720 −18317 50880 

9 9.1785 −2245 −2701 3.9926 −28060 −7016 −10103 28060 

10 10.2207 −412 −495 4.4460 −5150 −1287 −1853 5150 

 
 V t  as 

     :V t X t t  ,           (20) 

where,  X t  satisfy (10) and  satisfy (19).  t
Proposition 4: 
Let  V t  satisfy (20),  X t  satisfy (10) and  t  
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 (21) 

Proof. Finding the differential of both sides of (20) 
and then substitute in (10) and (19), the result follows. 

6. Optimization of the Value of Wealth 
Process 

We define the general value function  

           , , , ,J t v E u V t X t t X t x t        

where   u V t  is the path of  V t . Define   to be 
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Let  ,U t v  
he utility

ooth,

be the solution of the HJB equation (22). 
Since t  function is concave and the value f
tion is sm

unc- 
 i.e.,     1,2, 0,U t V C T R , then (22) 

is well-defined. Hence, we have the following: 

    x xx D

HV
U x t U U

t
 

0

X
      




 (24) 
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This is the resulting HJB equation of our problem. 

Therefore, by applying Itô lemma on (21), we obtain 
the following HJB equation: 
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Proposition 5: 
The solution of the HJB equation (26) is of the form 
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Proposition 6: 
Suppose that  ,U t V  is the solution of the HJB 

Equation (26), then the optimal portfolio in inflation- 
linked bond, stock and cash account are given by 
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Figure 4. The expected value of utility of wealth for diffe- 
rent values of γ. 
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From (33), the first term represents the classical port- 
folio strategy while the second term represents the inter- 
temporal hedging strategy that offset any shock to the 
SCI at time t. From (34),  

      

   

2

2 2

1

1

I I S S I

I S

r V

X t

       

   





   



t
 represents  

the classical portfolio strategy at time  and  t

   
 

2 1

21

D D
I S

I S

t

X t

    

   

 


 represents the intertemporal  

hedging term that offset shock resulting from the SCI at 
time . From (35), observe that these hedging terms can 
be tra sfer to cash account at time or it can be rein- 
vest in stock and in inflation-linked b d at time 
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In Figures 5-7, we set 0 100D  , 0.04r  , 0.k , 099
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0.4S  , 0.3I  , 0.08I   and 0.10  . Figure 5 

shows the portfolio value in inflation-linked bond. We 
found that the optimal portfolio value in inflation-linked 
bond at time 10t   is 0.16 (or 16

 
 at time t

%). Figure 6
We found that

10  is 1.

 shows 
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001562 (or 

the portfolio 
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value in stock.
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Figure 5. Portfo value in inflation-linke ond. 

 

val k. 
 

Figure 6. Portfolio ue in stoc

 

Figure 7. Portfolio value in cash account. 
 
account. We found that the optimal portfolio value in cash 
account at time t = 10 is −0.161562 (or −16.1562%).  

7. Conclusion 

The astic 
sh inflows was considered. It was assumed that the cash 

inflow, stock and inflation-linked bond are stochastic and 
follow a standard geometric Brownian motion. The sen- 
sitivity analysis of the present value of the discounted cash 
inflows was carried out in this paper and the results are 
presented in Table 1. Analytical solution to the resulting 
HJB equation was obtained. It was found that the smaller 
the value of 

optimal portfolio strategy X with discounted stoch
ca

  (which measure the level of risk the 
investor is willing to take), the higher the expected value 
of wealth, and vice versa. The optimal portfolio values in 
stock, inflation-linked bond and cash account were ob- 
tained. The resulting optimal portfolio values in stock and 
inflation-linked bond were found to involve intertem- 
poral hedging terms that offset any shock to the SCI. 
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