
Journal of Information Security, 2018, 9, 70-84
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2018.91006 Jan. 16, 2018 70 Journal of Information Security

On the Use of k-NN in Anomaly Detection

Theocharis Tsigkritis, George Groumas, Moti Schneider

PCCW Global, Athens, Greece

Abstract
In this paper, we describe an algorithm that uses the k-NN technology to help
detect threatening behavior in a computer network or a cloud. The k-NN
technology is very simple and yet very powerful. It has several disadvantages
and if they are removed the k-NN can be an asset to detect malicious behavior.

Keywords
k-NN, Fuzzy Logic, Matching Process, Network Security

1. Introduction
1.1. General

Machine learning is one way to handle threatening behavior on the cloud or a
network. Given a database containing the activities on the network, we can util-
ize some classifying algorithms in order to classify suspicious behavior. The da-
tabase contains attributes (columns) and records (rows). Each attribute can be
associated with a weight that describes the attribute’s importance. Given a new
record, R, we need to find K records from the database {r1, r2, ∙∙∙, rk} that are R’s
nearest neighbors. Finding the neighbors is easy, but how do we determine the
value of K? If we can determine that value, the k-NN algorithm becomes very
simple, useful and autonomous algorithm. In the section below, we describe
other popular classifiers, and then justify our decision to choose k-NN as the al-
gorithm that will solve the anomaly problem in a network or a cloud.

1.2. Literature Survey

Classification, which is the task of assigning objects to one of several predefined
categories, is a problem that encompasses many diverse applications [1]. A clas-
sifier is a supervised function (machine learning tool) where the learned (target)
attribute is categorical (“nominal”). This can be viewed as a simple function in
the form

How to cite this paper: Tsigkritis, T.,
Groumas, G. and Schneider, M. (2018) On
the Use of k-NN in Anomaly Detection.
Journal of Information Security, 9, 70-84.
https://doi.org/10.4236/jis.2018.91006

Received: December 11, 2017
Accepted: January 13, 2018
Published: January 16, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2018.91006
http://www.scirp.org
https://doi.org/10.4236/jis.2018.91006
http://creativecommons.org/licenses/by/4.0/

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 71 Journal of Information Security

()Y f X=

where X is a set of attributes and Y is the set of classes. The classification model
is used after the learning process classifies new records (data) by giving them the
best target attributes (prediction). The target attribute can be one of k class
membership. This can be shown in Figure 1.

In machine learning , classification is the problem of identifying to which of a
set of categories (sub-populations) a new observation belongs, on the basis of a
training set of data containing observations (or instances) whose category
membership is known [2].

So, the input data for the classification task is a collection of records. Each
record is characterized by a set of descriptive attributes and class attributes
(output class). Also each attribute is associated with a weight [2].

There are two major classification models:
 Descriptive models, in which we explain the difference between several

classes, and
 Predictive model in which we are able to predict to which class a new in-

coming data will belong to.
There are many tools that classify data. One of the most popular tools used in

classification is the decision tree [3]. A decision tree is a flow-chart-like struc-
ture, where each internal (non-leaf) node denotes a test on an attribute, each
branch represents the outcome of a test, and each leaf (or terminal) node holds a
class label. The topmost node in a tree is the root node. There are many specific
decision-tree algorithms. C4.5 is probably the most popular of them [4].

Other important classifiers are neural networks [5], and Support Vector Ma-
chines (SVM) [6]. Artificial Neural networks (Ann) are system that emulates the
way the human brain learns. SVMs are supervised learning models that analyze
data used for classification. Given a set of training examples, each marked as be-
longing to one or the other of two categories, an SVM training algorithm builds
a model that assigns new examples to one category or the other. An SVM model
is a representation of the examples as points in space, mapped so that the exam-
ples of the separate categories are divided by a clear gap that is as wide as possi-
ble. New examples are then mapped into that same space and predicted to be-
long to a category based on which side of the gap they fall.

Probably the simplest classifying algorithm is the “k-NN” algorithm.
k-NN—The k-Nearest Neighbors algorithm (or k-NN for short) is a
non-parametric method used for classification [7]. The input consists of the k
closest training examples in the feature space. The output is a class membership.
An object is classified by a majority vote of its neighbors, with the object being as-
signed to the class most common among its k nearest neighbors. In the classical

Figure 1. Classifying X into Y.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 72 Journal of Information Security

approach, one needs to specify the value of k [8]. One interesting application us-
ing k-NN is in the area of intrusion detection. This approach, based on the
k-Nearest Neighbor (k-NN) classifier, is used to classify program behavior as
normal or intrusive. This method shows that the k-NN classifier can effectively
detect intrusive attacks and achieve a low false positive rate [9].

In our approach we use a dynamic assignment of k together with the fuzzifi-
cation process defined by the fuzzy set theory [10]. This will be explained later.

2. Fuzzy Set Theory

The most fundamental concept of the fuzzy set theory is the membership func-
tion. This function computes the distance of an element to the set. If we assume
that the “center” of the fuzzy set is a point in the membership function where the
membership grade is 1, then we can rephrase the approach to the fuzzy set con-
cept as described in Definition 1 below:

Definition 1: “Let C be the center of some attribute of some cluster, then C’
becomes the same center after being converted to a fuzzy term”.

This means that C is transformed from being a point to being a fuzzy term.
The membership grade of 1 represents the original center point of the cluster,
and the two end points represent the borders of the membership function
(Figure 2).

Now, we need to match between a new data D and C’. To do so, we only need
to perform the Fuzzification process. The Fuzzification process filters the do-
main data D thru the membership function to get the membership grade as
shown in Figure 3.

The Fuzzification process has 2 major advantages here:
1) It avoid the need to normalize the data base
2) The Fuzzification process is the matching process itself
Next, we explain the process of cluster creation.

Figure 2. Logical structure of the fuzzy term.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 73 Journal of Information Security

Figure 3. Example of a fuzzy variable.

3. k-NN
3.1. General

The k-Nearest Neighbor’s algorithm (k-NN) is a non-parametric method used
for classification [7]. The input consists of the k closest training examples in the
feature space. The output in k-NN classification is a class membership. An ob-
ject is classified by a majority vote of its neighbors, with the object being as-
signed to the class most common among its k nearest neighbors (k is a positive
integer, typically small). If k = 1, then the object is simply assigned to the class of
that single nearest neighbor [11]. The test sample (the circle) should be classified
either to the first class of blue squares or to the second class of red triangles. If k
= 3 (solid line circle) it is assigned to the second class because there are 2 trian-
gles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is as-
signed to the first class (3 squares vs. 2 triangles inside the outer circle).

The general idea of the k-NN technology is described in Figure 4 [11].
The k-NN algorithm is among the simplest of all machine learning algo-

rithms. It can be useful to assign weight to the contributions of the neighbors, so
that the nearer neighbors contribute more to the average than the more distant
ones. For example, a common weighting scheme consists in giving each neigh-
bor a weight of 1/d, where d is the distance to the neighbor [12]. In this work we
will use a user defined weights on the attributes. It is important to note that this
weight is different from the weight assigned to each attribute. This weight is re-
ally the distance of ri from the record R and is computed via a fuzzification
process as described above.

As was described above, the k-NN is a non-parametric algorithm where k was
defined in advanced. In our system we link this k to some T, which is the thre-
shold of similarity. As will be described later, T is the same threshold used in the
matching process (will also be described below). This will make k a very dynam-
ic number that depends on the values of the neighboring records.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 74 Journal of Information Security

Figure 4. Example of k-NN classification.

The process of using k-NN is divided into several parts:
1) Set the matching threshold. This is done to determine if two records (the

new one and the one from the training set) are similar.
2) Match the new record with all training records. This will be described be-

low.
3) Determine the final result. Which means to decide if the new record is a

treat or not.
Based on the above steps we can depict the logical structure as described in

Figure 5.

3.2. Creating the Training Data Set

As mentioned above, the most important concern we have is to make sure that
the learning data set and the testing data set will be different. To avoid bias, we
require that the learning data set will be created randomly. In the following, we
present our learning data set creation process.

1) Let n be the size of the complete data set. Choose a random number r such
that

0.4 0.6n r n∗ < < ∗

In other words, we want the size of the learning data set be about half of the
size of the entire data set.

2) From the entire data set choose r different records:
For i = 1 to r do

 Generate a random number between 1 and n (m)
 If m is not in the learning data set, add it to the learning data set
 If m is in the data set do nothing

End.
At the end of this process we have created a data set containing r different and

randomly chosen data points from the initial data set.

3.3. The Matching Process

The matching process compares two records and computes its similarity. A
record is defined as a collection of attributes, each one with a different type and

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 75 Journal of Information Security

Figure 5. Logical structure of the k-NN system.

each has a different weight associate with it. In other words, the data that is col-
lected and analyzed contain many attributes. Some of these attribute may be
more important (or influential) than others. This importance can be expressed
as the “weight” of the attribute (or variable). In our final decision making we will
take the weight into an account. If the variables are numeric then the result is
numeric (in the interval [0 ∙∙∙ 1]). Otherwise it is Boolean (1 if the two attributes
identical and 0 otherwise). Also note that not all variables have to participate in
the matching process. We will touch on that in the analysis phase discussion. If
the attribute is a non-numeric attributes then we match the attributes in a Boo-
lean fashion. If the attributes match, assign the value of 1, otherwise assign the
value of 0.

If the attributes are numeric then we perform the following steps:
1) The number representing the attribute within the training set we expend to

a fuzzy term (Figure 2).
2) Match the value of the testing record by performing a Fuzzification process

(Figure 3).
3) The result of the Fuzzification process is the matching result since it

represents the degree to which one number belongs to the fuzzy set created by
the other.

4) Add the results from all the matches performed on the attributes of the two
records (one represents a record from the testing set, and the other represents a
record from the learning set), such that the final result R is defined as:

i i

i

r w
R

w
= ∑
∑

 (1)

where ri is the matching result and wi is the importance (weight) of the attribute.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 76 Journal of Information Security

Let ac be the center of the fuzzy term generated for some attribute value from
the testing data and ad be the value of the attribute from the historical data then:

1) If ac and ad are Boolean or linguistic data then:
1 if
0 otherwise

c d
i

a a
r

=
=

 (2)

2) Else, If ac and ad are numeric then the matching ri is the Fuzzification
process of ad in ac:

()
ci a dr aµ= (3)

Equation (1) adds the weight factor into the matching process. The matching
process can be summarized in the following flowchart (Figure 6).

4. The Testing Procedure

In this stage we match a new incoming record with the training set defined
above. We used 7 variables (attributes) in the matching process:
([firewall_block_count, failed_login_count, email_count, spam_count,
msg_bytesize, orgid, value])

Basically, we take a record from the test file and compare it with the entire
training set. If the similarity is above a certain threshold, then we have a match.
It is important to note that contrary to the “classic approach” in which we define
a priory the number of similar records (k in the k-NN). These k records will be
stored on a bin (or a list L) for further evaluation. In our system we select all

Figure 6. The matching process.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 77 Journal of Information Security

records that their similarity to the record in question is above a pre-defined
threshold. So k can be any positive value and therefore the bin can be of variable
size. Formally, let x be a record in the training set, r be the record in question
(the new record), and T be some threshold, then

()(),L x sim x r T= ∀ > (4)

Figure 7 depicts the idea.
The process is as follows:
For each record in the testing set do:
1) Match the new record against the entire training set.
2) If the matching result is above a given threshold, then go to step 5, else

go to 3.
3) If the matching result is less than the threshold, try the next option in

the list described below.
4) Go to 1.
5) Add the record to a given list (L) of matched records.
Algorithm 1: Creating the list L
Algorithm 1 is summarized in Figure 8.
At the end of this process, the list L contains n records.
Now, each record contains many attributes, some are used for the matching

process (as was described above) and 3 other attributes for postariori evaluation.
These 3 important attributes are:
 IP addr (IP address)
 IP_Group addr (IP Group address). The Ip_Group is a variable containing

information regarding sets of IP addresses, such as network, organization,
cloud, etc.

Figure 7. The testing procedure.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 78 Journal of Information Security

Figure 8. Testing the system using k-NN.

 Treat/normal Boolean flag

Also let NR abbreviate the new record and L[] be the list of similar records,
then we can perform the following algorithm:

Loop: I = 1 to n
If (NR.IP_addr=L[i].IP_addr) and (L[i].Treat=True) and

(NR.Treat=True) then
Increment IP_Treat_positive_count (False Positive)
Else If (NR_IP_addr=L[i].IP_addr) and (L[i].Treat=False) and

(NR.Treat=True) then
Increment IP_Treat_negative_count (False Negative)
Else If (NR.IP_addr=L[i].IP_addr) and (L[i].Treat=True) and

(NR.Treat=False) then
Increment IP_Normal_negative_count (True Negative)
Else If (NR_IP_addr=L[i].IP_addr) and (L[i].Treat=False) and

(NR.Treat=False) then
Increment IP_Normal_positive_count (True Positive)
Else If (NR.IP_Group_addr=L[i].IP_Group _addr) and (L[i].Treat=True)

and (NR.Treat=True) then
Increment IP_Group _Treat_positive_count (False Positive)
Else If (NR_IP_Group_addr=L[i].IP_Group _addr) and

(L[i].Treat=False) and (NR.Treat=True) then
Increment IP_Group_Treat_negative_count (False Negative)
Else If (NR.IP_Group _addr=L[i].IP_Group _addr) and (L[i].Treat=True)

and (NR.Treat=False) then
Increment IP_Group _Normal_negative_count (True Negative)
Else If (NR_IP_Group_addr=L[i].IP_Group _addr) and

(L[i].Treat=False) and (NR.Treat=False) then

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 79 Journal of Information Security

Increment IP_Group _Normal_positive_count (True Positive)
Algorithm 2: Computing different counts
Based on Algorithm 2 we define:

True Positive
IP_Normal_positive_count IP_Group_Normal_positive_count= +

 (5)

False Positive
IP_Treat_positive_count IP_Group_Treat_positive_count= +

 (6)

True Negative
IP_Normal_negative_count IP_Group_Normal_negative_count= +

 (7)

False Negative
IP_Treat_negative_count IP_Group_Treat_negative_count= +

 (8)

So, in the above procedure we check the new record against the list L to look
for similarity with respect to threat. If we fail we want to repeat the process with
respect to normal behavior.

The idea is to check one option at the time until we find a similarity. If noth-
ing found we place the result in the outlier bin. This may indicate a new type of
record or a corrupted one.

Using (5), (6), (7), and (8) we can:
1) Use the k-NN algorithm, to check if the incoming record IP is a threat

(False Positive).
2) Use the k-NN algorithm, to check if the incoming record IP is not a threat.
3) Use the k-NN algorithm, to check if the incoming record IP group is a

threat.
4) Use the k-NN algorithm, to check if the incoming record IP group is not a

threat.
We define Precision and Recall as:

True Positive
precision

True Positive False Positive
=

+
∑

∑ ∑
 (9)

True Positive
recall

True Positive False Negative
=

+
∑

∑ ∑
 (10)

At the end of the process we compute Recall and Precision for final evalua-
tion.

5. The Simulation

In this section we describe how to choose the best attributes from the data base.
The learning system determines, which variables will be used in identifying a
threat, and the best values for the chosen variables.

5.1. Choosing the Variables and Possible Values

In our system we chose all the variables that can contribute to the identification
of a threat. Different variables have different values. Due to the fact that some of

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 80 Journal of Information Security

the variables are Boolean, we can assign them the values 0 or 1. Some variables
are linguistic (i.e. have a finite non numeric values), so we need to check all pos-
sible values. Other variables are numeric. In this case we have to choose some
representative values. For example, the variable “threshold” is numeric. It repre-
sents how well a certain record matches the set of clusters. It is logical to assume
that the matching should be between 0.7 and 1. In other words, if the matching
between the record and the cluster centre is below 0.7 then it should not be ac-
cepted as a member of that cluster. We divided the range of accepted matches to
low (above 0.7), medium (above 0.85) and high (above or equal to 0.99). The
more options we provide, the more complex will be the computation (this will be
described below).

After examining all the variables, we create a multivariable loop. Let xi be a
variable of type integer. Also, xi corresponds to a real variable (such as “thre-
shold”, etc.), yi. Also let ai be the lowest value in the domain of xi and bi be the
highest value in this domain. So a simple loop will be:

For i ix a= to ib do S,
where S is an executable statement.

In the example above the loop will execute from 0 to 2, such that the value 0 in
xi corresponds to 0.7 in the real variable “threshold”. It should be noted that the
number of permutations can be large. In particular, for a set of n variables, let P
be the number of permutations, so, we have:

1 2 1nP x x x= × × × −

Generally, the algorithm, without optimization, for variable selection is

()2nO t ∗ , where t is the number of threshold’s levels (e.g. 3, levels: [0.7, 0.85,
0.99]), and n is the number of features (e.g. 7, as described above)

Each Boolean variable shows if some numerical variable participates in the
computation. For example, If the 6th Boolean is set to false, this means that the
numerical variable “orgid” does not participate in the simulation. So, in this case

72 3 3 1 1151P = ∗ ∗ − = . So, in the first stage we simulate the system with all
possible values. This means that we run the simulation 1151 times (we omit the
case where all Boolean variables are false) and place the simulation results on
some file. The result file contains all the results computed above. It also contains
the information regarding the variables participated in the simulation.

The problem is that if the variable set is large, then 2nt ∗ becomes unmana-
geable as the problem is NP-hard. To solve the problem, we divide the process
into 2 parts. In the first part we run each attribute independently. This will result
with ()O t n∗ . Next, we divide the results into 3 groups: The first group con-
tains attributes that consistently led to unsatisfiable results (their matching re-
sults were below 0.7). The next group is the group that produced satisfiable re-
sults (matching results above 0.9). The third group contains attributes that their
matching results are inconsistent. So, the first group and the third group does
not require any permutation, and the second group contains a small number of
attributes (say m). So the complexity of the computation is reduced from
()2nO t ∗ to ()2mO t ∗ , where m n .

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 81 Journal of Information Security

5.2. Tuning Up

The tuning up process deals with finding the best values for the variables chosen
to be part of the system. The learning system determines which variables will be
used in identifying a threat, and the best values for the chosen variables.

As was stated, first we choose all the variables that can contribute to the iden-
tification of a threat. Basically, these are all the variables in the database con-
taining numeric or Boolean information. Different variables have different val-
ues. After running the system once, we get P different results (depends on the
size of m). From this set we choose the cases that their Success rate is the highest.
In other words, we choose the permutations that generated the best results in the
matching of the new data point with the clustering system to find out if the new
data point is a threat or not.

If we select more than one case, we observe the number of outliers (# of cases
the system rejects). In our system we allow less than 10% of outliers (from the
given test files). The reason for having a threshold for checking the number of
outliers in the system is only for reducing the amount of valid results. If the
number of the outliers is more than 10%, then the possibility of rejecting non
threat data increases. Note that the idea here is to reduce the number of possible
permutations. The goal is to generate one set of values that will stand the tests
we will describe later.

If we still have more than one option we will select the case that the integer
values are the highest. We have 2 numbers in the variable pool, each having the
values 0.7, 0.85, 0.99. One of the two variables is the threshold. It determines if
the new record belongs to a cluster or not. We test the data with low threshold
(0.7), medium threshold (0.85) and a high threshold (0.99). We obviously look
for the high threshold. The problem is that high threshold will not guarantee
stability. Therefore, we need to test several thresholds. The second numeric
variable is responsible for the shape of the centre of each attribute in the centre
vector of the cluster (we denote it as the “shape” variable). Let x be the value
representing the centre of an attribute of the cluster and S be the “shape” value.
Then we want to expend x to a fuzzy term with a trapezoid shape as described in
Figure 9.

Figure 9. Fuzzy term described as a trapezoid.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 82 Journal of Information Security

The values of the points A, B, C, and D in Figure 9 are computed as:

() ()
() ()
1 2
1 2

B xS
A BS
C x S x x S
D C S C C S

=
=
= + − = −
= + − = −

 (11)

For example, if x = 100, then B = 70, A = 49, C = 130, D = 169. The trapezoid
created is not symmetric. If we want to make the trapezoid symmetric, we define
y such that

y xS= (12)

And
2

2

A x y
B x y
C x y
D x y

= −
= −
= +
= +

 (13)

If we still have more than one option we will select the case that has the most
Boolean variables having the value “true”. This means that we chose the case
where as many as possible variables from the variable list described above are
participating in the simulation.

This guarantee that the system will choose only one case and this case has the
best characteristics.

After selecting the best variables and the best values for those variables we
move to the final stage, or the final test.

After choosing the best set of values for the variables to determine if some IP
is a threat or not, we use these values to simulate the system 200 times to ensure
consistency. The reason for choosing this large number is because of the rule of
large numbers. If we show consistency in this simulation we can ensure that sta-
tistically the consistency will hold. Consistency is defined as having the same re-
sults (or very close to it). The results are stored on a file for further analysis. The
analysis showed that in almost all cases we simulated (98%), we got very high
success. Success is defined as a case where the prediction (threat/normal) is the
same as the actual values.

We have repeated the entire process described above 500 times and got con-
sistent and very good results.

5.3. Example

As was stated above, in the first run we simulate results with all permutated val-
ues (P). The system sorts the results and selects only the results that their success
rate is above 98% (Figure 10).

After cutting the results with less than 99% success we are left with 9 cases.
From the 9 cases remained, the system selected 1 cases in which the number of
outliers is less than 10%, T was 0.70 and S was 0.85. This permutation was cho-
sen.

Then we run the system 200 times to check consistency. The success rate was
99%. This is shown in Figure 11.

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 83 Journal of Information Security

Figure 10. Initial results.

Figure 11. Simulation results.

Success is measured by counting the number of cases we predicted correctly

divided by the number of cases tested. The outlier rate was less than 8%, that is,
the number of records that were rejected due to the fact that their matching re-
sult was below the given threshold, was less than 8%. The matching threshold T
was set to 0.99 (almost a binary case) and the shape value S was set to 0.84. That
concluded that the system was very consistent.

We repeated the process 500 times and the results were consistent with the
selected permutations.

6. Conclusions

The algorithm above was implemented using log database from a communica-
tion system developed in PCCW Global. We used random numbers to generate
the learning and testing data. We run the simulations 500 times and got recall
and precision close to 1.

We implemented and tested using actual network traffic from PCCW Global
backbone network. It is used to generate early notifications regarding suspicious

https://doi.org/10.4236/jis.2018.91006

T. Tsigkritis et al.

DOI: 10.4236/jis.2018.91006 84 Journal of Information Security

IPs that although no security information was available, they were observed with
similar traffic behavior with IPs that have been involved in network security in-
cidents in given time context. We used random numbers to generate the learn-
ing and testing data, by running the simulations 200 times to optimize parame-
ters. The presented approach is related to intellectual property protected by the
US patent (provisional) with US Application No.: 62/439332.

References
[1] Cherkassky, V. and Mulier, F. (1998) Learning from Data: Concepts, Theory, and

Methods. Wiley Interscience, Hoboken.

[2] Duda, R.O., Hart, P.E. and Stork, D.G. (2001) Pattern Classification. 2nd Edition,
John Wiley & Sons, Inc., New York.

[3] Rokach, L. and Maimon, O. (2008) Data Mining with Decision Trees: Theory and
Applications. World Scientific Pub Co Inc., Singapore.

[4] Quinlan, J.R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, Burlington, Massachusetts.

[5] LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539

[6] Figueiredo, M.A.T. and Jain, A.K. (2002) Unsupervised Learning of Finite Mixture
Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24,
381-396. https://doi.org/10.1109/34.990138

[7] Altman, N.S. (1992) An Introduction to Kernel and Nearest-Neighbor Nonparame-
tric Regression. The American Statistician, 46, 175-185.

[8] Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X

[9] Hall, P., Park, B.U. and Samworth, R.J. (2008) Choice of Neighbor Order in Near-
est-Neighbor Classification. Annals of Statistics, 36, 2135-2152.
https://doi.org/10.1214/07-AOS537

[10] Samworth, R.J. (2012) Optimal Weighted Nearest Neighbour Classifiers. Annals of
Statistics, 40, 2733-2763. https://doi.org/10.1214/12-AOS1049

[11] k-Nearest Neighbors Algorithm (2017).
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

[12] Yihua, L. and Vemuri, V.R. (2002) Use of K-NN for Intrusion Detection. Computer
& Society, 21, 439-448.

https://doi.org/10.4236/jis.2018.91006
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/34.990138
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1214/07-AOS537
https://doi.org/10.1214/12-AOS1049
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

	On the Use of k-NN in Anomaly Detection
	Abstract
	Keywords
	1. Introduction
	1.1. General
	1.2. Literature Survey

	2. Fuzzy Set Theory
	3. k-NN
	3.1. General
	3.2. Creating the Training Data Set
	3.3. The Matching Process

	4. The Testing Procedure
	5. The Simulation
	5.1. Choosing the Variables and Possible Values
	5.2. Tuning Up
	5.3. Example

	6. Conclusions
	References

