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ABSTRACT 

This study develops a new conditional extreme value theory-based model (EVT) combined with the NIG + Jump model 
to forecast extreme risks. This paper utilizes the NIG + Jump model to asymmetrically feedback the past realization of 
jump innovation to the future volatility of the return distribution and uses the EVT to model the tail distribution of the 
NIG + Jump-processed residuals. The model is compared to the GARCH-t model and NIG + Jump model to evaluate its 
performance in estimating extreme losses in three major market crashes and crises. The results show that the conditional 
EVT-NIG + Jump model outperforms the GARCH and GARCH-t models in depicting the non-normality and in pro- 
viding accurate VaR forecasts in the in-sample and out-sample tests. The EVT-NIG + Jump model, which can measure 
the volatility of extreme price movement in capital markets due to unexpected events, enhances the EVT-based model 
for measuring the tail risk. 
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1. Introduction 

Along with the Asian financial crisis of 1997 that caused 
severe slumps of currencies and the devaluation of stock 
markets in Asian countries, the global financial crisis that 
occurred in 2007 represents one of the serious financial 
crises that triggered extreme volatility in capital markets 
of both developed and developing countries. It led to the 
collapse of banks, financial institutions and conglomer- 
ates, bringing serious loss to creditors and investors. In 
response to these events, regulators have become more 
concerned about the protection of financial institutions 
against these catastrophic market risks. Value-at-Risk 
(VaR) has become a standard measure for risk manage- 
ment, yet it is well known that the distributions of the 
return series in most financial markets are heavily tailed. 
Traditional risk measuring models such as Riskmetrics 
focus on the whole distribution and fail to provide an 
accurate measure of extreme price movements. Addi- 
tionally, the traditional VaR method has been criticized 
for violating the requirement of subadditivity [1,2]. 

To account for the heavily tailed distribution in finan- 
cial returns, researchers have extensively derived and 
modified VaR models. Most researchers have developed 
VaR models that incorporate either asymmetric distribu- 
tions or the extreme value theory. For instance, Bali and 
Theodossiou [3] derived a conditional VaR with a skew- 
ed generalized t. 

Longin [4] proposed considering the estimation of 
capital requirements as a problem of extreme value cal- 
culation. Longin also presented an approach for comput- 
ing VaR using the EVT model. The parametric extreme 
value method that focuses on the extreme tails of the 
distribution allows for an extension of the curve beyond 
the range of data [5]. This allows the EVT model to es- 
timate extreme losses better than classical methods that 
use normal distributions [6]. The unconditional EVT has 
been applied to measure the downside risk in equity 
markets [7]. 

Bali [8] also introduced a generalized extreme value 
approach to financial risk measurement. Bali [9] tested 
an asymptotic distribution for extreme changes in US 
Treasury yields and showed that the extreme value ap- 
proach provided a more accurate estimation of VaR than 
standard models. Bali and Neftci [10] developed a condi- 
tional approach to derive VaR by specifying the location 
and scale parameters of the generalized Pareto distribu- 
tion (GPD) as a function of past information, which was 
found to provide an accurate forecast of the occurrence 
and size of extreme observations. The EVT has been 
commonly applied in both financial and insurance risk 
management [11-13]. Bali [8] proposed a Box-Cox gen- 
eralized extreme value distribution model to capture ex- 
treme events in financial markets.  

Although the unconditional EVT approach provides 
asymptotic results in the distribution of extreme loss for 
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long-term investment decisions, the primary concern for 
a risk manager is the possibility of loss due to adversarial 
market movement during the next couple of days, where 
the dynamics of the time-varying volatility are important. 
Hence, it seems more appropriate to use the conditional 
EVT method when estimating day-to-day risk exposures 
and short-term risk management [14]. 

Smith [15] suggested an approach to deal with sto- 
chastic volatility via a change-point model for extreme 
value parameters. McNeil and Frey [16] attempted to 
estimate VaR by incorporating the GARCH model with 
threshold-based EVT tools, while Byström [14] modified 
the approach by creating a conditional VaR estimate us- 
ing the block maxima method. Their conditional models 
corrected the clustering of extreme events due to stochas- 
tic volatility. The models were able to capture the dy- 
namics of the current volatility better than the uncondi- 
tional model [16]. Bali and Weinbaum [17] introduced a 
daily conditional extreme value volatility estimator in 
view of the significant persistence in the parameters for a 
GEV distribution of high frequency returns within a 
fixed time interval. Approaches for VaR estimation that 
use GPD and empirical distribution functions to model 
tail events and to capture normal market conditions, re- 
spectively, have been proposed by some researchers [18].  

Byström [14] used both the block maxima approach 
and the threshold approach in estimating conditional VaR 
and found that the two models performed similarly. 
Hence, this study was extended to create the conditional 
VaR by first using the regime switching model to con- 
struct the conditional volatility of the distribution. Then, 
the EVT model using the threshold method was em- 
ployed to estimate the distribution of the residuals. In 
1982, Engle [19] proposed the autoregressive condition- 
ally heteroskedastic (ARCH) model in estimating market 
volatility. Subsequently, the GARCH model was devel- 
oped by Bollerslev [20] and Taylor [21]. Variations and 
enhancements of the GARCH models have been substan- 
tially generated by researchers. It is, however, indicated 
that extreme declines in the price in securities markets 
due to unexpected events like stock market crashes or 
financial crises cannot be fully explained by these 
GARCH models [22]. Researchers such as Maheu and 
McCurdy [23] demonstrated that these unusual events 
may be better captured by jumps.  

Maheu and McCurdy [23] proposed a GARCH model 
that incorporated a heterogeneous Poisson process with a 
conditional intensity parameter to govern the occurrence 
of jumps. Maheu and McCurdy [23] explained that the 
news process is divided into two components: normal 
news and unusual news events. Normal news innovations 
cause changes in the conditional variance of returns. The 
second component of the news process, however, leads 
to sudden jumps in price over a very short period of time  

that could be better captured by jumps rather than Brow- 
nian motion. Hence, this model captures the excess vola-
tility resulting from unexpected changes in the financial 
time series. 

The motivation of this paper is to propose a model (the 
EVT-NIG + Jump model) that further enhances the per- 
formance of the VaR model in capturing extreme losses 
by incorporating the NIG + Jump model with EVT and to 
compare its performance with seven other models in VaR 
forecasting. This paper focuses on the study of negative 
tails and examines the fitting and forecasting perform- 
ance of the models when they are applied to a series of 
market crashes and financial crises. This study examines 
whether the proposed VaR models can better forecast the 
burst of market bubbles. The study focuses on three ma- 
jor crises: the Asian Financial Crisis (AFC) in 1997, the 
Dot-Com Bubble (DCB) burst in 2000 and the Global 
Financial Crisis (GFS) in 2007. The AFC was triggered 
by a financial overextension of the Thailand economy 
that led to the subsequent breakage of the peg of Thai 
baht with US dollars and the devaluation of Asian stock 
markets. The DCB started in 1998 with the growth of 
stock prices in the Internet sector. The market expecta- 
tion of the future earnings growth of these Interned-based 
firms caused NASDAQ to reach its peak in March 2000. 
The GFS that occurred in July 2007 was driven by a 
burst of the real estate bubble in the United States and a 
loss of market trust in subprime mortgages. The subse- 
quent liquidity crisis and credit risks caused banks to be 
reluctant and unable to offer loans to companies. A sud- 
den loss of asset values and global market stock crashes 
expedite economic recessions.  

This paper contributes to the literature by empirically 
demonstrating that the EVT-NIG + Jump model outper- 
forms other models in capturing extreme loss in crises. 
The autoregressive conditional jump intensity process of 
the model aids in capturing the clustering of jumps that 
normally exist in market crashes. The model allows for 
dynamic changes in jump arrival rate, jump size, volatile- 
ity clustering and asymmetric responses to past return 
innovations. The model performance in extreme loss 
estimation is further enhanced by adopting the EVT to 
estimate the distribution of the residuals. 

This paper presents five models for computing the 
VaR in Section 2. Section 3 reports the data and an ana- 
lysis of the empirical results, and Section 4 concludes 
with the findings and contributions of the paper. 

2. Models 

This section starts by presenting the EVT-NIG + Jump 
model and explaining the NIG + Jump process and EVT. 
Then, the methodologies of other VaR estimations using 
the Student-t distribution and GARCH models are dis- 
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cussed. 

2.1. EVT-NIG + Jump Model 

2.1.1. NIG + Jump Process 
Since the development of ARCH models by Engle [19] 
and the generalization of the GARCH model by Boller- 
slev [20], the GARCH models have been extensively 
enhanced and used in modeling the volatility dynamics 
of financial time series. On the other hand, unusual 
events like the Asian Crisis or news surprises create ex- 
treme movements in price that could be better captured 
by jumps than Brownian motion or normal innovations, 
as stated by Maheu and Mccurdy [23]. This paper has 
adopted their NIG + Jump model to develop the condi- 
tional EVT with a jump model. One of the major features 
of the model is that the previous innovations that are 
modeled as a serially correlated conditional Poisson 
process feed back into the expected volatility through the 
GARCH component of conditional variance. This allows 
for conditional contemporaneous leverage effects and 
lagged leverage effects, as described by Maheu and 
Mccurdy [23]. 

The NIG distribution has a density function expressed 
as 
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where ,      represent the location scale pa-  

rameters and   21w Y Y   and K1 is the modified  

Bessel function of index one in third order. 
This paper has adopted their NIG-Jump model to de- 

velop the conditional EVT with a jump model. One of 
the major features of the model is that the previous inno- 
vations that are modeled as a serially correlated condi- 
tional Poisson process feed back into the expected vola- 
tility through the GARCH component of conditional 
variance. This allows for conditional contemporaneous 
leverage effects and lagged leverage effects, as described 
by Maheu and Mccurdy [23]. 

The market return is expressed as 

0 1 1 1, 2,t t tR R t                  (2) 

where 0 1 1t tM R     is the conditional mean and 1,t  
is the return innovation at time t, expressed as  

 1, ~ 0,1t t t tz z NID             (3) 

while 2,t  is a jump innovation with a conditionally 
mean zero and is contemporaneously independent of 1,t . 

The conditional jump intensity λt is expressed as  

0 0 1 1 1t t

This parameterization incorporates an autoregressive 
conditional intensity governing the likelihood of the ar- 
rival of jumps between t – 1 and t. δt – 1 is a time-varying 
intensity residual. It is defined as 
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The jump dynamic is assumed to follow a Poisson dis- 
tribution. The conditional density of Xt is expressed as 
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where  1 1 2, ,t t t tIR R R      1  represents the infor- 
mation of the previous return.  

The jump size Jt,n follows a normal distribution with 
mean J and variance ξ. 

 , ,t nJ NID J                  (7) 

Hence, the jump innovation is expressed as 

2, ,
1

tX

t t n
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tJ J 


                  (8) 

This is the sum of Xt jumps arriving within the time 
interval between 1t   and t and is conditionally mean 
zero. 

The conditional volatility of market returns is gov- 
erned by two conditional variances as follows: 

  2
1, 2,Var Vart t t               (9) 

The first component describes the diffusion of past in-
formation impacts and is defined as a GARCH model: 

     2
1, 0 1 1 1 1, 1Var , Vart t t            t     (10) 

where ιt−1 is the total innovation of return at 1t   and is 
defined as 

1 1, 1 2, 1t t t                      (11) 

Ψ(.) is expressed as  
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where  , , ,j ja a b b   is the vector of parameters. 
 1tD    is 1 when 1t 0    and 0 otherwise. 
 1t 1tE X   is the expected number of jumps in the 

time interval between 1t   and . The conditional 
variance 

2t 
 2,tVar   is related to the heterogeneous in- 

formation arrival process that generates jumps, and is 
expressed as 

   2 2
2,Var t t tJ t               (13) 

t                    (4) where Jt is the conditional jump size at time t and is ex- 
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pressed as a function of the past return. 

  1J R G R R        0 1 1 1 2 1 1t t t t tG R         (14) 
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             (15) 
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Integrating over the number of jumps, the conditional 
density function is 

     1 1
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The filter is defined as 
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Instead of olving the infinite summation, this paper 
tru

onditional EVT-NIG + Jump Model 
l with the 

r vector  of the NIG + Jump model can 
be

t tf R X

0,1, 2,n   . 
 s

ncates the summation at 25 for estimating the parame- 
ters. 

2.1.2. C
This study incorporates the NIG + Jump mode
EVT to model the time-varying return distribution. This 
approach focuses on the entire distribution rather than the 
tail distribution only [14,23] and estimates VaR via a 
two-stage process. The procedure starts with the NIG + 
Jump model to estimate the conditional mean and vola- 
tileity of the entire distribution. Then, in the second stage, 
the POT method of EVT is used to model the distribution 
of the residual. 

The paramete 
 estimated by maximizing the log likelihood function 

discussed in (16) for N observations. 
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For the parameter estimation, N is fixed as 1000 (a 
w

idual t values is 
calculated based on the formula, 

indow of 1000 trading days) and y as 100. With the set 
of parameters , the series of N conditional means and 
standard deviations can be established. 

Then, in stage 2, the series of N res
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where Mt and σt represents the
standard deviation. 

 conditional mean and 

Assume Rt follows a distribution Fx. Then, based on 
the approach of exceedances over thresholds [24-26], by 
fixing a high threshold τ, the excess distribution of re- 
sidual t is expressed as 
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where y = Ri- and Λ represents the tail index, while  is 
the scaling parameter. 

The threshold value affects the distribution of extreme 
values. Bali [9] set the threshold as twice the standard 
deviation around the sample mean of the asset value. 
This study, however, followed McNeil and Frey’s [16] 
method for determining the threshold. For every N 
(number of daily observations), let k be the number of 
points that exceed the threshold. I can then develop a 
random threshold 1k   at the (k + 1)th order statistic. By 
ordering the residuals as 1 2 N    , the GPD dis- 
tribution can then be fitted to the data series of excess 
amount of residual over threshold  
 1 1 2 1 1, ,k k N k          . If the threshold is large 
enough to reduce the chance of bias
low 

 and k is IID and fol- 
a GPD distribution, the parameters Λ and  can be 

estimated by the maximum likelihood method [26]. The 
log likelihood function is expressed as  

1
1
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The tail estimator is thus given as 
1

1l ( ) 1 1 kk
F
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I follow the method of McNeil and Fre
= 1000 and k = 100 and rank the residuals in ascending 
or

y [16] to take N 

der. The residual 1k   is taken as a random threshold 
ate the excess amount of the threshold over the to estim
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first 100 residuals  1 1 1, ,y y y      . The VaR 
estimate using the co tional EVT via the NIG + Jump 
model can then be computed as 

ndi

, 1

1
VaR 1

k

k
p GJ k

k

p

k N
 

Index (Dow Jones), the Bombay Stock Exchange Sensi- 
tive Index (Sensex) and the Thailand Stock Exchange 
Index (SET), were selected to test the models’ perform- 
ance. Daily observations range from January 1, 1985 to 
May 19, 2009. To examine the performance of the VaR 
models in financial crisis events like the Asian financial 
crisis, this paper used SET data from Thailand for ex- 
amination. 

   
     

      (25) 
 

2.2. VaR Estimates Using the Student-t
Distribution and the GARCH Model 
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Table 1 summarizes the statistics for the daily returns 

of the three indices. It shows that Sensex has the highest 
standard deviation (1.85 percent) while Dow Jones S&P 
has the lowest (1.11 percent). The Dow Jones index re- 
presents a developed country while Sensex and SET rep-
resent the emerging markets of Asia. Therefore, they 
generally exhibit higher volatility. In addition, the distri- 
butions of the three return series are heavily tailed. The 
kurtosis and skewness are relatively higher for the Dow 
Jones. The Jarque-Bera statistics for the three indices are 
exceptionally high, which evidences the non-normality of 
these distributions.  

This study followed Lin and Shen’s [29] mod
mating VaR using the Student-t distribution alon

CH model. The density function of a no
Student-t distribution is denoted as 
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where q and  are the location and dispersion p
respectively.  denotes the degrees of freedom, and (·) 
is the gamma function. 

arameters, 

3.2. Parameter Estimation 
At p percent of the Student-t distribution, the VaR es- 

timate is expressed as 
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where tp, represents the corresponding critical t-value 
and  is the excess kurtosis. 

The daily VaR quantiles via the GARCH and NIG + 

Equation (29). The process 
w

w Jones Industrial Average  
 

Table 1. Summary statistics of the stock index returns. 

India: SENSEX Thailand: SET 

The parameter estimates of the models are determined by 
the maximum likelihood method, with the results pre- 
sented in Tables 2 and 3. A window of 1000 daily ob- 
servations is used to estimate the parameters for next-day 
estimation. The results show that the tail indices Λ for 
the EVT-based models are positive. Therefore, the 
limiting distributions of the three indices are of the 
Fréchet type. 

Jump models are then determined by incorporating the 
corresponding variance into 3.3. Empirical Tests 

as repeated on a rolling basis for the entire set of data. 

3. Empirical Analysis 

3.1. Data 

Three sets of tests were conducted to measure each 
model’s performance related to in-sample fitting, out-of- 
sample forecasting and backtesting by years. 

In-sample testing measures how good each model is at 
fitting the data. The out-of-sample study, acting as a Three stock indices, the Do

 US: Dow Jones 

Mean 0.001% 0.019% 0.061% 

Maximum 11.

um –7.

a Statistic 

08% 17.34% 

–11.

12.02% 

–14.Minim 87% 14% 84% 

Standard Deviation 1.26% 1.75% 1.77% 

Skewness 0.1031 0.1108 0.3479 

Excess kurtosis 7.9674 6.0397 6.7300 

Jarque-Ber 8253.8 4573.6 5835.4 

The fitting perform

rvations) 

ances of the models are examined using t um log likelihood value and e-Bera and AIC values. Jarq  (Number of 

obse

he maxim  the Jarqu ue-Bera =

 2 2 skewness 6 kurtosis 3 24   

sted by Schwarz (1978), Sc

 . As sugg  Akaike (1974), AIC = ML func , where K is the number of pa eters. As sug-

ge hwarz value = ML functio

ested by tion – K ram

n    – number of parameters 2 Ln number of observations . The number of para  NIG + meters for the

Jump model is 24. 
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Table 2. Estimation of pa

nel A (Parameters—Part: NIG + Jump). 

ET 

rameters of the EVT-NIG + Jump model for the stock index returns. 

Pa

 US: Dow Jones India: Sensex Thailand: S

α0 3.80E−04 3.47 06 4.36E−04 5.49E−06  E−06 4.68E−04 7.41E−

α1 4.42 E− E−02 4.70E− 47E−02 3.87E− −03 

A  

Schwar

01 1.65 01 2. 01 8.33E

ιt –3.47 E−05 2.22 E−06 1.93E−04 5.47E−06 4.34E−07 9.02E−07 

ι1,t –3.47 E−05 2.21 E−06 1.93E−04 5.47E−06 4.59E−07 8.81E−07 

ι2,t 3.20 E−08 1.32E−08 –2.50E−11 1.19E−11 –2.50E−08 2.11E−08 

λt 5.82 E−03 2.46E−03 1.21E−07 7.81E−08 9.39E−03 1.63E−03 

β0 2.29 E−03 1.04E−04 1.71E−02 1.42E−04 7.05E−05 2.51E−09 

β1 6.64 E−02 3.82E−03 3.79E−03 1.93E−06 4.24E−04 3.17E−05 

λ0 5.82E−03 2.46E−03 1.20E−07 7.76E−08 9.39E−03 1.63E−03 

J 1.40E−05 1.28E−06 1.93E−03 1.23E−04 7.48E−05 2.17E−06 

ψ0 5.57E−02 7.95E−03 1.95E−04 4.90E−06 4.99E−04 9.02E−07 

ψ1 1.38E−03 1.30E−06 7.10E−04 1.09E−05 4.70E−03 4.62E−04 

ψ2 1.75E−01 7.17E−03 6.46E−04 3.19E−06 6.27E−04 1.73E−07 

χ0 1.58E−04 5.13E−06 7.11E−03 1.12E−04 1.04E−04 1.29E−06 

Ψ(.) 2.92E−01 7.67E−04 3.30E−01 1.74E−03 9.79E−04 3.49E−08 

χ1 8.62E−02 1.88E−03 1.55E−05 8.30E−08 3.02E−01 1.62E−03 

δt – 1 6.63E−04 1.79E−05 7.67E−04 3.39E−05 4.15E−04 3.24E−05 

a 2.38E−05 2.30E−08 2.06E−05 7.48E−09 1.18E−05 3.60E−09 

aj 5.94E−05 1.20E−06 1.95E−04 9.30E−10 1.39E−04 4.95E−09 

b 5.51E−05 1.16E−06 1.50E−04 1.85E−07 5.35E−05 1.98E−08 

bj 6.10E−05 1.22E−06 1.99E−04 9.52E−10 1.42E−04 5.07E−09 

ξ 6.10E−05 1.22E−06 1.99E−04 9.40E−10 1.18E−04 2.78E−08 

c0 1.22E−05 5.28E−07 4.78E−03 4.78E−05 1.36E−07 7.19E−10 

c1 2.01E−02 1.82E−04 4.85E−03 4.86E−05 3.97E−08 6.72E−10 

 L  3056.16 6.92 1953.06 10.62 2688.06 2688.06 

IC 3032.16  1929.06  2664.06  

z 2953.12  1850.02  2585.02  

Panel B (Par Part: EVT) 

w Jones : Sensex iland: SET 

ameters—

 US: Do India Tha

 5.43E−01 2.35E−03 −03 5.32E−01 1.25E−03 k  5.34E−01 3.16E

Λk 1.96E− 47E−03 1.03E− 59E−03 1.02E− 16E−03 01 3. 01 1. 01 2.

1k   –1.04E+00 1.68E−03 –6.56E−01 5.78E−03 –1.34E+00 1.12E−03 
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Table 3. Comparison of the perfo f the five in one-da timation in terms of the number of ex- 
ceed es (in-sam rmance t

A 

rmance o
est). 

 models y VaR es
enc ple perfo

Panel 

Stock Index Expected GARCH D. NIG + Jump D. GARCH + t D. 

99.5% level        

Dow Jones 16 40 21 5 32 16 

1  56 4 14 −  4  25 

9

24

Sensex 16 29 13 35 19 18 2 

SET 6 0 2 1

MAD   26  9  14 

9% level 

Dow Jones 

3  44 48 2  

3  78 4 22 –11 55 22 

98 l

       

33 46 13 35 2 39 6 

Sensex 3 11 15 7 −6 

SET 3 5

MAD   23  9  11 

.5% leve  

Dow es 

4  59 61 3  

4  91 4 27 –22 64 15 

9

       

Jon 49 61 12 44 –5 43 –6 

Sensex 9 10 12 2 –17 

SET 9 2

MAD   21  13  13 

8% level 

Dow Jones 

6  72 8  4  

6  104 3 33 –32 73 

       

65 73 8 57 –8 46 –19 

Sensex 5 7 4 19 0 –25 

SET 5 9 8 

MAD   18  20  17 

Panel B 

Cond. EV  T-
Stock Index Expected NI  Jump + t D. 

NIG + Jump 

99.5% level

G + D. 

      

Dow Jones 

Sensex 16 

16 17 

24 

1 

8 

16 0 

0 16 

SET 1  10 –6 16 

9

6 0 

MAD   5  0 

9% level 

Dow Jones 

3  33 44 

3  14 –19 34 

98. l

     

33 19 –14 33 0 

Sensex 3 0 11 

SET 3 1 

MAD   11  4 

5% leve  

Dow Jones 

49 42 8  

4  16 –33 54 

9

     

49 27 –22 64 15 

Sensex –7 5 36 

SET 9 5 

MAD   21  19 

8% level 

Dow Jones 

6  47 166 

6  22 –43 98 33 

     

65 30 –35 118 53 

Sensex 5 –18 101 

SET 5

MAD   32  62   
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back-test, e actual re  with the daily VaR 
forecasts throughout the sample od to evaluate each 

odel’s p ance in forecastin  VaR estimates. The 

the in-sample data. The 
ing confidence level for 

From the 98.5  to 95 p nt level, the T- 
NIG + Jump mod till ranks the b  gives the l st 

s in the sample to esti- 
s are 

 

 compares th turn
peri

m erform g
backtest is analyzed on an annual basis to examine each 
model’s ability to capture the dynamics of conditional 
volatility of the indices. The five models for comparison 
are the GARCH, NIG + Jump, GARCH-t, NIG + Jump-t 
and EVT-NIG + Jump models. 

3.3.1. In-Sample Performance 
Each model’s parameters were estimated by the maxi- 
mum likelihood method using 
VaR quantiles for the correspond
each date are calculated, and VaR forecasts of the five 
models are then compared against the actual daily return 
for each index. 

Table 3 indicates the relative in-sample performance 
of the five models in one-day VaR estimation. Since the 
best model for VaR measurement should give the exact 
number of expected exceedences, the EVT-NIG + Jump 
model outperforms the other five models by giving the 
smallest deviation of its number of exceedences from the 
expected figures at both the 99 percent (one percent of 
the number of daily observations in the sample period) 
and 99.5 percent level for all three stock indices. The 
EVT-NIG + Jump model is better than the conditional 
EVT model for both the Dow Jones index and the two 
indices of emerging markets. It seems that the jump 
process is better at capturing event losses due to unusual 
events. The autoregressive conditional intensity govern- 
ing the jump process allows the news feedback on vari- 
ance from jumps to vary when the previous news is good 
or bad. This helps the jump-based models to better cap- 
ture the non-normality when estimating VaR. It is shown 
that the NIG + Jump-based models, such as the NIG + 
Jump-t model, are better than GARCH without the jump 
model in VaR forecasting. The performances for the 
conditional EVT-based models are generally better than 
those of the GARCH-based models. The EVT-NIG + 
Jump model has the lowest MAD among the five models.  

Comparing the GARCH type models, it is found that 
the NIG + Jump-t model yields the best prediction of 
VaR for all three indices. While exhibiting a higher 
MAD in a lower confidence level, its prediction im- 
proves substantially at higher confidence levels. It has 
the lowest MAD among the GARCH type models at both 
the 99 and 99.5 percent level. At the 99.5 percent level, 
the ranking of performance starting from the best is 
EVT-NIG + Jump, NIG + Jump-t, GARCH-t, NIG + 
Jump, and GARCH. At the 99 percent level, the 
EVT-NIG + Jump model still outperforms the other 
models in providing the lowest absolute deviation from 
the expected figures. The MAD is only four. The NIG + 
Jump-t model outperforms the other GARCH type mod- 

number of absolute deviations from the expected figures. 
The performance of the NIG + Jump model, however, 
improves at lower confidence levels. It has the lowest 
MAD in the 98.5 to 97.5 percent level, as compared with 
the other GARCH type models. It seems that the combi- 
na

els. 
 percent erce EV
el s est. It owe

tion of NIG + Jump and the t distribution leads to an 
over-prediction of VaR and generates a higher MAD. It is 
inferred that the performance of the EVT-NIG + Jump 
model improves as the confidence level increases. The 
conditional EVT series models generally perform better 
with the Dow Jones Index than with the Sensex and SET, 
especially at higher confidence levels, due to the larger 
volatility clustering and kurtosis that exists in the Dow 
Jones. The EVT-NIG + Jump model does a good job in 
capturing these non-normalities. 

3.3.2. Backtesting (Out-of-Sample) Performance 
The five models were backtested to examine how well 
the models predict extreme losses in the future. This is 
particularly important for short-term market risk man- 
agement, by evaluating each model’s performance in 
VaR forecasting. Backtesting starts with a window of 
1000 previous daily observation
mate the parameters of each model. The estimate
then used to derive the one-day VaR forecast for the next 
day, and the forecasts are compared with the actual re- 
turn of that day. The procedure is repeated for the rest of 
the daily observations in the sample. The exceedences 
are counted whenever the actual return is lower than the 
VaR forecasts. The results are summarized in Table 4. 

Compared with the results in Table 3, Table 4 gener- 
ally has higher numbers of exceedences for all models in 
the out-of-sample test. At the 99.5 percent level, the or- 
der of ranking in terms of the number of exceedences 
remains the same as that in Table 3. EVT-NIG + Jump is 
still the best model in VaR estimation. In addition, the 
NIG + Jump-t model outperforms all of the other 
GARCH type models. 

At the 99 percent level, the EVT-NIG + Jump model 
still produces the fewest outliers in the backtesting. From 
the 98.5 percent to 95 percent level, the EVT-NIG + 
Jump model remains the best performer. The ranking is 
the same as that in the in-sample test, although the num- 
ber of outliners increases with decreasing confidence 
levels. In addition, it is shown that the MAD for both the 
NIG + Jump-t and GARCH-t models increases with de- 
creasing confidence level. This may attribute to the 
poorer performance of the Student-t function in fitting 
the actual financial time series distribution as the confi- 
dence level decreases. The NIG + Jump model can better 
forecast unusual news events or earnings surprises with 
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Table 4. Comparison of the performance of the five models 
in one-day VaR forecasts in terms of the number of ex- 
ceedences (out-of-sample performance test). 

Panel A 

Stock Index Expected GARCH D. NIG + Jump D. GARCH + t D.

99.5% level       

Dow Jones 16 40 24 21 5 32 16

Sensex 16 29 13 35 19 18 2

SET 16 56 40 14 –2 42 26

MAD   26  9  15

99% level      

3  44 11 48 15 27 –6

–  

98. el

 

Dow Jones 33 46 13 35 2 39 6

Sensex 3

SET 33 77 44 22 11 54 21

MAD   23  9  11

5% lev  

Dow Jones 49 61 44 43 

4  59 10 61 12 32 –17

–  

98 el

      

12 –5 –6

Sensex 9

SET 49 92 43 27 22 65 16

MAD   22  13  13

% lev  

Dow Jones 65 73 57 46 

6  72 84 19 40 –25

      

8 –8 –19

Sensex 5 7 

SET 65 105 40 33 –32 72 7

MAD   18  20  17

Pa

 E T-

nel B 

Cond. V
Stock Index Expected IG + Jump + t D. 

 Ju p
D.N

NIG + m

99.5% level      

Dow Jones   1 1

   8 26 1

6  –6 16

MAD  5  5

99% level

16 17 2 –4

Sensex 16 24 0

SET 1 10  0

 

     

33 0 21

–19 

11 

98.

 

Dow Jones 33 19 –14 25 

54 

–8

Sensex 33 

SET 3  3 14 3  4 1

MAD  

5%

  10

 level 

Dow Jones –22 

4  42 96 

98%

  

49 

  

56 

 

27 7

47Sensex 9 –7 

SET 49 16 –33 

21 

54 5

MAD    20

 level 

Dow es 

47 –18 176 111

33

62

  

65 

 

–35 

 

108 

 

43Jon 30 

Sensex 65 

SET 65 

MAD  

22 

 

–43 

32 

98 

 

the ion of a jump process. T GARCH mo
how  which s linear volatility ngs
sitiv hanges in return vo tility [3

3. ndi al and C dition overage Te
The ditio overag st an ndi l co  
age test were co cted. Th ncond al c rage
measures the pe rmance o he Va odel based  

ts are given in 

t both the NIG-Jump-t and EVT- 
 give a lower MAAD (Mean 

 

 inclus he del, 
ever,  ha  setti , is less sen- 
e to c la 0]. 

3.3. Unco tion on al C sts 
 uncon nal c e te d co tiona ver-

ndu
o

e u ition ove  test 
rf f t R m s  on

the proportion of failures in the sample, while the condi- 
tional coverage test tests both the unconditional coverage 
and serial independence. The derivations of both the un- 
conditional and conditional coverage tes
the Appendix. 

Table 5 illustrates the LR statistics of both the uncon- 
ditional and conditional coverage for the alternative VaR 
models. For the unconditional coverage test, the LR sta- 
tistics for the EVT-NIG + Jump model in all three indices 
are significantly less than the critical values (chi-squared 
with one degree of freedom) of 5.92 (1.5 percent), 6.63 
(1 percent ) and 7.88 (0.5 percent ), and this model out-
performs the other five models. Regarding the condi-
tional coverage test, the corresponding critical values of 
chisquared with two degrees of freedom were 8.40 (1.5 
percent), 9.21 (1 percent) and 10.59 (0.5 percent). The 
EVT-NIG + Jump model achieves low LR statistics. The 
results indicate that, in general, the exceedences occur- 
ring in the conditional EVT-models are independent and 
identically distributed. 

3.3.4. Yearly Backtesting 
Byström’s [14] method s adopted to compare the per-
formance of conditional and unconditional models by 
dividing the sample period into year-long sub-periods. 
Table 6 presents the comparative performance of VaR 
forecasts of the five models on an annual basis at the 99 
and 99.5 percent levels. 

The results show tha
NIG-Jump models generally
Average Absolute Deviation). The EVT-NIG + Jump 
model generates accurate VaR estimates, as expected by 
the confidence level. The same situation applies to the 
three stock indices at the 99 and 99.5 percent levels. The 
daily VaR estimates produced by the conditional EVT 
models vary closely with changes in volatility. In par- 
ticular, the EVT-NIG + Jump model captures the extreme 
losses during the period well for both the Sensex and 
SET indices. 

The VaR forecasts by the GARCH model, however, 
are less responsive to changing volatility. The GARCH 
model tends to underestimate the risk during turbulent 
periods. 

In accessing the performance of the VaR forecasts of 
the five models in the three crises, this paper measures 
the MAAD of the models for the periods of 1997-1998, 
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nal  tests for alternative VaR models. 

nel A 

 
Table 5. Unconditional coverage and conditio  coverage

Pa

 Conditional EVT NIG + Jump NIG + Jump-t GARCH-t 

Stock Index LR_UC LR_CC LR_UC LR_CC LR_UC LR_CC 

Level: 0.5%  

Dow Jones 0.009 3.132 0.023 2.917 11.694 0.980 

Sensex 0.009 3.132 3.114 1.885 0.156 2.916 

SET 0.009 3.132 2.903 4.845 26.182 0.650 

Level: 1%

     

       

Dow Jones 0.002 0.894 6.877 2.528 1.132 0.535 

Sensex 3.517 0.371 0.002 0.979 1.088 1.495 

SET 0.047 0.813 13.824 3.612 12.666 0.229 

Level: 1.5%       

Dow Jones 4.167 0.041 12.094 1.380 0.813 0.324 

Sensex 21.830 0.414 1.108 0.371 6.919 0.980 

SET 0.473 0.023 30.712 3.362 4.167 0.062 

Panel B 

 NIG p GA + Jum RCH 

Stock Index LR_UC LR_CC  LR_CC LR_UC

Level: 0.5%     

Dow Jones 1.2019 2.1866 24.357 0.4768 

Sensex 16.016 0.8126 7.9405 1.2706 

SET 0.3656 3.6117 58.924 0.2287 

Level: 1%     

Dow Jones 0.1513 0.6659 4.802 0.2041 

Sensex 6.263 0.1406 3.5174 0.2409 

SET 4.0364 2.1861 45.484 0.0228 

Level: 1.5%     

Dow Jones 0.5656 0.2045 2.7001 0.0098 

Sensex 2.7001 0.0041 1.8881 0.004 

SET 12.094 1.4948 28.971 0.245 

 
2000-2001 2009. These perio ude the 
devaluation o  market values in A arkets in 
1997, the technical bubble burst in 2000 and the collapse 
of investment s in 2007. It is show both the 

IG-Jump-t and EVT-NIG + Jump model perform sig- 

j rocess is more responsive to sud ps in 
s rice and is b  capturing e e price 
m ents during a cr riod. 

4. Conclusions 

 

and 2007- ds incl
f stock sian m

bank n that 
N
nificantly well in capturing extreme losses. In particular, 
the EVT-NIG + Jump model gives the lowest average 
MAAD in the Global Financial Crisis at 99 percent level. 
It is inferred that the EVT model incorporated with the  

This paper proposes a conditional EVT-based model that 
incorporates the NIG + Jump process for VaR estimation. 
It explores the possibility of improving the EVT-based 
model in estimating and forecasting VaR for extreme  

ump p den jum
tock p
ovem

etter at
ash pe

xtrem
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o

of-sample test). 

Panel A: Lev

 GARCH-t GARCH N G + Jump EVT-NIG + Jump 

Table 6. Annual backtesting performance in one-day VaR f recasts of the five models at 99.5% and 99% levels (out- 

el 99.5% 

IG + Jump-t NI

Yr 3 Mkts Avg. 3 Mkts Avg. 3 Mkts Avg. 3 Mkts Avg. 3 Mkts Avg. 

1996 2 2 

1997 9 12 

1998 2 3 

2 3 1 2 3 

2001 1 1 1 1 1 

20 2 

2  

Till 09 

MAAD  

0 0 0 

2 2 4 

1 1 1 

1999 0 0 0 1 0 

2000 

0 1 1 0 1 0 

003 0 0 0 0 1 

2004 1 2 1 2 0 

2005 1 1 0 0 0 

2006 1 1 1 1 0 

2007 1 1 1 1 0 

2008 6 9 7 8 2 

22/5/20 5 5 2 3 1 

    

97-98 9 12 3 4 5 

00-01 3 4 3 3 4 

07-09 5 9 6 7 4 

Avg 6 8 4 5 4 

Panel B: Level 99% 

GARCH-t GARCH NIG + mp-t NIG ump EVT-NI  Jump   Ju + J G +

Yr 3 Mk vg. 3 Mk vg. 3 Mk vg. 3 Mk vg. 3 Mk vg. ts A ts A ts A ts A ts A

1996 2 4 0 0 0 

2001 1 2 1 3 4 

20 2 

2  

Till 09 

MAAD  

13 

Average 8 10 6 9 6 

1997 11 14 2 4 8 

1998 3 3 1 1 3 

1999 0 1 1 1 1 

2000 3 4 2 3 7 

0 1 1 1 3 1 

003 0 0 0 0 2 

2004 2 4 1 2 1 

2005 1 1 0 0 0 

2006 1 2 1 1 1 

2007 1 3 1 2 1 

2008 9 12 8 11 5 

22/5/20 5 6 3 3 2 

    

97-98 10 5 6 7 

00-01 5 5 6 7 8 

07-09 8 11 8 12 4 
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[8] ali, “A Generalized Extreme Value Approach to 
inancial Risk Me ent,” Journal of Money, Credit 

and Banking, Vol. 39, No. 7, 2006, pp. 1613-1649. 

[9] T. G. Bali, “An Extreme Value Approach to Estimating 
ity and Value-at-Risk,” Journal of Business, Vol. 

76, No. 1, 2003, pp. 83-108. doi:10.1086/344669

The E p 

us ns in
ected volatilit

crisis p
el p

nd 
findings i um
s well at h
e in-s t-o In

Ju erfo
o alternati avy 
skewness of the return distribution of the three indices 
studied. The results show that the VaR model devel- 
oped in the EVT-NIG + Jump framework is more robust 
in tracking the occurrences of extreme losses in emerging 
stock markets, such as those in India and Thailand.  

In the out-of-sample test, the EVT-NIG + Jump model 
again performs well for one-day VaR forecasts. The im- 
provement became more significant when a higher con- 
fidence level VaR forecast (99 percent or above) was 
used. The NIG + Jump setting incorporated in the pro- 
posed model helps to better capture the skewness and 
heavy tail resulting from an unexpected extreme price 
jump. Additionally, the performance of the conditional 
NIG + Jump model in VaR forecasts improves as the 
confidence level increases. The model produces excep-
tionally accurate VaR forecasting at the 99.5 percent 
level.  

Regarding the year-by-year backtesting, the condi- 
tional EVT-NIG + Jump model performs well and out- 
performs the others in capturing the dynamics of the 
market condition. 
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Appendix: Unconditional Coverage and 
Conditional Coverage Test 

The likelihood ratio test for unconditional coverage is  

  1 2 1 22 log ; , , , ; , , ,

UCLR
  (A

T TL p I I I L I I I     
1) 

here  = n1/(n0 + n1) and ni is the number of observation 
ith value I and  

w
w

    0 1
1 2; , , , 1

n n
TL p I I I p p   

The likelihood ratio test for conditional coverage is 

   1 2 1 22 log ; , , , ; , , ,

CC

T T
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L p I I I L I I I     
 (A2) 

where  
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nij is the number of observations with value i followed 
by j. 
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