
Journal of Information Security, 2012, 3, 319-325
http://dx.doi.org/10.4236/jis.2012.34039 Published Online October 2012 (http://www.SciRP.org/journal/jis)

Simultaneous Hashing of Multiple Messages

Shay Gueron1,2, Vlad Krasnov2
1Department of Mathematics, University of Haifa, Haifa, Israel

2Intel Corporation, Israel Development Center, Haifa, Israel
Email: shay@math.haifa.ac.il

Received July 12, 2012; revised August 21, 2012; accepted August 29, 2012

ABSTRACT

We describe a method for efficiently hashing multiple messages of different lengths. Such computations occur in various
scenarios, and one of them is when an operating system checks the integrity of its components during boot time. These
tasks can gain performance by parallelizing the computations and using SIMD architectures. For such scenarios, we
compare the performance of a new 4-buffers SHA-256 S-HASH implementation, to that of the standard serial hashing.
Our results are measured on the 2nd Generation Intel® Core™ Processor, and demonstrate SHA-256 processing at effec-
tively ~5.2 Cycles per Byte, when hashing from any of the three cache levels, or from the system memory. This repre-
sents speedup by a factor of 3.42x compared to OpenSSL (1.0.1), and by 2.25x compared to the recent and faster
n-SMS method. For hashing from a disk, we show an effective rate of ~6.73 Cycles/Byte, which is almost 3 times faster
than OpenSSL (1.0.1) under the same conditions. These results indicate that for some usage models, SHA-256 is sig-
nificantly faster than commonly perceived.

Keywords: SHA-256; SHA-512; SHA3 Competition; SIMD Architecture; Advanced Vector Extensions Architectures;

AVX; AVX2

1. Introduction

The performance of hash functions is important in vari-
ous situations and platforms. One example is a server
workload: authenticated encryption in SSL/TLS sessions,
where hash functions are used for authentication, in
HMAC mode. This is one reason why the performance of
SHA-256 on modern x86_64 architectures was defined
as a baseline for the SHA3 competition [1].

Traditionally, the performance of hash functions is
measured by hashing a single message (of some length)
on a target platform. For example, consider the 2nd Gen-
eration Intel® Core™ Processors. The OpenSSL (1.0.1)
implementation hashes a single buffer (of length 8 KB) at
17.55 Cycles per Byte (C/B hereafter). Recently, [2] im-
proved the performance of SHA-256 with an algorithm
that parallelizes the message schedule, and the use of
SIMD architectures, moving the performance baseline to
11.47 C/B (code version from April 2012 is available
from [3], and will be updated soon) on the modern proc-
essors, when hashing from the cache.

In this paper, we investigate the possibility of accele-
rating SHA-256 for some scenarios, and are interested in
optimizing the following computation: hashing a number
(k) of independent messages, to produce k different di-
gests. We investigate the advantage of SIMD architec-
tures for these parallelizable computations.

Such workloads appear, for example, during the boot
process of an operating system, where it checks the in-
tegrity of its components (see [4] for example). This in-
volves computing multiple hashes, and comparing them
to expected values. Another situation that involves hash-
ing of multiple independent messages is data de-dup-
lication, where large amounts of data are scanned (typi-
cally in chunks of fixed sizes) in order to identify dupli-
cates [5]. In these two scenarios, the data typically reside
on the hard disk, but hashing multiple independent mes-
sages could also emerge in situations where the data is in
the cache/memory.

A SIMD based implementation of hash algorithms was
first proposed (in 2004) and described in detail by
Aciiçmez [6]. He studied the computations of SHA-1,
SHA-256 and SHA-512, and his investigation was car-
ried out on Intel® Pentium™ 4, using SSE2 instructions.
Two approaches for gaining performance were attempted:
1) Using SIMD instructions to parallelize some of the
computations of the message schedule of these hash al-
gorithms, when hashing a single message (see also later
works (on SHA-1) along these lines, in [7, 8]); 2) Using
SIMD instructions to parallelize hash computations of
several independent messages. Aciiçmez reports that he
could not improve the performance of hashing a single
buffer, using the SIMD instructions (while this could not
be done on the Pentium 4, we speculate that it would be

Copyright © 2012 SciRes. JIS

S. GUERON, V. KRASNOV 320

possible on more recent architectures). However, he re-
ports speedup by a factor of 1.71x for simultaneous
hashing of four buffers, with SHA-256 (speedup by a
factor of 2.3x for SHA-512 is also reported, but it is less
interesting in our context, because the comparison base-
line was a (slow) 32-bit implementation).

In this paper we expand the study conducted by
Aciiçmez, by demonstrating the performance of Simul-
taneous Hashing of multiple independent messages, on
contemporary processors. We detail a method for a “Si-
multaneous Update” that facilitates hashing of independ-
ent messages of arbitrary sizes. To account for different
usages, we investigate the performance of hashing multi-
ple messages (of variable sizes) from different cache
hierarchies, system memory, and from the hard drive.

2. Preliminaries and Notations

The detailed definition of SHA-256 can be found in
FIPS180-2 publication [9]. Schematically, the computa-
tional flow of SHA-256 can be viewed as follows: “Init”
(setting the initial values), a sequence of “Update” steps
(compressing a 64 bytes block of the message, and up-
dating the digest value), and a “Finalize” step (takes care
of the message padding). The padding requires either one
or two calls to the Update function, depending on the
message’s length (see more details in [2]). For SHA-256,
the performance is almost linearly proportional to the
number (N) of Update function calls, which. For a mes-
sage of length bytes, the value of N is:

length
+2 length mod 64 56

64

length
+1 else

64

N

 (1)

For sufficiently long messages, we can approximate N ~
floor (length/64). For example, this approximation for a 4
KB message gives floor (length/64) = 64, while actual
hashing of a 4 KB message requires 65 Update function
calls (i.e., a ~ 1.5% deviation).

3. Simultaneous Hashing (S-HASH) of
Multiple Messages

SIMD architectures [10] are designed to execute, in pa-
rallel, the same operations on several independent chunks
of data (called “elements”). Modern architectures have
variants of SIMD instructions that operate on elements of
sizes 1, 2, 4, or 8 bytes. By the nature of the algorithms,
SHA-256 (and SHA-1) requires operations on 4 bytes
elements, while SHA-512 requires operations on 8 bytes
elements.

Figure 1 describes the Simultaneous Hashing algo-
rithm (S-HASH) that hashes k messages and generates k

Algorithm 1: Simultaneous Hashing (S-HASH)
Input:
Buffers – a list with pointers to k buffers to be hashed.
Lengths – a list with the lengths (in bytes) of the k buffers.
Hashes – a list with pointers to store the k generated hash
values.
Notations:
The number of t-bit “words” (elements) that fit in a register
is m. (for SHA-256, t=32, and with AVX, m=128/32=4).
It is assumed that k > m.
The number of bytes, hashed by one “Update” operation is
denoted by p.
Output: k hash values of the k buffers, stored the at
memory locations pointed by Hashes.
Flow:
Init:
L[0] = Lengths[0]
L[1] = Lengths[1]

…
L[m-1] = Lengths[m-1]
B[0] = Buffers[0]
B[1] = Buffers[1]
…
B[m-1] = Buffers[m-1]
H[0] = Hashes[0]
H[1] = Hashes[1]

…
H[m-1] = Hashes[m-1]
Last[0] = 0
Last[1] = 0

…
Last[m-1] = 0
HashInit(Hashes[0])
HashInit(Hashes[1])

…
HashInit(Hashes[m-1])
i = m;
Simultaneous Update:
Repeat

n = min(L)/p
S-UPDATE(H, B, n)
L = L – [n×p|n×p|…|n×p]
For j = 0 to m-1

If L[j]<p AND Last[j]=0 then
LastBlock[j] = PreparePaddingBlock(B[j])
B[j] = LastBlock[j]
Last[j] = 1
L[j] = Length(LastBlock[j])

Else If L[j]<p AND Last[j]=1 then
If i=k then

Break
Else

L[j] = Lengths[i]
B[j] = Buffs[i]
H[j] = Hashes[i]
Last[j] = 0
HashInit(Hashes[i])
i++

End If
End If

End For
End Repeat
If unfinished buffers still remain, finish hashing serially

Figure 1. The simultaneous hashing (S-HASH) algorithm.

Copyright © 2012 SciRes. JIS

S. GUERON, V. KRASNOV 321

digests, with some hash function. Suppose that the im-
plemented hash function operates on t-bit “words” (ele-
ments), and that the architecture has s-bit SIMD registers.
Then, the number of words that fit into a SIMD register
is m = s/t, which we assume to be an integer. We also
assume that k > m. Algorithm 1 starts with the Initialize
step for the first m buffers. Then, it invokes the “Simul-
taneous Update” function (for the specific hash function)
every time there are m blocks ready for processing. This
is repeated until the shortest buffer (from the m processed
buffers) is fully consumed. At this point, a padding block
is fed to the Simultaneous Update function, to “Finalize”
(that buffer). If the hash is already finalized, a block from
a new buffer is fed (after the proper “Init”).

Here, we use the AVX architecture [10], with 128-bit
registers (i.e., s = 128). SHA-256 (and SHA-1) algo-
rithms have t = 32, while SHA-512 has t = 64, implying
m = 4 for SHA-1 and SHA-256, and m = 2 for SHA512.
For our SHA-256 study, we can hash 4 buffers in parallel.
We call this implementation 4-buffers SHA-256 S-HASH.

The near-future AVX2 architecture [11] has integer
instructions that operate on 256-bit registers. This allows
for doubling the number of independent messages that
can be hashed in parallel and would lead to, for example,
8-buffers SHA-256 S-HASH or 4-buffers SHA-512 S-
HASH.

4. Results

This section describes the 4-buffers SHA-256 S-HASH
results.

4.1. The System’s Characteristics

The system that was used for generating the reported
measurements had the following characteristics:
 An Intel® Core™ i5-2500 processor (2nd Generation

Intel® Core™ Processor; Sometimes referred to as
Architecture Codename “Sandy Bridge”).

 8 GB RAM (DDR3 1600, 2 Channels).
 A RAID0 array of two Intel® SSD 320 drives, each

one of 80 GB and combined throughput of 400 MB/sec
(indicated by “hdparm-t” [12]).

 Fedora 16 OS.
All the runs were carried out on a system where the

Intel® Turbo Boost Technology, the Intel® Hyper-Thread-
ing Technology, and the Enhanced Intel Speedstep® Te-
chnology, were disabled.

All of the performance numbers reported here, were
obtained on the same system, ran on the same processor,
and under the same conditions. In particular, we point out
that all of the reported hash computations include the
overhead of the proper padding, as required by the
SHA-256 definition [9].

The tested codes were written in assembly language,

so their performance is compiler agnostic. The impact of
the operating system is relevant only for hashing files
from the hard disk, because some system calls (to access
files/directories) are involved. However, we suggest that
experiments with other operating systems would show
the same performance traits that we report here.

4.2. Simultaneous Hashing of Multiple 4 KB
Buffers, from Different Cache Levels and
Main Memory

For profiling the performance of the 4-buffers SHA-256
S-HASH, we wrote a new implementation which pro-
cesses four buffers in parallel. In order to estimate the
advantage of the parallelization, we compare the result-
ing performance to serial implementations that hash the
same amount of data.

To measure the performance of hashing data that re-
sides in different cache levels, or in memory, we note
that the processor has ([13]): 1) First Level Data Cache
of 32 KB (per core); 2) Second Level Cache of 256 KB
(per core); 3) Last Level Cache of 6 MB (shared among
all the cores). Therefore,
 For data that resides in the First Level Cache, we

hashed a total of 16 KB of data, split to 4 chunks of 4
KB each.

 For data that resides in the Second Level Cache, we
hashed a total of 256 KB of data, split to 64 chunks of
4 KB each.

 For data that resides in the Last Level Cache, we
hashed a total of 2 MB of data, split to 512 chunks of
4 KB each.

 For data that resides in the main memory, we hashed
a total of 32 MB of data, split to 8192 chunks of 4 KB
each.

Prior to the actual measurements, we ran the hash, in a
loop, 500 times, in order to make sure that our data re-
sides in the desired cache level (or memory).

For comparison, we used the OpenSSL (version 1.0.1)
SHA-256 (serial) [14] implementation, and the faster
implementation, based on the n-SMS method [2] (a ver-
sion from April 2012, can be retrieved from [3]; An up-
date will be posted soon).

The results, illustrated in Figure 2, show that hashing
from all three cache levels can be performed at roughly
the same performance, and there is only some small per-
formance degradation when the data is hashed from the
main memory. The 4-buffers SHA-256 S-HASH method
is 3.42x faster than OpenSSL (1.0.1), and 2.24x times
faster than the n-SMS method.

4.3. Simultaneous Hashing of Files from the
Hard-Drive

The following results account for the performance of

Copyright © 2012 SciRes. JIS

S. GUERON, V. KRASNOV 322

Figure 2. SHA-256 hashing from different cache levels and
memory, Intel® Core™ i5-2500 (Architecture Codename
Sandy Bridge). The performance of the 4-buffers SHA-256
S-HASH is compared to the (standard) serial hashing with
the OpenSSL 1.0.1 implementation, and to the n-SMS me-
thod (see explanation in the text).

hashing from the disk. The numbers were obtained using
the following methodology.

For the experiments, we prepared two directories with
a different combination of files. The first directory (DI-
VERSE hereafter) contained 350 files occupying 79 MB
(82,833,132 bytes) in total1. The files sizes range from 3
Bytes to 7.18 MB (7,533,568 bytes), with the average
size of 0.22 MB (236,666 bytes). The detailed size dis-
tribution of the file is provided in Table 1 in the Appen-
dix. The second directory (UNIFORM hereafter) con-
tained 8 (large) files of equal size, each one of 17.76 MB
(18,623,835 bytes)2. For each directory, we prepared, in
advance, the list of its files.

To measure the performance of hashing from the hard
drive, we flushed the OS “pagecache” and “dentries” and
“inodes” caches, before the measurements were taken
(using the Linux directive
echo 3 > /proc/sys/vm/drop_caches) [15].

We measured the following operations: scanning the
list (in the prescribed order), opening the files in the list,
reading the size of each file, mapping the files to memory,
calculating the SHA-256 values and storing them in ap-
propriate location.

Figure 3, top panel, provides the performance for the
“DIVERSE” directory in C/B (which is a frequency-ag-
nostic metric). The performance is shown for several
processor frequencies, to demonstrate how the hard-
drive’s throughput limits the overall observed perfor-
mance. The figure shows that at the native processor
speed (3.3 GHz), the S-HASH method outperforms the
OpenSSL (1.0.1) implementation by a factor of 1.73x.
When the processor is down-clocked to 1.6 GHz, all three
implementations improve their C/B count, but the S-HASH

Figure 3. Hashing the files in the directory DIVERSE (see
explanation in the text). Measurements are taken on the
Core i5-2500, operating at different CPU frequencies. Panel
a shows the performance in Cycles per Byte. Panel b shows
the performance in MB/sec.

improves by a larger margin, becoming 2.16x faster than
OpenSSL. The bottom panel of Figure 3 shows the same
performance, measured in MB/sec. It is interesting to
observe that although the frequency of the processor is
reduced by factor of two, from 3.3 GHz to 1.6 GHz, the
S-HASH throughput reduces only by a factor of 1.28x.

Figure 4 illustrates the performance for the UNI-
FORM directory. In this scenario, the performance of
OpenSSL and of the n-SMS method are not limited by
hard drive, because we see that reducing frequency does
not improve the speed in C/B. On the other hand, the
faster 4-buffers SHA-256 S-HASH implementation is
affected by the hard drives. It improves (in C/B) when
the frequency is reduced, although not as much as it does
in the DIVERSE test. The figure shows that the 4-buffers
S-HASH is 2.86x faster than OpenSSL, when the proc-
essor is clocked at 1.6 GHz, and 2.26x faster at the native
processor’s frequency.

In general, all implementations improve when the
hashed files are large. The reasons are that the overheads
for opening files are reduced, and the reads from hard
drive are sequential. In addition, the S-HASH is faster
when the processed files have equal lengths (UNIFORM
directory). This happens because the computations for all
the four buffers terminate concurrently, allowing four
new buffers to be scheduled together. By contrast, in the
DIVERSE directory, when a certain buffer is consumed,
operations on the remaining buffers are stopped until a

1These files were the drivers from a Windows 7 directory “Windows\
System32\drivers\”.
2The files were copies of the same file, namely
“supercop-20120219.tar.gz”, retrieved from
http://hyperelliptic.org/ebats/supercop-20120219.tar.bz2

Copyright © 2012 SciRes. JIS

S. GUERON, V. KRASNOV 323

Figure 4. Hashing the files in the directory UNIFORM (see
explanation in the text). Measurements are taken on the
Core i5-2500 operating at different CPU frequencies. Panel
a shows the performance in Cycles per Byte. Panel b shows
the performance in MB/sec.

new buffer is scheduled.

5. Conclusions

We illustrated the general S-HASH approach, and demons-
trated the advantage of a 4-buffers SHA-256 S-HASH,
running on the AVX architecture. The speedups we ob-
serve depend on the location of the data, but are signifi-
cant in all cases. When hashing equal length messages
from any of the three levels of the processor’s cache, or
from main memory, the 4-buffers SHA-256 S-HASH
performs at ~5.2 C/B. This is ~2.24x times faster than the
best known serial hashing implementation. When hash-
ing data from the hard-disk, the CPU performance is not
the (only) limiting factor, because the disk’s read per-
formance becomes a bottleneck. Here, the 4-buffers S-
HASH method executes at effectively 8.65 C/B at the
native processor speed, 3.3 GHz. This performance is
2.26x faster than OpenSSL (1.0.1) and 1.67x faster than
the n-SMS method [2] under the same conditions (19.55
C/B and 14.45 C/B, respectively).

We mentioned above two scenarios that require hash-
ing of multiple messages, and can enjoy an S-HASH
implementation: An OS check of the integrity of its
components (during boot time), and data de-duplication.
In addition, SSL/TLS servers that need to support multi-
ple connections could also take advantage of an S-HASH
implementation, if their software is set to process data

from multiple connections in parallel. We suggest that
the potential performance gain might be worth the hassle
of tweaking the software to accommodate such paralleli-
zation.

Since the 4-buffers S-HASH operates on 4 buffers in
parallel, one might wonder why it does not achieve the
theoretical four-fold speedup factor, compared to the
alternative implementation. We mention here two of the
reasons: 1) The 2nd Generation Core™ Processors have
an efficient ALU unit that can process data at a faster rate
than the SIMD unit. This closes some of the theoretical
four-fold gap that AVX can offer; 2) SHA-256 algorithm
has a significant amount of rotations. Compared to a sin-
gle ALU instruction (ROR), the S-HASH method needs
to implement rotation by a flow of two (SIMD) shifts,
followed by a (SIMD) xor.

Hashing from a hard-drive introduces a different con-
sideration. The RAID array (of two Solid State Drives)
that we used in our experiments had throughput of 400
MB/sec. At 3.3 GHz, this throughput is equivalent to
processing at the rate of 7.15 C/B. This explains the re-
sults that we obtained: while the processor can hash data
at 5.18 C/B with the 4-buffers S-HASH method if the
data read from the cache (or memory), this performance
cannot be reached when the data is fetched from the disk.
This is why we get only 8.65 C/B (for the UNIFORM
case), but as already noted, this is still significantly faster
than the serial alternative. When the processor is clocked
to 1.6 GHz, the same disk throughput becomes equiva-
lent to processing at the rate of 3.81 C/B. Thus, on the
under-clocked systems, we were able to hash at 6.73 C/B,
which is closer (only 1.31x slower) to the processor’s
hashing capability (5.18 C/B). The remaining gap be-
tween the system-wise performance and the maximal
processing capability can be attributed to OS overheads,
and to the fact that the accessing data stored in the disk is
non-sequential (but rather distributed between four ar-
eas).

The soon to be released Haswell architecture [11] will
support AVX2 with integer instructions that operate on
256-bit registers. With this architecture, we could up-
grade our method to implement 8-buffers S-HASH effi-
ciently—in theory, doubling the performance of the
4-buffers S-HASH. However, for hashing data from the
disk, we note that the SSD drives are not expected to
double their throughput (at least in this time frame), so
we should expect less than a twofold speedup.

Note that we intentionally did not study an S-HASH
implementation of SHA-512. The reason is that SHA-512
operates on 64-bit “words”, and therefore, the current
AVX architecture can support only a 2-buffers SHA-512
S-HASH. This makes the S-HASH method less attractive
because 1) The SHA-512 ALU implementations are al-
ready fast with the n-SMS method (8.72 C/B); 2) While

Copyright © 2012 SciRes. JIS

S. GUERON, V. KRASNOV

Copyright © 2012 SciRes. JIS

324

each SHA-512 Update compresses 128 bytes of the mes-
sage and a SHA-256 Update compresses only 64 bytes,
SHA-512 involves 1.25x more rounds in the processing
than SHA-256 (80 rounds versus 64). We therefore specu-
late that SHA-512 S-HASH implementations would be-
come useful only on the AVX2 architectures (doing a
4-buffers S-HASH), but will be slower than 8-buffers
SHA-256 S-HASH on that architecture.

We conclude this study by stating that our results show
that for some usages, SHA-256 is significantly faster
than commonly perceived.

Finally, we add a few related remarks on the five
SHA3 finalists [1]. Skein and Keccak use 64-bit words,
and the remark we made on SHA-512 holds similarly. J.
H. Blake and Grostl already use SIMD instructions in
their better performing implementations. Therefore, ap-
plying the S-HASH method to these algorithms would
create a delicate tradeoff with the S-HASH and the bene-
fits of their current use of the SIMD instructions. Such
optimization would be an interesting study to carry out.

REFERENCES
[1] NIST, “Cryptographic Hash Algorithm Competition,”

2012.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[2] S. Gueron and V. Krasnov, “Parallelizing Message Sche-
dules to Accelerate the Computations of Hash Functions,”
2012. http://eprint.iacr.org/2012/067.pdf

[3] S. Gueron and V. Krasnov, “Efficient Implementations of
SHA256 and SHA512, Using the Simultaneous Message
Scheduling Method,” 2012.
http://rt.openssl.org/Ticket/Display.html?id=2784&user=
guest&pass=guest

[4] The Chromium Project, “Verified Boot,” 2012.

http://www.chromium.org/chromium-os/chromiumos-des
ign-docs/verified-boot

[5] C. Y. Liu, Y. P. Lu, C. H. Shi, G. L. Lu, D. H. C. Du and
D.-S. Wang, “ADMAD: Application-Driven Metadata
Aware De-Duplication Archival Storage System,” Fifth
IEEE International Workshop on Storage Network Archi-
tecture and Parallel I/Os, 22 September 2008, pp. 29-35.

[6] O. Aciicmez, “Fast Hashing on Pentium SIMD Architec-
ture,” M.S. Thesis, School of Electrical Engineering and
Computer Science, Oregon State University, 2004.

[7] D. Gaudet, “SHA1 Using SIMD Techniques,” 2012.
http://arctic.org/~dean/crypto/sha1.html

[8] M. Locktyukhin, “Improving the Performance of the Se-
cure Hash Algorithm (SHA-1),” 2010.
http://software.intel.com/en-us/articles/improving-the-per
formance-of-the-secure-hash-algorithm-1/

[9] “Federal Information Processing Standards Publication
180-2: Secure Hash Standard.”
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.
pdf

[10] Intel, “Intel Advanced Vector Extensions Programming
Reference,” 2012. http://software.intel.com/file/36945

[11] Intel (M. Buxton), “Haswell New Instruction Descrip-
tions Now Available,” 2011.
http://software.intel.com/en-us/blogs/2011/06/13/haswell-
new-instruction-descriptions-now-available/

[12] Linux Manual, “Hdparm,” 2012.
http://linux.die.net/man/8/hdparm

[13] Intel, “2nd Generation Intel® CoreTM Processor Family
Desktop Datasheet,” 2012.
http://www.intel.com/content/www/us/en/processors/core
/2nd-gen-core-desktop-vol-1-datasheet.html

[14] OpenSSL, “The Open Source Toolkit for SSL/TLS,” 2012.
http://openssl.org/

[15] LinuxMM, “Drop Caches,” 2012.
http://linux-mm.org/Drop_Caches

S. GUERON, V. KRASNOV 325

Appendix: Files size distribution for the “DIVERSE” directory

Table 1. The lengths (in bytes) of the 350 files in the DIVERSE directory, when they are sorted by an alphabetic order of the
file-names (from left column top to right column bottom).

14,336

5120

68,096

227,840

497,152

61,008

80,384

18,432

8704

286,720

47,104

14,976

14,720

293,376

740,864

1,481,216

178,752

17,664

38,912

30,320

27,008

28,736

288,336

48,840

65,088

70,168

143,792

350,208

195,024

77,888

78,848

158,720

271,872

54,824

15,360

284,736

3

7,533,568

7,533,568

122,960

651,264

277,624

169,080

50,808

256,120

7680

7680

8192

41,472

303,464

307,560

311,640

311,656

30,760

393,264

13,104

64,080

64,592

32,896

89,600

21,760

292,864

740,864

1,485,312

146,036

112,128

172,544

654,928

42,064

412,672

10,240

334,416

12,288

491,088

339,536

182,864

499,200

60,416

15,440

15,440

64,512

60,928

106,576

194,128

28,752

61,440

87,632

97,856

23,040

24,128

155,728

270,848

28,240

6656

45,056

90,624

95,232

41,984

72,192

118,784

552,448

98,344

132,648

35,104

21,160

468,480

92,160

147,456

45,568

17,488

460,504

21,584

39,504

24,144

514,048

102,400

40,448

73,280

116,224

5632

55,128

16,896

98,816

982,912

265,088

301,784

294,064

530,496

9728

3,286,016

195,072

204,800

29,696

70,224

34,304

24,576

290,368

23,104

55,376

223,448

3,440,660

646

31,232

122,368

26,624

100,864

76,288

46,592

32,896

30,208

751,616

14,416

105,472

537,112

410,688

39,024

6,150,304

44,112

16,960

62,464

82,944

116,224

120,320

17,920

20,544

119,680

50,768

33,280

243,712

95,312

153,160

20,992

60,928

114,752

106,560

65,600

115,776

113,152

22,016

17,024

35,392

158,712

228,752

9,984

481,504

642,952

75,672

100,904

283,744

40,448

30,208

49,216

31,232

94,784

155, 16

77,312

140,800

157,696

287,744

126,464

30,272

140,352

26,112

8192

15,424

224,832

11,136

7168

6784

367,168

32,320

8064

60,496

947,776

35,328

24,064

56,320

164,352

57,856

44,544

259,072

374,864

51,264

44,032

24,576

1,659,984

6144

149,056

167,488

318,976

72,832

131,584

97,280

75,840

183,872

12,352

48,720

220,752

50,768

230,400

60,416

40,512

1,524,816

128,592

46,592

14,848

130,048

92,672

111,616

83,968

309,248

24,064

165,376

204,800

214,096

158,720

55,296

145,920

11,264

76,800

104,016

29,696

171,600

109,056

23,040

23,552

94,208

26,624

14,336

13,824

14,336

16,896

43,584

80,464

93,184

20,992

15,472

35,456

3,531,136

19,008

426,496

461,312

401,920

161,792

24,656

185,936

34,896

68,864

12,496

23,552

30,088

199,168

199,168

192,256

192,256

29,184

1,897,328

44,544

26,624

15,872

23,552

99,840

62,544

38,400

38,400

125,440

41,536

327,680

48,640

9728

19,968

98,816

100,352

7936

51,712

343,040

25,600

324,608

25,088

31,744

30,720

184,832

36,432

29,184

29,184

217,680

17,488

129,024

200,272

6656

46,672

71,760

363,584

294,992

24,248

161,872

24,576

59,904

17,920

27,776

88,576

42,496

21,056

12,800

22,096

52,304

40,448

14,336

16,464

21,504
2

Copyright © 2012 SciRes. JIS

