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ABSTRACT 

We describe a method for efficiently hashing multiple messages of different lengths. Such computations occur in various 
scenarios, and one of them is when an operating system checks the integrity of its components during boot time. These 
tasks can gain performance by parallelizing the computations and using SIMD architectures. For such scenarios, we 
compare the performance of a new 4-buffers SHA-256 S-HASH implementation, to that of the standard serial hashing. 
Our results are measured on the 2nd Generation Intel® Core™ Processor, and demonstrate SHA-256 processing at effec-
tively ~5.2 Cycles per Byte, when hashing from any of the three cache levels, or from the system memory. This repre-
sents speedup by a factor of 3.42x compared to OpenSSL (1.0.1), and by 2.25x compared to the recent and faster 
n-SMS method. For hashing from a disk, we show an effective rate of ~6.73 Cycles/Byte, which is almost 3 times faster 
than OpenSSL (1.0.1) under the same conditions. These results indicate that for some usage models, SHA-256 is sig-
nificantly faster than commonly perceived. 
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1. Introduction 

The performance of hash functions is important in vari-
ous situations and platforms. One example is a server 
workload: authenticated encryption in SSL/TLS sessions, 
where hash functions are used for authentication, in 
HMAC mode. This is one reason why the performance of 
SHA-256 on modern x86_64 architectures was defined 
as a baseline for the SHA3 competition [ 1].  

Traditionally, the performance of hash functions is 
measured by hashing a single message (of some length) 
on a target platform. For example, consider the 2nd Gen-
eration Intel® Core™ Processors. The OpenSSL (1.0.1) 
implementation hashes a single buffer (of length 8 KB) at 
17.55 Cycles per Byte (C/B hereafter). Recently, [ 2] im-
proved the performance of SHA-256 with an algorithm 
that parallelizes the message schedule, and the use of 
SIMD architectures, moving the performance baseline to 
11.47 C/B (code version from April 2012 is available 
from [ 3], and will be updated soon) on the modern proc-
essors, when hashing from the cache.  

In this paper, we investigate the possibility of accele- 
rating SHA-256 for some scenarios, and are interested in 
optimizing the following computation: hashing a number 
(k) of independent messages, to produce k different di-
gests. We investigate the advantage of SIMD architec-
tures for these parallelizable computations.  

Such workloads appear, for example, during the boot 
process of an operating system, where it checks the in-
tegrity of its components (see [ 4] for example). This in-
volves computing multiple hashes, and comparing them 
to expected values. Another situation that involves hash-
ing of multiple independent messages is data de-dup- 
lication, where large amounts of data are scanned (typi-
cally in chunks of fixed sizes) in order to identify dupli-
cates [ 5]. In these two scenarios, the data typically reside 
on the hard disk, but hashing multiple independent mes-
sages could also emerge in situations where the data is in 
the cache/memory.  

A SIMD based implementation of hash algorithms was 
first proposed (in 2004) and described in detail by 
Aciiçmez [ 6]. He studied the computations of SHA-1, 
SHA-256 and SHA-512, and his investigation was car-
ried out on Intel® Pentium™ 4, using SSE2 instructions. 
Two approaches for gaining performance were attempted: 
1) Using SIMD instructions to parallelize some of the 
computations of the message schedule of these hash al-
gorithms, when hashing a single message (see also later 
works (on SHA-1) along these lines, in [ 7, 8]); 2) Using 
SIMD instructions to parallelize hash computations of 
several independent messages. Aciiçmez reports that he 
could not improve the performance of hashing a single 
buffer, using the SIMD instructions (while this could not 
be done on the Pentium 4, we speculate that it would be 
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possible on more recent architectures). However, he re-
ports speedup by a factor of 1.71x for simultaneous 
hashing of four buffers, with SHA-256 (speedup by a 
factor of 2.3x for SHA-512 is also reported, but it is less 
interesting in our context, because the comparison base-
line was a (slow) 32-bit implementation).  

In this paper we expand the study conducted by 
Aciiçmez, by demonstrating the performance of Simul-
taneous Hashing of multiple independent messages, on 
contemporary processors. We detail a method for a “Si-
multaneous Update” that facilitates hashing of independ-
ent messages of arbitrary sizes. To account for different 
usages, we investigate the performance of hashing multi-
ple messages (of variable sizes) from different cache 
hierarchies, system memory, and from the hard drive. 

2. Preliminaries and Notations 

The detailed definition of SHA-256 can be found in 
FIPS180-2 publication [9]. Schematically, the computa-
tional flow of SHA-256 can be viewed as follows: “Init” 
(setting the initial values), a sequence of “Update” steps 
(compressing a 64 bytes block of the message, and up-
dating the digest value), and a “Finalize” step (takes care 
of the message padding). The padding requires either one 
or two calls to the Update function, depending on the 
message’s length (see more details in [2]). For SHA-256, 
the performance is almost linearly proportional to the 
number (N) of Update function calls, which. For a mes-
sage of length bytes, the value of N is: 

length
+2 length mod 64 56

64

length
+1 else

64

N

     
 
  

   (1) 

For sufficiently long messages, we can approximate N ~ 
floor (length/64). For example, this approximation for a 4 
KB message gives floor (length/64) = 64, while actual 
hashing of a 4 KB message requires 65 Update function 
calls (i.e., a ~ 1.5% deviation). 

3. Simultaneous Hashing (S-HASH) of  
Multiple Messages 

SIMD architectures [ 10] are designed to execute, in pa- 
rallel, the same operations on several independent chunks 
of data (called “elements”). Modern architectures have 
variants of SIMD instructions that operate on elements of 
sizes 1, 2, 4, or 8 bytes. By the nature of the algorithms, 
SHA-256 (and SHA-1) requires operations on 4 bytes 
elements, while SHA-512 requires operations on 8 bytes 
elements.  

Figure 1 describes the Simultaneous Hashing algo-
rithm (S-HASH) that hashes k messages and generates k  

Algorithm 1: Simultaneous Hashing (S-HASH) 
Input:  
Buffers – a list with pointers to k buffers to be hashed. 
Lengths – a list with the lengths (in bytes) of the k buffers. 
Hashes – a list with pointers to store the k generated hash 
values. 
Notations:  
The number of t-bit “words” (elements) that fit in a register 
is m. (for SHA-256, t=32, and with AVX, m=128/32=4).  
It is assumed that k > m. 
The number of bytes, hashed by one “Update” operation is 
denoted by p. 
Output: k hash values of the k buffers, stored the at 
memory locations pointed by Hashes. 
Flow: 
Init: 
L[0] = Lengths[0]  
L[1] = Lengths[1] 

… 
L[m-1] = Lengths[m-1] 
B[0] = Buffers[0] 
B[1] = Buffers[1] 
… 
B[m-1] = Buffers[m-1] 
H[0] = Hashes[0] 
H[1] = Hashes[1] 

… 
H[m-1] = Hashes[m-1] 
Last[0] = 0 
Last[1] = 0 

…  
Last[m-1] = 0 
HashInit(Hashes[0]) 
HashInit(Hashes[1]) 

… 
HashInit(Hashes[m-1]) 
i = m; 
Simultaneous Update: 
Repeat 

n = min(L)/p 
S-UPDATE(H, B, n) 
L = L – [n×p|n×p|…|n×p] 
For j = 0 to m-1 

If L[j]<p AND Last[j]=0 then 
LastBlock[j] = PreparePaddingBlock(B[j]) 
B[j] = LastBlock[j] 
Last[j] = 1 
L[j] = Length(LastBlock[j]) 

Else If L[j]<p AND Last[j]=1 then 
If i=k then  

Break 
Else 

L[j] = Lengths[i] 
B[j] = Buffs[i] 
H[j] = Hashes[i] 
Last[j] = 0 
HashInit(Hashes[i]) 
i++ 

End If 
End If 

End For 
End Repeat 
If unfinished buffers still remain, finish hashing serially 

 

Figure 1. The simultaneous hashing (S-HASH) algorithm. 
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digests, with some hash function. Suppose that the im-
plemented hash function operates on t-bit “words” (ele-
ments), and that the architecture has s-bit SIMD registers. 
Then, the number of words that fit into a SIMD register 
is m = s/t, which we assume to be an integer. We also 
assume that k > m. Algorithm 1 starts with the Initialize 
step for the first m buffers. Then, it invokes the “Simul-
taneous Update” function (for the specific hash function) 
every time there are m blocks ready for processing. This 
is repeated until the shortest buffer (from the m processed 
buffers) is fully consumed. At this point, a padding block 
is fed to the Simultaneous Update function, to “Finalize” 
(that buffer). If the hash is already finalized, a block from 
a new buffer is fed (after the proper “Init”). 

Here, we use the AVX architecture [ 10], with 128-bit 
registers (i.e., s = 128). SHA-256 (and SHA-1) algo-
rithms have t = 32, while SHA-512 has t = 64, implying 
m = 4 for SHA-1 and SHA-256, and m = 2 for SHA512. 
For our SHA-256 study, we can hash 4 buffers in parallel. 
We call this implementation 4-buffers SHA-256 S-HASH. 

The near-future AVX2 architecture [ 11] has integer 
instructions that operate on 256-bit registers. This allows 
for doubling the number of independent messages that 
can be hashed in parallel and would lead to, for example, 
8-buffers SHA-256 S-HASH or 4-buffers SHA-512 S- 
HASH. 

4. Results 

This section describes the 4-buffers SHA-256 S-HASH 
results. 

4.1. The System’s Characteristics 

The system that was used for generating the reported 
measurements had the following characteristics:  
 An Intel® Core™ i5-2500 processor (2nd Generation 

Intel® Core™ Processor; Sometimes referred to as 
Architecture Codename “Sandy Bridge”). 

 8 GB RAM (DDR3 1600, 2 Channels).  
 A RAID0 array of two Intel® SSD 320 drives, each 

one of 80 GB and combined throughput of 400 MB/sec 
(indicated by “hdparm-t” [ 12]). 

 Fedora 16 OS. 
All the runs were carried out on a system where the 

Intel® Turbo Boost Technology, the Intel® Hyper-Thread- 
ing Technology, and the Enhanced Intel Speedstep® Te- 
chnology, were disabled. 

All of the performance numbers reported here, were 
obtained on the same system, ran on the same processor, 
and under the same conditions. In particular, we point out 
that all of the reported hash computations include the 
overhead of the proper padding, as required by the 
SHA-256 definition [9]. 

The tested codes were written in assembly language, 

so their performance is compiler agnostic. The impact of 
the operating system is relevant only for hashing files 
from the hard disk, because some system calls (to access 
files/directories) are involved. However, we suggest that 
experiments with other operating systems would show 
the same performance traits that we report here. 

4.2. Simultaneous Hashing of Multiple 4 KB 
Buffers, from Different Cache Levels and 
Main Memory 

For profiling the performance of the 4-buffers SHA-256 
S-HASH, we wrote a new implementation which pro- 
cesses four buffers in parallel. In order to estimate the 
advantage of the parallelization, we compare the result-
ing performance to serial implementations that hash the 
same amount of data.  

To measure the performance of hashing data that re-
sides in different cache levels, or in memory, we note 
that the processor has ([13]): 1) First Level Data Cache 
of 32 KB (per core); 2) Second Level Cache of 256 KB 
(per core); 3) Last Level Cache of 6 MB (shared among 
all the cores). Therefore, 
 For data that resides in the First Level Cache, we 

hashed a total of 16 KB of data, split to 4 chunks of 4 
KB each.  

 For data that resides in the Second Level Cache, we 
hashed a total of 256 KB of data, split to 64 chunks of 
4 KB each.  

 For data that resides in the Last Level Cache, we 
hashed a total of 2 MB of data, split to 512 chunks of 
4 KB each.  

 For data that resides in the main memory, we hashed 
a total of 32 MB of data, split to 8192 chunks of 4 KB 
each.  

Prior to the actual measurements, we ran the hash, in a 
loop, 500 times, in order to make sure that our data re-
sides in the desired cache level (or memory). 

For comparison, we used the OpenSSL (version 1.0.1) 
SHA-256 (serial) [14] implementation, and the faster 
implementation, based on the n-SMS method [2] (a ver-
sion from April 2012, can be retrieved from [3]; An up-
date will be posted soon).  

The results, illustrated in Figure 2, show that hashing 
from all three cache levels can be performed at roughly 
the same performance, and there is only some small per-
formance degradation when the data is hashed from the 
main memory. The 4-buffers SHA-256 S-HASH method 
is 3.42x faster than OpenSSL (1.0.1), and 2.24x times 
faster than the n-SMS method. 

4.3. Simultaneous Hashing of Files from the 
Hard-Drive 

The following results account for the performance of  
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Figure 2. SHA-256 hashing from different cache levels and 
memory, Intel® Core™ i5-2500 (Architecture Codename 
Sandy Bridge). The performance of the 4-buffers SHA-256 
S-HASH is compared to the (standard) serial hashing with 
the OpenSSL 1.0.1 implementation, and to the n-SMS me- 
thod (see explanation in the text). 

 
hashing from the disk. The numbers were obtained using 
the following methodology.  

For the experiments, we prepared two directories with 
a different combination of files. The first directory (DI-
VERSE hereafter) contained 350 files occupying 79 MB 
(82,833,132 bytes) in total1. The files sizes range from 3 
Bytes to 7.18 MB (7,533,568 bytes), with the average 
size of 0.22 MB (236,666 bytes). The detailed size dis-
tribution of the file is provided in Table 1 in the Appen-
dix. The second directory (UNIFORM hereafter) con-
tained 8 (large) files of equal size, each one of 17.76 MB 
(18,623,835 bytes)2. For each directory, we prepared, in 
advance, the list of its files.  

To measure the performance of hashing from the hard 
drive, we flushed the OS “pagecache” and “dentries” and 
“inodes” caches, before the measurements were taken 
(using the Linux directive  
echo 3 > /proc/sys/vm/drop_caches) [ 15]. 

We measured the following operations: scanning the 
list (in the prescribed order), opening the files in the list, 
reading the size of each file, mapping the files to memory, 
calculating the SHA-256 values and storing them in ap-
propriate location. 

Figure 3, top panel, provides the performance for the 
“DIVERSE” directory in C/B (which is a frequency-ag- 
nostic metric). The performance is shown for several 
processor frequencies, to demonstrate how the hard- 
drive’s throughput limits the overall observed perfor- 
mance. The figure shows that at the native processor 
speed (3.3 GHz), the S-HASH method outperforms the 
OpenSSL (1.0.1) implementation by a factor of 1.73x. 
When the processor is down-clocked to 1.6 GHz, all three 
implementations improve their C/B count, but the S-HASH  

 

 

Figure 3. Hashing the files in the directory DIVERSE (see 
explanation in the text). Measurements are taken on the 
Core i5-2500, operating at different CPU frequencies. Panel 
a shows the performance in Cycles per Byte. Panel b shows 
the performance in MB/sec. 

 
improves by a larger margin, becoming 2.16x faster than 
OpenSSL. The bottom panel of Figure 3 shows the same 
performance, measured in MB/sec. It is interesting to 
observe that although the frequency of the processor is 
reduced by factor of two, from 3.3 GHz to 1.6 GHz, the 
S-HASH throughput reduces only by a factor of 1.28x.  

Figure 4 illustrates the performance for the UNI-
FORM directory. In this scenario, the performance of 
OpenSSL and of the n-SMS method are not limited by 
hard drive, because we see that reducing frequency does 
not improve the speed in C/B. On the other hand, the 
faster 4-buffers SHA-256 S-HASH implementation is 
affected by the hard drives. It improves (in C/B) when 
the frequency is reduced, although not as much as it does 
in the DIVERSE test. The figure shows that the 4-buffers 
S-HASH is 2.86x faster than OpenSSL, when the proc-
essor is clocked at 1.6 GHz, and 2.26x faster at the native 
processor’s frequency. 

In general, all implementations improve when the 
hashed files are large. The reasons are that the overheads 
for opening files are reduced, and the reads from hard 
drive are sequential. In addition, the S-HASH is faster 
when the processed files have equal lengths (UNIFORM 
directory). This happens because the computations for all 
the four buffers terminate concurrently, allowing four 
new buffers to be scheduled together. By contrast, in the 
DIVERSE directory, when a certain buffer is consumed, 
operations on the remaining buffers are stopped until a  

1These files were the drivers from a Windows 7 directory “Windows\
System32\drivers\”. 
2The files were copies of the same file, namely 
“supercop-20120219.tar.gz”, retrieved from 
http://hyperelliptic.org/ebats/supercop-20120219.tar.bz2 
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Figure 4. Hashing the files in the directory UNIFORM (see 
explanation in the text). Measurements are taken on the 
Core i5-2500 operating at different CPU frequencies. Panel 
a shows the performance in Cycles per Byte. Panel b shows 
the performance in MB/sec. 

 
new buffer is scheduled. 

5. Conclusions 

We illustrated the general S-HASH approach, and demons- 
trated the advantage of a 4-buffers SHA-256 S-HASH, 
running on the AVX architecture. The speedups we ob-
serve depend on the location of the data, but are signifi-
cant in all cases. When hashing equal length messages 
from any of the three levels of the processor’s cache, or 
from main memory, the 4-buffers SHA-256 S-HASH 
performs at ~5.2 C/B. This is ~2.24x times faster than the 
best known serial hashing implementation. When hash-
ing data from the hard-disk, the CPU performance is not 
the (only) limiting factor, because the disk’s read per-
formance becomes a bottleneck. Here, the 4-buffers S- 
HASH method executes at effectively 8.65 C/B at the 
native processor speed, 3.3 GHz. This performance is 
2.26x faster than OpenSSL (1.0.1) and 1.67x faster than 
the n-SMS method [2] under the same conditions (19.55 
C/B and 14.45 C/B, respectively).  

We mentioned above two scenarios that require hash-
ing of multiple messages, and can enjoy an S-HASH 
implementation: An OS check of the integrity of its 
components (during boot time), and data de-duplication. 
In addition, SSL/TLS servers that need to support multi-
ple connections could also take advantage of an S-HASH 
implementation, if their software is set to process data 

from multiple connections in parallel. We suggest that 
the potential performance gain might be worth the hassle 
of tweaking the software to accommodate such paralleli-
zation.  

Since the 4-buffers S-HASH operates on 4 buffers in 
parallel, one might wonder why it does not achieve the 
theoretical four-fold speedup factor, compared to the 
alternative implementation. We mention here two of the 
reasons: 1) The 2nd Generation Core™ Processors have 
an efficient ALU unit that can process data at a faster rate 
than the SIMD unit. This closes some of the theoretical 
four-fold gap that AVX can offer; 2) SHA-256 algorithm 
has a significant amount of rotations. Compared to a sin-
gle ALU instruction (ROR), the S-HASH method needs 
to implement rotation by a flow of two (SIMD) shifts, 
followed by a (SIMD) xor.  

Hashing from a hard-drive introduces a different con-
sideration. The RAID array (of two Solid State Drives) 
that we used in our experiments had throughput of 400 
MB/sec. At 3.3 GHz, this throughput is equivalent to 
processing at the rate of 7.15 C/B. This explains the re-
sults that we obtained: while the processor can hash data 
at 5.18 C/B with the 4-buffers S-HASH method if the 
data read from the cache (or memory), this performance 
cannot be reached when the data is fetched from the disk. 
This is why we get only 8.65 C/B (for the UNIFORM 
case), but as already noted, this is still significantly faster 
than the serial alternative. When the processor is clocked 
to 1.6 GHz, the same disk throughput becomes equiva-
lent to processing at the rate of 3.81 C/B. Thus, on the 
under-clocked systems, we were able to hash at 6.73 C/B, 
which is closer (only 1.31x slower) to the processor’s 
hashing capability (5.18 C/B). The remaining gap be-
tween the system-wise performance and the maximal 
processing capability can be attributed to OS overheads, 
and to the fact that the accessing data stored in the disk is 
non-sequential (but rather distributed between four ar-
eas).  

The soon to be released Haswell architecture [11] will 
support AVX2 with integer instructions that operate on 
256-bit registers. With this architecture, we could up-
grade our method to implement 8-buffers S-HASH effi-
ciently—in theory, doubling the performance of the 
4-buffers S-HASH. However, for hashing data from the 
disk, we note that the SSD drives are not expected to 
double their throughput (at least in this time frame), so 
we should expect less than a twofold speedup.  

Note that we intentionally did not study an S-HASH 
implementation of SHA-512. The reason is that SHA-512 
operates on 64-bit “words”, and therefore, the current 
AVX architecture can support only a 2-buffers SHA-512 
S-HASH. This makes the S-HASH method less attractive 
because 1) The SHA-512 ALU implementations are al-
ready fast with the n-SMS method (8.72 C/B); 2) While 
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each SHA-512 Update compresses 128 bytes of the mes-
sage and a SHA-256 Update compresses only 64 bytes, 
SHA-512 involves 1.25x more rounds in the processing 
than SHA-256 (80 rounds versus 64). We therefore specu-
late that SHA-512 S-HASH implementations would be-
come useful only on the AVX2 architectures (doing a 
4-buffers S-HASH), but will be slower than 8-buffers 
SHA-256 S-HASH on that architecture. 

We conclude this study by stating that our results show 
that for some usages, SHA-256 is significantly faster 
than commonly perceived.  

Finally, we add a few related remarks on the five 
SHA3 finalists [1]. Skein and Keccak use 64-bit words, 
and the remark we made on SHA-512 holds similarly. J. 
H. Blake and Grostl already use SIMD instructions in 
their better performing implementations. Therefore, ap-
plying the S-HASH method to these algorithms would 
create a delicate tradeoff with the S-HASH and the bene-
fits of their current use of the SIMD instructions. Such 
optimization would be an interesting study to carry out. 
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Appendix: Files size distribution for the “DIVERSE” directory 

Table 1. The lengths (in bytes) of the 350 files in the DIVERSE directory, when they are sorted by an alphabetic order of the 
file-names (from left column top to right column bottom). 

14,336 

5120 

68,096 

227,840 

497,152 

61,008 

80,384 

18,432 

8704 

286,720 

47,104 

14,976 

14,720 

293,376 

740,864 

1,481,216 

178,752 

17,664 

38,912 

30,320 

27,008 

28,736 

288,336 

48,840 

65,088 

70,168 

143,792 

350,208 

195,024 

77,888 

78,848 

158,720 

271,872 

54,824 

15,360 

284,736 

3 

7,533,568 

7,533,568 

122,960 

651,264 

277,624 

169,080 

50,808 

256,120 

7680 

7680 

8192 

41,472 

303,464 

307,560 

311,640 

311,656 

30,760 

393,264 

13,104 

64,080 

64,592 

32,896 

89,600 

21,760 

292,864 

740,864 

1,485,312

146,036 

112,128 

172,544 

654,928 

42,064 

412,672 
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334,416 

12,288 
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339,536 

182,864 

499,200 

60,416 

15,440 

15,440 
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