
Journal of Information Security, 2017, 8, 223-239
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2017.83015 July 18, 2017

Private Personal Information Verification

Hoang Giang Do, Wee Keong Ng

School of Computer Science and Engineering, Nanyang Technological University, Singapore City, Singapore

Abstract
Physical document verification is a necessary task in the process of reviewing
applications for a variety of services, such as loans, insurance, and mortgages.
This process consumes a large amount of time, money, and human resources,
which leads to limited business throughput. Furthermore, physical document
verification poses a critical risk to clients’ personal information, as they are
required to provide sensitive details and documents to verify their informa-
tion. In this paper, we present a systematic approach to address shortcomings
in the current state of the processes used for physical document verification.
Our solution leverages a semi-trusted party data source (i.e. a governmental
agency) and cryptographic protocols to provide a secure digital service. We
make use of homomorphic encryption and secure multi-party computation to
develop a series of protocols for private integer comparison and (non-) mem-
bership testing. Secure boolean evaluation and secure result aggregation
schemes are proposed to combine the results of the evaluation of multiple
predicates and produce the final outcome of the verification process. We also
discuss possible improvements and other applications of the proposed secure
system of protocols. Our framework not only provides a cost-efficient and se-
cure solution for document verification, but also creates space for a new ser-
vice.

Keywords
Secure Computation, Homormophic Encryption, Multiparty Computation

1. Introduction

Recent advances in technology have led to the introduction of many digital and
automated services, such as e-shopping, e-learning, and e-banking. These digi-
talised services not only reduce the cost of operation, but also increases through-
put for businesses. However, several tasks in these services continue to involve a
considerable amount of human effort. Physical document verification is a
necessary task in the process of reviewing applications for many services, such as

How to cite this paper: Do, H.G. and Ng,
W.K. (2017) Private Personal Information
Verification. Journal of Information Secu-
rity, 8, 223-239.
https://doi.org/10.4236/jis.2017.83015

Received: June 21, 2017
Accepted: July 15, 2017
Published: July 18, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2017.83015
http://www.scirp.org
https://doi.org/10.4236/jis.2017.83015
http://creativecommons.org/licenses/by/4.0/

H. G. Do, W. K. Ng

224

loans, insurances, and mortgages. This process consumes a large amount of time,
money, and human resources. Consider the example of a loan or an insurance
application. The applicants are usually required to provide numerous documents
to certify their relevant personal information, such as birth certificate, statement
of monthly income, marriage certificate, medical records, and so on. At the same
time, the loan/insurance provider requires a considerable amount of human
resource to verify and store these documents. This process can take several
weeks to complete, and serves to limit business throughput.

Moreover, the process of physical document verification incurs a critical
privacy risk for applicants. They provide to a third party (i.e. the service provider)
many sensitive documents, such as birth certificates, IDs, health records, and so
on. All these documents are stored in the provider’s database. If the client
applies for multiple schemes or subscriptions, multiple copies of his/her per-
sonal data are stored in different places. Since data can be leaked from the server,
storing personal information in multiple third-party databases is not recommen-
ded. One source of such a leak is employees who do not follow the company’s
privacy policies, and may, intentionally or unintentionally, reveal sensitive client
information. Even when the provider claims to enforce strict policies pertaining
to privacy, there is still a chance that the database systems are vulnerable to
malicious external attacks.

In this paper, we propose a systematic approach to address the abovementioned
shortcomings of the current state of the process of physical document verifi-
cation. We assume that there is a trusted data source that stores the certified
personal information of clients. We also assume that a list of requirements
(maybe involving the divulgence of private information) needs to be fulfilled by
the applicant to qualify for a given scheme or subscription. We present a series
of protocols that allow the verifier and the data keeper to communicate with
each other and securely verify the applicant’s information according to the
requirements proposed by the verifier. The main contributions of this paper are
as follows:

1) The proposed system digitalizes the process of document verification and
hence enhances business throughput.

2) The system protects user confidentiality from both the verifier and the data
keeper. The details of the requirements proposed by the verifier also remain
hidden from the data keeper.

3) The proposed approach creates space for new services for information data
storage and verification.

The remainder of the paper is organised as follows: In the next section, we
review related work in the literature. Section 3 contains our problem formulation
as well as the scenario we consider. Section 4 contains a discussion of our
security model and assumptions as well as the underlying cryptographic
techniques we leverage (i.e. Paillier’s encryption scheme). The proposed solution
to the problem of secure personal information verification is described in
Section 5, which systematically discusses four stages of the solution. Section 6

H. G. Do, W. K. Ng

225

presents experimental evaluations of the proposed sub-protocols. The final
section discusses future work and our conclusions.

2. Related Work

The scenario we consider shares characteristics with the problem of zero-
knowledge proof. Zero-knowledge proof systems, introduced by Goldwasser et
al. [1], involve two parties—a prover and a verifier. The system allows the prover
to convince the verifier of some fact without revealing information about the
proof. In our proposed problem, a client has to prove that he/she poses several
attributes that match the requirements provided by the verifier. Zero-knowledge
proof systems have been well researched, and have a wide range of applications,
including authentication [2], voting [3], and e-cash [4]. J. Camenisch [5]
proposed a useful zero-knowledge proof scheme which allows the prover to
convince the verifier that a digitally committed value is a member of a given
public set. The scheme can be directly applied to our problem. The client is
assigned a number of digital commitments for each attribute, such that he/she
can prove that the commitments belong to certain public sets. However, a
separate instance of proof and verification is needed for each independent
verifier; and every time the client’s attribute changes, he/she needs to be assigned
a new commitment from a trusted server. Moreover, the scheme only presents
solutions for simple membership and range predicates. In order to provide an
efficient solution to the problem of personal information verification, where the
predicates are much more complicated, we need to consider different approaches.

Another approach to consider is private set intersection [6] [7]. It allows the
verifier to determine whether an applicant satisfies the relevant requirements
given a threshold. However, this approach can only deal with exact attribute
matching. Moreover, without a trusted party verifying the set of attributes, the
applicant can use false information.

While sharing similar purposes as the above approaches, our system considers
a different setting in the context of zero-knowledge proof systems. The commu-
nication and verification processes are conducted by a verifier and a semi-honest
data keeper, rather than by a verifier and a client. Our approach leverages the
computation model of secure multi-party computation introduced by C. Yao [8].
Many follow-up studies have addressed different problems in this context. Some
sub-protocols presented in this paper are inspired by [9] and modify [10] using
studies along this line of research.

3. Problem Formulation

Definitions. Our proposed system involves three general parties—the client, the
verifier, and the data keeper—as illustrated in Figure 1.
• The client. The client wishes to privately prove that his/her personal data

satisfy the predicates predefined by the verifier.
• The verifier. The verifier (we call the verifier Bob) provides a series of pre-

dicates that need to be satisfied by the client.

H. G. Do, W. K. Ng

226

Figure 1. System Model.

Table 1. Sample personal data records.

ID Name Age Sex Income Nationality Marital Status

1 Julia 29 F 30,000 Singaporean Married

2 Deny 32 M 35,000 Singaporean Single

3 Christina 38 F 80,000 Myanmar Single

4 Alwen 41 M 120,000 Indonesian Married

5 Dino 37 M 90,000 Malaysian Divorced

• The data keeper. The data keeper (whom we call Alice) stores the personal

data of the client and provides a security guarantee for the data storage.
The database stored by the data keeper consists of n records. Each record

describes a client by m attributes. Table 1 presents a simple example of data
content maintained by the data keeper.

A personal information verification scheme is a Boolean function on a data
record. The Boolean function is informally described by single and complex
predicates. We assume that the single predicates are equality, inequality, mem-
bership, and non-membership.
• An equality predicate examines whether a variable x is equal to a certain

value a: ?x a= .
• An inequality predicate inputs a variable x and a certain value a, and outputs

1 when
?

x a< (and 0 otherwise).
• The membership and non-membership predicates check whether variable x

belongs (or does not belong) to a set A of elements: { }?
1 2, , , , nx A A e e e∈ =  .

A complex statement contains multiple single predicates and a set of logical
expressions , ,∧ ∨ ¬ . A series of predicates (provided by the verifier) can be
expressed as a complex predicate by combining them using the ∧ operator.
The personal data of clients are accepted by the verifier only if they satisfy the
final complex predicate.

Workflow. To illustrate, consider the following example: A client first
outsources his/her data to a data keeper called Alice. Alice can be a govern-
mental agency. The client and Alice are responsible for ensuring the correctness
of the information. The client can pay a small fee to Alice for keeping track of
his/her data. The verifier Bob provides a subscription scheme. In order to

H. G. Do, W. K. Ng

227

subscribe to the scheme, the client needs to satisfy a number of statements for
personal information, including age, income, nationality, health condition, etc.
He/She wants to prove that he/she qualifies for the scheme, but does not want to
reveal exact information. At the same time, he/she also wishes to hide the fact
that he/she is applying the certain scheme through others (such as Alice).
He/She should anonymously authenticate Bob to communicate with Alice. Bob
interacts with Alice by our proposed approach. Finally, Bob should be able to
decide whether the client qualifies for the given scheme.

4. Background
4.1. Security Assumptions

In this paper, the privacy/security of the proposed protocols is measured by the
amount of information disclosed during execution. We adopt the security
definitions and proof techniques from the literature on secure multi-party
computation to analyse. The secure multi-party computation problem involves
multiple parties collaboratively performing various types of computation with-
out compromising the privacy of data. In the mid 1980s, C. Yao [8] introduced
the idea of securely computing any two-party functionality in the presence of
dishonest adversaries. Since then, various privacy-preserving protocols have been
proposed to address different class of computation problems in the context of
private data.

There are two common adversarial models under secure multi-party compu-
tation: semi-honest and malicious. In the malicious model, the adversary has the
ability to arbitrarily deviate from the protocol specifications. On the other hand,
in the semi-honest model, an attacker (i.e. one of the participating parties) is
expected to follow the prescribed steps of the protocol. However, the attacker is
subsequently free to compute additional information based on his or her private
input, output and messages received during the execution of the secure protocol.
Although the assumptions of the semi-honest adversarial model are weaker than
those of the malicious model, we insist that this assumption is realistic under the
problem settings. We assume that the data keepers are trusted (as they are
governmental agencies) to ensure the confidentiality of sensitive client data. It is
difficult to imagine them colluding with other companies to damage their own
reputation. Moreover, it is often non-trivial for one party to maliciously deviate
from a particular protocol which may be hidden in a complex process.

In short, we assume that the verifier and the data keeper are semi-honest.
They will correctly follow the protocol specifications. However, at the same time,
they are also curious about the applicants’ information. In general, secure
personal information as described in Section 5 should meet the following privacy
requirements:
• Client-to-verifier privacy. The verifier should not be able to gain any details

concerning the client’s personal data stored in the data keeper’s database,
except for those he can learn from the result (i.e. the client qualifies or not).

• Client-to-data-keeper privacy. At any point during protocol execution, the

H. G. Do, W. K. Ng

228

identity of the applicant should not be revealed to the data keeper.
• End user’s privacy. The verifier should not be able to obtain any information

relating to other clients stored in the data keeper’s database.
• Verifier-to-data-keeper privacy. The details of the predicates should not be

leaked to the data keeper. This requirement is particularly applicable to
private services where the selection criteria may be private to the provider.

4.2. Additive Homomorphic Encryption

An additive homomorphic encryption scheme is a cryptosystem that allows
arithmetic (i.e. addition) operations to be performed on the ciphertext without
decryption or knowing the actual values. Efficient additive homomorphic
cryptosystems have been proposed, such as the Pallier cryptosystem [11], or the
Damgard and Jurik cryptosystems [12], which are Paillier encryption scheme of
flexible lengths. For simplicity, we assume that a Paillier cryptosystem is used for
encryption and decryption throughout this paper.

The Paillier cryptosystem consists of three algorithms:
1) () ()1 ,KeyGen pk skλ → : Inputs a security parameter and produces the key

pair (),pk sk .
2) (),Enc pk m c→ : Inputs a public key pk and a message m, and outputs a

ciphertext c.
3) (),Dec sk c m→ : Inputs a private key sk and a ciphertext c, and outputs

a message m, such as ()(), ,Dec sk Enc pk m m= .
The security of the Paillier encryption scheme relies on the computational

hardness assumption of a novel mathematical problem called composite residuosity.
The decision version of this problem class assumes that no polynomial-time
algorithm can distinguish the N-th residues modulo 2N with a non-negligible
probability. ()Enc ⋅ and ()Dec ⋅ denote the Paillier encryption and decry-
ption algorithms, respectively.

The Paillier cryptosystem is additive homomorphic encryption. If we consider
two operators × and + in the ciphertext and the plaintext domains, respectively,

1m and 2m are two plaintext elements. The Paillier encryption scheme Enc
satisfies the followings properties:
• Additive Homomorphism:

() () ()1 2 1 2 .Enc m Enc m Enc m m× = +

• Homomorphic Multiplication:

() ()1 1 .kEnc k m Enc m× =

• Semantic Security: Informally, a semantically secure [13] encryption scheme
is a probabilistic, polynomial-time algorithm such that given the ciphertext,
an adversary cannot deduce any additional information about the plaintext.

The above computation is performed modulo 2N . We refer the reader to [11]
for more details. We also note that any additive homomorphic encryption
scheme that satisfies the above properties can be utilized to implement our
proposed framework.

H. G. Do, W. K. Ng

229

5. Secure Information Verification
5.1. Overview

Our proposed approach to the secure information verification problem consists
of four stages:

1) Setup—During this phase, the client goes through an anonymous authen-
tication process so that the verifier is authenticated to communicate with the
data keepers for the verification stage. In addition, the data keeper and the
verifier generate an encryption key pair and exchange the public key of the
homomorphic cryptosystem. These public keypairs are utilized for secure com-
munication and computation at the later stages.

2) Single Predicate—In this stage, the data consumer evaluates a predicate for
each entity in the dataset of the data keeper. The output of this stage is the
encryption of either 1 or 0, depending on whether the entity satisfies the pre-
dicate.

3) Secure Complex Predicate Evaluation—Based on the results of the previous
stage, the verifier collaborates with the data keeper to compute the result of the
complex logical combination of Boolean predicates. Again, the output of this
stage is the encryption of either 1 or 0 depending on whether the entity satisfies
the predicate.

4) Aggregation of Output Data—At this stage, the final result is aggregated,
decrypted and shown to the verifier. Since the data keeper computes the de-
cryption, we propose a secure protocol to generate the outcome so that the data
keeper cannot obtain any information concerning the final result.

5.2. Setup

In the setup phase, the client is first required to complete anonymous authen-
tication with the data keeper Alice, who then allows the verifier Bob to initiate
the secure information verification process on the records of Alice’s database.
When the clients agree to their personal information being stored in Alice’s
database, she issues to each client a credential to be used for authentication. Each
time a client subsequently requests access to Alice’s database, he/she uses her
credentials for verification with Alice, who begins communication with Bob for
the information verification process.

Traditional password-based authentication systems expose the identity of the
client to the data keeper Alice. Hence, they violate the client-to-data-keeper
privacy requirement. To satisfy this, it is desirable to have an authentication
scheme that promises unlinkability, i.e. the server should not be able to link user
requests such that access to the same user cannot be recognised as such.

As the anonymous authentication process is not our main contribution here,
we only briefly review possible approaches to satisfy this requirement. The most
feasible solution is anonymous credentials introduced by D. Chaum [14]. This
allows a user to prove that he/she has obtained a credential issued by an
organisation without revealing anything regarding his/her identity other than

H. G. Do, W. K. Ng

230

the credential. J. Camenisch [15] proposed a protocol that allows an organisation
to issue a credential by obtaining a signature on a committed value. The client
can then prove with zero knowledge that she has a signature under the
organisation’s public key on the given value.

Applied to our problem setting, the client first generates a non-interactive
zero-knowledge proof (i.e. applying the Fiat--Shamir transform) of his/her
credentials with Alice. He/She transfers the proof to Bob, who submits the proof
to Alice. Finally, Alice authenticates Bob to communicate and verify the client’s
information.

Following the authentication process, Alice and Bob generate two Paillier key
pairs using the KeyGen algorithms and agree on two key public pairs for
communication during verification execution. We denote by ()AEnc ⋅ and

()BEnc ⋅ the Paillier encryption under Alice’s public key and that under Bob’s
public key, respectively.

5.3. Single Individual Predicate Evaluation

In the single predicate evaluation stage, for each data record and each attribute
that needs to be verified, the verifier Bob and the data keeper Alice together
perform one of the following protocols: equality predicate evaluation, inequality
predicate evaluation and (non-) membership predicate evaluation. The output of
each protocol is an encrypted bit maintained by Bob. The resulting bit is
encrypted under the data keeper’s public key so that Bob cannot obtain any
information relating to the other entities in the database. We now describe the
three protocols to securely evaluate the results of these predicates.

5.3.1. Equality Predicate
A secure equality predicate evaluation tests whether two private inputs x and y
are equal:

?
x y= . We use the protocol presented by C. Gentry et al. [10] to

develop the protocol for secure equality predicate evaluation. Gentry’s equal-to-
zero protocol [10] allows the comparison between a private value and zero. To
be able to apply the equal-to-zero protocol, we execute a transformation (as
presented in Protocol 1) on the two private inputs.

H. G. Do, W. K. Ng

231

The computation in Steps 1 - 2 transforms the problem into a secure
equal-to-zero protocol. In this protocol, Alice holds an encrypted message with
value a. The message is encrypted under Bob’s key; hence, neither Alice nor Bob
has information concerning the value a. The remaining part of the protocol
involves compare a with 0. In the last step, Bob is required to compute an AND
operator on the ciphertext space. In binary setting, the AND operator is exactly a
multiplication scheme. We describe a secure multiplication scheme as in
Protocol 4. The protocol allows Bob to compute the product of two ciphertexts
where he does not know the decryption key.

The computations on lines 2 and 5 of Protocol 2 are performed by using the
homomorphic property of Paillier encryption. During the protocol, Bob only
works on encrypted data while the server receives two random numbers. Hence,
no information regarding x and y is obtained by Bob and S. The correctness of
the protocol is trivial, as ()()x r y s x y x s y r r s+ + = × + × + × + × . The protocol
requires two encrypted integer transfers for communication. Bob needs to
perform five multiplication operations and five exponentiation operations in the
ciphertext space.

Analysis. We now analyse the correctness and security of the equality
predicate evaluation protocol (Protocol 1). Due to the transformation in Steps 1
- 2, we only need to examine the remaining parts, where the two parties together
compare the encrypted value a with 0.

We note that in Step 7, Alice reserves bit ic when 0ia′ = . This means that
we perform the XNOR operation on bit ia′ and ciphertext ic for all 1,i n= .
Remember that ()i A ic Enc r= , so at that step, we actually compute

() ()i A i A i ic Enc f Enc r XNOR a′ ′= = . Moreover, since a a r′ = + , all i ir a′⊕ s are
zero if and only if 0a = . Therefore, all 1if = if 0a = ; the last step concludes
the protocol, where Bob computes the AND of all bits if and outputs the
inverted result.

The security of the two parties follows the semantic security properties of the
employed encryption scheme—the Paillier cryptosystem. Alice only obtains the
encryption version of y. On the other hand, Bob receives a randomized value
a a r′ = + and an array of encrypted bits () (){ }1, ,A n AEnc r Enc r . Hence, no
more information is leaked to either party.

5.3.2. Inequality Predicate
The inequality predicate considers two parties that pose two private integral

H. G. Do, W. K. Ng

232

values x and y and wish to evaluate the predicate
?

x y< . This problem is known
as secure comparison. The first solution to it was proposed by A. Yao [8] in the
1980s, and pioneered research on secure multi-party computation. Since then,
extensive research has been conducted to address the problem of secure
comparison. Di Crescenzo [16] proposed a secure comparison protocol with
()2 logO n N complexity, where n is the length in bits of the compared numbers,

and N is the group size of the plaintext of the employed encryption scheme.
Fischlin [17] and Blake [9] reduced the complexity of the solutions to
()logO n N .
We propose a variant of Blake’s protocol [9] as a building block to compare

two private inputs. In our problem setting, at this stage, it is expected that no
information relating to the results of the evaluation are known to the verifier or
the data keeper. Therefore, we cannot directly apply the protocol proposed by
Blake [9], as it leaks the comparison results to one of the parties. In order to
prevent such information leakage, we propose a mechanism, as an extension to
the original scheme [9] as shown in Protocol 3.

Blake’s protocol allows us to obliviously transfer one over two secrets
depending on the result of the secure comparison. The protocol considers the
scenario where there are two parties holding two private inputs x and y. The
second party holds two secrets ()0 1,s s (in addition to private input y). Blake’s
protocol allows the two parties obliviously transfer 0s when x y> and 1s in
the other case. Our modification adds one more step which is the secure equality
evaluation protocol to determine the secret that has been sent. At the end of the
protocol, Bob obtains an encrypted bit that indicates the result of the inequality
comparison. To present the protocol, we follow Blake [9] and denote by SD a
set of integers agreed by the two parties before executing the protocol.

In Step 3.b, Bob is required to compute the XOR of two encrypted bits ix ,

H. G. Do, W. K. Ng

233

and iy . Since 2i i i i i i if x y x y x y= ⊕ = + − , we can evaluate the result with the
help of the secure multiplication protocol (Protocol 2). To compute the encry-
ption of vector , ,γ δ µ , Bob only needs to apply the homomorphic property of
the Paillier cryptosystem as discussed in Section 4.2.

Analysis. We first show that the protocol correctly computes the desired
functionality. The flag vector { }i i if f x y= = ⊕ is a binary vector, where the
i-th bit indicates whether i ix y≠ . Therefore, vector γ as constructed in Step
2c is a vector with the following structure: it starts with one or more 0s followed
by a 1, and then a sequence of non-1s.

Let k be the first position where ix and iy differ, which implies that 1kγ =
and kd determine the result of predicate x y< . δ randomizes the value of
γ but keeps k kdδ = . We note that with a large probability, iγ is statistically
close to uniformly random in NZ . Finally, the transformation in Step 2e is a
permutation of nZ where set 01 s− → and 11 s→ . The final step, where a
random permutation ()π µ is sent back to Alice, hides information concerning
index k.

Since there is a negligible minority of elements of SD in a group of size N,
with overwhelming probability, there is exactly one element in vector µ
belonging to set SD . In Step 3, Alice can output either 0s or 1s depending on
whether x y< . The last two steps conclude our construction of the protocol,
where 0v s= only if x y< as desired.

We now prove the security of the protocol. Due to the universal security of the
secure equality evaluation protocol, we only need to consider the first part (i.e.
Steps 1 - 3). Privacy for Alice trivially holds because of the semantic security
properties of the employed encryption scheme—the Paillier cryptosystem. Bob
only receives from Alice a list of encryption messages, and obtains no more
information about Alice’s private input.

Bob’s privacy against the semi-honest party Alice is proven by constructing a
simulator (),ASim x v , where x is the private input of Alice and v the value
obtained in the part of the protocol that is examined. (),ASim x v needs to
generate a distribution statistically close to the view of Alice in real execution.
The simulator generates a random vector µ′ : for 1, ,i n=  , a random element

i nZµ′∈ is chosen. It then replaces the randomly chosen element of µ′ with s
(i.e. i sµ′←), and outputs (){ },x Enc µ′ . As discussed above, due to the
randomization in Step 2.d, vector µ is statistically close to being uniformly
random in NZ (except one element in SD).

5.3.3. (Non-) Membership Predicate
A membership predicate allows the verifier to examine whether an attribute of
the client falls into certain categories. A simple example is the case where the
verifier wishes to know if an applicant works in the education industry (e.g.
teacher, student, librarian, school counsellor, etc.). A non-membership predicate
is the complement of the membership query, and tests whether a particular value
is excluded from a set.

The membership predicate evaluation protocol is presented in Protocol 4. The

H. G. Do, W. K. Ng

234

non-membership predicate can be easily derived from Protocol 4 by applying
the NOT operator discussed in Section 5.4.

In the protocol, Alice is required to evaluate the encrypted polynomial ()P x
at point x a= (line 3). She can do so due to the homomorphism of the
cryptosystem. She first computes ia in plaintext, and then computes

() ()
iai

B i B iEnc c a Enc c× = by the homomorphic multiplication property of the
Paillier cryptosystem. Finally, she calculates () i

iP a c a= ×∑ in encrypted form
by applying the homomorphic addition property.

Analysis. We first analyse the correctness of the protocol. If a S∈ , there
exists one ix such that ix x= . This implies () 0v P a= = . This observation
leads to the final step of the protocol, where Bob and Alice collaboratively
evaluate the equality predicate with inputs r and v r+ . Hence, the encrypted
bit ()Enc b is an indicator of whether value a belongs to set S.

The security the protocol can be proven with two simulators that generate the
views of the two parties, Alice and Bob. For Alice, a simulator that generates and
sends n random encrypted values is a valid simulator. Due to semantic security,
she cannot distinguish the simulator from a real-world scenario. Similarly for
Bob, a random number v r+ can be easily simulated. Finally, the security of
Protocol 4 concludes the proof of security of the secure membership evaluation
protocol.

5.4. Complex Predicate Evaluation

At this stage, Bob holds the encrypted result of the evaluation for each data
record, with each attribute in a complex predicate that needs to be verified. This
sub-section discusses three basic primitives that operate on the encrypted inputs
at this stage. With these primitives, Bob has the capability to compute the results
of the encryption of the desired bit to evaluate each data record. The output of
this stage is an encrypted bit for each data record. This bit indicates whether the
given record satisfies the complex statement.

The inputs of the three primitives are either one encrypted bit (NOT opera-
tion) or two encrypted bits (AND and OR operations). They are described as

H. G. Do, W. K. Ng

235

follows:
1) ¬ (NOT)—It is easy to derive the formula for bit negation operation:
() () ()1Enc x Enc Enc x¬ = − . Clearly, the operation leaks no information re-

garding the encrypted bit x to either Alice or Bob. It requires one exponentiation
operation and one multiplication operation. Alice receives no more data, whereas
Bob only works on his inputs, which are encrypted data.

2) ∧ (AND)—Because x y x y∧ = × for any two bits ,x y , the primitive is
identical to the description of SecMul (Protocol 2). The protocol requires five
multiplication operations and five exponentiation operations in ciphertext space.
The security of the protocol follows the analysis of secure multiplication (i.e.
Protocol 2).

3) ∨ (OR)—Since x y x y x y∨ = + − × , we can derive the definition of the
OR primitive as in Protocol 5. The protocol requires seven multiplication
operations and six exponentiation operations in ciphertext space. During the
protocol, data that Bob and Alice receive are identical to those received during
Protocol 2; hence, Bob and Alice gain nothing following protocol execution.

5.5. Aggregation of Output Data

As the input of this stage, for each entity in Alice’s database, Bob holds an
encrypted bit that determines whether the data record qualifies the complex
statement. In order to ensure there is exactly one qualified data record in case
the application is successful, we introduce one special attribute to the final
complex predicate. The attribute is the secret identification of the client in the
database.

We assume that when the client registers his/her data with Alice the data
keeper, Alice generates a secret random number cr to identify the client. The
number is stored in the database as an attribute of the client. We introduce
additional steps to address the requirement:

1) The client encrypts the random secret under Bob’s key, obtain ()B cEnc r .
2) The client anonymously sends the encryption of secret value to Alice.
3) Alice and Bob perform secure equality evaluation (starting from step 2) and

get the result ()AEnc b .
4) Bob applies AND operation with ()AEnc b and the current result of

evaluation process.
With the additional step, now Bob holds an array of encrypted bits with all 0s

and at most one bit 1. Bob uses a homomorphism to compute the encrypted sum
of these bits; the result is the encryption of either 1 or 0. He can send it to Alice
for decryption and obtain the final result to determine whether the applicant
qualifies. However, this may compromise Bob’s privacy, especially when he

H. G. Do, W. K. Ng

236

wants to hide his business progress. In order to maintain his privacy, we
introduce one step for the randomization of the decryption process as follows:

1) Bob computes the encrypted sum using a homomorphism to obtain
()AEnc s .

2) Bob generates a random number r, and computes ()Ac Enc s r= + and
sends to Alice.

3) Alice decrypts c to obtain s r+ and sends it back to Bob. Note that Alice
only receives a random number so that she learns nothing about the result of the
application.

4) Bob computes the result s s r r= + − .
Finally, Bob is able to decide the result of the verification process by bit s.

5.6. Discussion

We first consider the security of the entire system, since all intermediate results
revealed to Alice and Bob are either random or semantically secure encryptions
of numbers. Furthermore, the outputs of all sub-protocols (only seen by Bob)
are always encrypted under Alice’s key. Under the assumptions of the
semi-honest model, we claim that the sequential composition of these sub-
protocols leaks no details of the client or the predicates proposed by the
verifier.

The second issue we consider is the practical implementation of the system.
Since the same procedure is applied for all the data entries, the verification
results for each data record can be computed in parallel. That means we are able
to construct multiple verification threads, each one is corresponding to one data
entry. By the batch verification approach, we can improve the running time of
the whole process by a factor of n/m, where n is the number of data records and
m is the number of threads.

While the same procedure is applied for each data record, the data keeper is
not able to know who is the applicant. In practice, there are some cases that the
data keeper (e.g. a governmental agency) is allowed to know the identity of the
applicant, where this rigorous security feature is then not required. The
proposed solution can be modified, and inherently improves performance.
Specifically, the client can perform a simple authentication rather than an
anonymous solution to allow the verifier to communicate with the data keeper.
The verification process only needs to be performed on the only one data record
identified by the client. Hence, the cost of the proposed solution is reduced by a
factor of n where n is the number of data records in the data keeper’s database.

In our proposed solution, an applicant qualifies only if he/she satisfies all
criteria specified by a single predicate or complex predicates. Hence, we can
define a complex predicate to cover all criteria using the AND operation. We
also can extend our protocol to adapt to threshold criteria, where the applicant
qualifies only if he/she satisfies more than k criteria. The idea is to compute the
sum of each predicates evaluation (in encrypted form) and apply a slightly
modified version of Protocol 3 to compare the encrypted value with threshold k.

H. G. Do, W. K. Ng

237

6. Implementation

We implemented our proposed method, and calculated the CPU time required
to run our sub-protocols from Section 5. Our experiments were conducted on a
Windows 10.0 machine with a 3-GHz processor and 16 GB of RAM. We used
the Paillier cryptosystem as the underlying additive homomorphic encryption
scheme and implemented the proposed sub-protocols in Java.

We first examined the operation of the secure equality evaluation and the
secure inequality evaluation protocols. Two factors affect the performance of
these protocols: the Paillier key size and the domain size of the input. Table 2
shows the processing times of Protocols 1 & 3 with different settings of bit size
and key size. We performed the experiment with bit lengths of 32, 64 and 160.
The latter was the size of the output of the SHA-1 hash function we used for the
secret identification described in Section 5.5. The result showed that these
protocols require twice the time for double-bit size of inputs; the time needed
increased by a factor of nearly 7 when the Paillier key size was doubled.

The third single-predicate evaluation building block was the (non-)
membership predicate. The run time of the building block depends on three
factor: the Paillier key size, the number of elements in the set and the bit size of
the inputs, where bit size only affects the final step of Protocol 4, which is the
secure equality evaluation protocol. Figure 2 show the relationship between the

Table 2. Run times of secure equality and inequality evaluation protocols (ms).

1024 bit Key size

Size Prtcl.1 Prtcl.3

32 796 1769

64 1472 3542

160 3277 8623

2024 bit Key size

Size Prtcl.1 Prtcl.3

32 4477 12,047

64 9983 24,755

160 22,569 57,393

Figure 2. Running time of Secure Membership Evaluation.

H. G. Do, W. K. Ng

238

Table 3. Running times of proposed sub-protocols.

Key Size Secure Negation Secure AND Secure OR

512 4 ms 20 ms 22 ms

1024 17 ms 73 ms 86 ms

2048 81 ms 517 ms 558 ms

run times of the two remaining factors and the performance of the building
block.

We had made a similar observation earlier: the cost of the secure membership
evaluation protocol when the key size was 1024 bits was roughly six to seven
times more efficient than with a length of 2048 bits for the Paillier key. The
computational cost of the protocol also increased linearly with the size of the set.
Finally, the run time of the three protocols that evaluated the Boolean functions
are shown in Table 3. The same characteristics concerning the effect of the
Paillier key size held for these building blocks.

In order to verify the feasibility of the whole proposed system, we conducted
an experiment on a simulated dataset. We consider a complex statement veri-
fication comprising of 10 single predicates linking together by two boolean
operations AND, OR. The running time for verifying single data record was 25
seconds, and it took approximately 1 hour to verify one thousand data record in
the parallel mode of 10 threads running simultaneously.

7. Conclusion

In this paper, we proposed a framework for privacy-preserving verification of
personal information. We used the secure multi-party computation model and
homomorphic encryption to develop a systematic solution to the problem in
four stages. We showed that the proposed scheme can protect the clients privacy
from both the verifier and the data keeper, and at the same time provides privacy
to the former. Different ways to further enhance the performance of the pro-
posed method and a scheme extension for threshold verification were discussed.
The experimental results highlighted the efficiency and feasibility of our pro-
posed scheme under different security settings.

References
[1] Goldwasser, S., Micali, S. and Rackoff, C. (1985) The Knowledge Complexity of In-

teractive Proof-Systems (Extended Abstract). Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, Providence.

[2] Yang, Y.J., Zhou, J.Y., Weng, J. and Bao, F. (2009) A New Approach for Anonym-
ous Password Authentication. Twenty-Fifth Annual Computer Security Applica-
tions Conference, Honolulu.

[3] Groth, J. (2005) Non-Interactive Zero-Knowledge Arguments for Voting. Third In-
ternational Conference on Applied Cryptography and Network Security, New York.
https://doi.org/10.1007/11496137_32

[4] Camenisch, J., Hohenberger, S. and Lysyanskaya, A. (2006) Balancing Accountabil-
ity and Privacy Using e-Cash (Extended Abstract). 5th International Conference on

https://doi.org/10.1007/11496137_32

H. G. Do, W. K. Ng

239

Security and Cryptography for Networks, Maiori.
https://doi.org/10.1007/11832072_10

[5] Camenisch, J., Chaabouni, R. and Shelat, A. (2008) Efficient Protocols for Set
Membership and Range Proofs. Advances in Cryptology-ASIACRYPT 2008, 14th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Melbourne.

[6] Kissner, L. and Song, D. (2005) Privacy-Preserving Set Operations. Advances in
Cryptology-CRYPTO 2005: 25th Annual International Cryptology Conference, San-
ta Barbara. https://doi.org/10.1007/11535218_15

[7] De Cristofaro, E., Gasti, P. and Tsudik, G. (2012) Fast and Private Computation of
Cardinality of Set Intersection and Union. Cryptology and Network Security, 11th
International Conference, CANS 2012, Darmstadt.

[8] Yao, A.C.-C. (1982) Protocols for Secure Computations (Extended Abstract). 23rd
Annual Symposium on Foundations of Computer Science, Chicago.

[9] Blake, I.F. and Kolesnikov, V. (2009) One-Round Secure Comparison of Integers.
Journal of Mathematical Cryptology, 3.

[10] Gentry, C., Halevi, S., Jutla, C.S. and Raykova, M. (2015) Private Database Access
with He-Over-Oram Architecture. 13th International Conference on Applied Cryp-
tography and Network Security, New York.
https://doi.org/10.1007/978-3-319-28166-7_9

[11] Paillier, P. (1999) Public-Key Cryptosystems Based on Composite Degree Residuo-
sity Classes. Advances in Cryptology—EUROCRYPT99, International Conference
on the Theory and Application of Cryptographic Techniques, Prague.
https://doi.org/10.1007/3-540-48910-x_16

[12] Damgård, I. and Jurik, M. (2001) A Generalisation, a Simplification and Some Ap-
plications of Paillier’s Probabilistic Public-Key System. Public Key Cryptography,
4th International Workshop on Practice and Theory in Public Key Cryptography,
Cheju Island. https://doi.org/10.1007/3-540-44586-2_9

[13] Goldreich, O. (2004) The Foundations of Cryptography: Vol. 2, Basic Applications.
Cambridge University Press, Cambridge.

[14] Chaum, D. (1985) Security without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM, 28, 1030-1044.
https://doi.org/10.1145/4372.4373

[15] Camenisch, J. and Lysyanskaya, A. (2002) A Signature Scheme with Efficient Pro-
tocols. 3rd International Conference on Security in Communication Networks,
Amalfi.

[16] Di Crescenzo, G. (2000) Private Selective Payment Protocols. Financial Cryptogra-
phy, 4th International Conference, Anguilla.

[17] Fischlin, M. (2001) A Cost-Effective Pay-Per-Multiplication Comparison Method
for Millionaires. Topics in Cryptology, The Cryptographer’s Track at RSA Confe-
rence, San Francisco.

https://doi.org/10.1007/11832072_10
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-319-28166-7_9
https://doi.org/10.1007/3-540-48910-x_16
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1145/4372.4373

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jis@scirp.org

http://papersubmission.scirp.org/
mailto:jis@scirp.org

	Private Personal Information Verification
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Problem Formulation
	4. Background
	4.1. Security Assumptions
	4.2. Additive Homomorphic Encryption

	5. Secure Information Verification
	5.1. Overview
	5.2. Setup
	5.3. Single Individual Predicate Evaluation
	5.3.1. Equality Predicate
	5.3.2. Inequality Predicate
	5.3.3. (Non-) Membership Predicate

	5.4. Complex Predicate Evaluation
	5.5. Aggregation of Output Data
	5.6. Discussion

	6. Implementation
	7. Conclusion
	References

