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ABSTRACT 

When initializing cryptographic systems or running cryptographic protocols, the randomness of critical parameters, like 
keys or key components, is one of the most crucial aspects. But, randomly chosen parameters come with the intrinsic 
chance of duplicates, which finally may cause cryptographic systems including RSA, ElGamal and Zero-Knowledge 
proofs to become insecure. When concerning digital identifiers, we need uniqueness in order to correctly identify a spe- 
cific action or object. Unfortunately we also need randomness here. Without randomness, actions become linkable to 
each other or to their initiator’s digital identity. So ideally the employed (cryptographic) parameters should fulfill two 
potentially conflicting requirements simultaneously: randomness and uniqueness. This article proposes an efficient 
mechanism to provide both attributes at the same time without highly constraining the first one and never violating the 
second one. After defining five requirements on random number generators and discussing related work, we will de- 
scribe the core concept of the generation mechanism. Subsequently we will prove the postulated properties (security, 
randomness, uniqueness, efficiency and privacy protection) and present some application scenarios including system- 
wide unique parameters, cryptographic keys and components, identifiers and digital pseudonyms. 
 
Keywords: Randomness; System-Wide Uniqueness; Unique Cryptographic Parameters; Cryptographic Keys; Digital 

Identifiers; Digital Pseudonyms; UUID; Universally Unique Identifiers; GUID; Globally Unique Identifiers 

1. Introduction 

Concerning cryptographic parameters, cryptographic keys 
and digital identifiers, randomness is the foremost re- 
quirement. With respect to cryptographic applications, the 
lack of sufficient randomness causes security risks which 
may result in faster attacks or completely compromised 
systems. In the field of digital identifiers, the lack of 
randomness may cause privacy problems, when identify- 
ers (and hence actions) become linkable to each other or 
to the identity of a specific instance or person. 

Beside the positive effects of randomness mentioned 
above, random generation processes unavoidably come 
with the intrinsic risk of duplicates. Unfortunately, these 
duplicate cryptographic parameters, cryptographic keys 
and digital identifiers can put the security of safety- or 
security-critical systems at risk as well. 

1.1. The Risks of Pure Randomness 

Digital Identifiers: In our everyday electronic life, du- 
plicate parameters used as digital identifiers may cause 
severe problems. Think of object and message identifiers 
or digital identities in e-business or e-government appli- 
cations. In the first case, duplicate identifiers may cause 
inconsistencies in databases or the system’s registry. In 
the second case, records of different instances or persons 

may become inseparably mixed up. Both situations may 
end up in disaster. 

In the context of security systems like RSA encryption 
and signature schemes, ElGamal signature schemes and 
zero knowledge proofs, duplicates may cause the fol- 
lowing problems (for details on the following attacks we 
refer the reader to [1,2]): 

RSA [3]: Assume that two instances accidentally 
choose the same prime when generating the RSA key 
pair. Since this common prime is a factor of both moduli, 
an attacker can easily determine the second factor of the 
two affected moduli. Afterwards, he can determine the 
according private keys. If the key pairs have been used in 
an encryption scheme, the attacker can now decrypt 
messages he is not authorized for. In case of a signature 
scheme, he can sign on the victims’ behalf and hence 
fake their identities. 

ElGamal [4]: If a signing instance signs two different 
messages using the same randomizer, the attacker can 
retrieve the private signing key by solving two linear 
congruencies. Again, the signature scheme is broken. 

Zero Knowledge Proofs [5]: Consider two rounds of 
a zero knowledge proof, where the same first message 
(based on the same random parameter) is sent to the veri-
fier. If the verifier notices this fact, he will send two dif-
ferent second messages in order to extract the secret by 
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use of the third messages. Again the attacker can now 
fake the identity of the victim. 

1.2. The Problem of Randomness vs Uniqueness 

In order to avoid the problems mentioned above, we need 
random and unique (cryptographic) parameters. Unfor- 
tunately, randomness and (system-wide) uniqueness are 
potentially conflicting requirements. Pure randomness 
includes the risk of duplicates and hence may violate 
uniqueness, whereas generation processes which guaran- 
tee system-wide uniqueness may reduce randomness or 
cause the generation to be either inefficient or prone to 
other attack scenarios. 

1.3. Our Contribution 

In this article we will propose a solution for the problem 
of randomness vs. uniqueness: a scheme to generate prova- 
bly system-wide unique, but highly random and unlink- 
able numbers (called collision-free numbers—CFNs) which 
can be used as digital identifiers (or pseudonyms) and 
cryptographic parameters and keys. 

As other approaches, our scheme is based on a unique 
identifier for the generating process and additional non- 
invertible (cryptographic) mechanisms to disguise it and 
hence protect the generator’s privacy. Simply spoken, 
our approach is a counter-based pseudo-random number 
generator (PRNG) with a fresh (random) key for each call 
of the generator (see Figure 6 for a PRNG (left) and our 
approach (right)). It is clear, that providing both proper- 
ties at the same time, will not be achievable without extra 
costs. Based on a short discussion of related work, we 
will show that this overhead is quite low compared to the 
existing methods of generation (see Table 1), which in 
contrast to our approach do not provide randomness and 
uniqueness simultaneously. 

The remainder of this article is structured as follows: 
In order to provide a base for our design and the subse- 
quent analysis, we will first define five requirements on 
random number generators and provide the most essen- 
tial cryptographic preliminaries. Based on the require- 
ments we will briefly discuss existing approaches. The 
analysis will show that none of the existing generation 
methods simultaneously fulfills all requirements. Hence 
there is need for a new approach. After presenting the 
design principle of CFNGs we will prove the fulfillment 
of the stated requirements and close with a discussion of 
application scenarios for CFNGs. 

2. Requirements on Random Number  
Generators 

In order to avoid the risks of duplicates when generating 
and using cryptographic parameters or digital identifiers, 
we postulated two additional requirements on the em- 

ployed secure and efficient generators for random num- 
bers in [2]: Uniqueness and Privacy Protection. We 
called generators providing the following properties col-
lision-free number generators (CFNG) and the outputs of 
such generators collision-free numbers (CFNs): 

1) Security. 
2) Randomness. 
3) Efficiency. 
4) Uniqueness. 
5) Privacy Protection. 
We are aware of the fact, that depending on the appli- 

cation scenario, not all of the above requirements may be 
necessary or there may be additional requirements. Nev- 
ertheless, in the scope of generating cryptographic pa- 
rameters (like keys) and digital identifiers, these re- 
quirements are necessary to obtain a secure generating 
process and hence the existing methods of generation and 
our proposed approach will be analyzed with respect to 
the five requirements stated above. 

2.1. Security 

If one CFNG is compromised, all outputs previously gener- 
ated by this specific generator should remain secure. Ad- 
ditionally, all other CFNGs in the system must not be 
affected. This means that there should not be a central- 
ized CFNG (since compromising this CFNG immedi- 
ately compromises the whole system) and distributed 
CFNGs must not use any common secrets like the secret 
key k used by the compromised generator G1 in Figure 1. 

2.2. Randomness 

Ideally, the outputs of CFNGs (see value 2 in Figure 2) 
are indistinguishable to the outputs of true random num- 
ber generators (RNG—see value 1 in Figure 2). 

In fact, the proposed generators will be based on true 
random numbers, but will be post-processed to fulfill the 
newly introduced requirement of uniqueness. Neverthe- 
less, the only way to verify the randomness is to perform 
statistical tests (like the DIEHARD test suite [6]) on the 
generated sequences and compare the outputs to the 
properties of true random sequences. 
 

 

Figure 1. Compromising generator G1 compromises all ge- 
nerators. 
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2.3. Efficiency 

Concerning efficiency, minimal communications is the 
foremost requirement. Ideally, as depicted in Figure 3, 
there is no communication during the generation process 
and only one-time communication during the initialize- 
tion. Nevertheless, to enable the usage of smart cards and 
other security token with limited resources, memory and 
computational demands should also be kept as low as 
possible. 

2.4. Uniqueness 

All outputs of all CFNGs within a system have to be 
unique, i.e., there must not be any duplicates during the 
life-time of the system. As depicted in Figure 4, ran- 
domly generated values may be system-wide unique (e.g. 
outputs 1, 2 and 3), locally, but not system-wide unique 
(e.g. outputs 4 and 5) or not unique at all (e.g. outputs 6 
and 7). 

Local duplicates may be detected by storing all outputs 
and comparing the currently generated value against the 
stored ones. Obviously, this method will need a consid- 
erable amount of memory over the life-time of the gen- 
erator. But even worse, global duplicates cannot be de- 
tected without communication with all the other genera- 
tors or a centralized instance for checking. Besides a 
tremendous communication overhead, this again calls for 
local or centralized storage of all outputs for later com- 
parison, which is obviously a bad idea with respect to the 
requirements “security” and “privacy protection”. 

2.5. Privacy Protection 

Depending on the application scenario, outputs of CFNGs 
should not be linkable. As Figure 5 shows, with respect 
to the protection of the generator’s identity, especially 
two questions are of interest: 
 Which CFNG has generated this (a specific) number?  
 Have these numbers been generated by the same 

CFNG? 

3. Cryptographic Preliminaries 

Within this article the reader needs only a basic under- 
standing of cryptography. So we will provide the most 
important facts and refer the reader to [7,8] for a detailed 
discussion of the basic concepts and more sophisticated 
cryptographic algorithms and protocols. 

Symmetric encryption provides confidentiality. En-
cryption E and decryption D use the same key k: c = 
Ek(m), m = Dk(c) with plaintext m and ciphertext c. 
Without the knowledge of k, m cannot be efficiently re- 
trieved from c. Most commonly, symmetric encryption 
algorithms are block-oriented, i.e., they work on input 
blocks of fixed length. Candidates for symmetric encrypt 

 

Figure 2. Outputs of a RNG and a CFNG. 
 

 

Figure 3. Efficiency considerations. 
 

 

Figure 4. Outputs of RNGs and CFNGs. 
 

 

Figure 5. Privacy protection. 
 
tion include DES [9] (Data Encryption Standard, 64 bit 
blocks and 56 bit keys), 3DES [10,11] (64 bit blocks and 
112 bit keys), Skipjack [12] (64 bit blocks and 80 bit 
keys) and AES [13] (Advanced Encryption Standard, 128 
bit blocks and 128,192 and 256 bit keys). 

Asymmetric encryption also provides confidentiality, 
but uses different keys for encryption and decryption: c = 
Ee(m), with public key e and m = Dd(c), with private key 
d. Without knowing d, m cannot be efficiently retrieved 
from c, and d cannot be efficiently derived from e with-
out additional (secret) knowledge. Candidates for asym-
metric encryption include RSA [3] and ElGamal [4] 
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(minimum key length 1024 bit) and ECC [8] (Elliptic 
Curve Cryptography, minimum key length 160 bit). 

Cryptographic Hash-functions H are compressing 
one-way-functions, which convert a large, arbitrary sized 
input m into a small, fixed size hash value h (most com-
monly 128 or 160 bit): h = H(m). Candidates for Hash- 
functions include SHA-1 [14] and RIPEMD160 [15], 
both with 160 bit outputs and the SHA-2 family [16] (224 
to 512 bit outputs). Note that both, symmetric and asy- 
mmetric encryption and decryption functions are bijec-
tive for an arbitrary, but fixed key, whereas hashfunc-
tions are by definition not injective! 

4. Related Work 

There exist at least three straight forward solutions for 
generating random and system-wide unique parameters: 

The naive attempt of centralized generation and 
check obviously avoids duplicates but is quite inefficient 
concerning storage (all previously generated parameters 
have to be stored for later comparison) and communica-
tion (each instance which needs a parameter has to wait 
for the centralized generator to send it). Additionally, the 
centralized generator has full control over the generating 
process and knows all parameters. So, compromising this 
generator compromises the complete system. 

With local generation and check, only the generation 
itself is done locally, but the comparison against all pre- 
viously generated parameters has to involve all other 
generators or a centralized service. Again, efficiency and 
security are quite questionable. 

Local generation based on pseudo-random number 
generators (PRNG, see [7]) can avoid centralized stor-
age and comparison and is efficient in terms of memory 
and communications. But in order to avoid duplicates, all 
PRNGs have to use a common key or common secret 
parameters. So, if one of them is compromised, all of 
them become insecure. Additionally, the generated pa- 
rameters are no longer random, but pseudo-random and  

this approach is not suitable for software implementation, 
because by use of software, the system-wide key (or se- 
cret parameter) cannot be protected sufficiently. 

A more sophisticated approach is the so called loca- 
tion- and time-based generation which simply uses 
location and time provided by a GPS receiver to derive a 
unique seed for the generation process. The idea behind 
this concept: two generation processes cannot take place 
at the same place and the same time. Besides the fact that 
the GPS signal will not be available at all locations, the 
according paper does not specify, how (pseudo-) ran-
domness and uniqueness are maintained (see [17] for 
details). 

A widely adopted approach for system-wide unique 
system parameters are universally unique identifiers 
(UUIDs, see [18]) and globally unique identifiers (GUIDs, 
see [19]), Microsoft’s implementation of GUIDs. There 
exist several variants of GUIDs, but these variants either 
use the MAC address to guarantee uniqueness or they 
employ hash-functions or purely pseudo-random values. 
Except the first one, which violates the privacy require-
ment, none of them can guarantee uniqueness. 

Besides the attempts mentioned above, there exist 
some national methods for the generation of identifiers 
used in e-business and e-government processes. Again, 
these methods employ hash-functions to protect the iden-
tity of the generating process and come with the un-
avoidable risk of duplicates (e.g. see [20]). 

Table 1 shows a summary of the discussed related 
work according the requirements stated in Section 2. 
Here “-” denotes, that the described generation method 
lacks a certain property, “??” denotes that it is unclear 
whether a generator provides a specific property (ac- 
cording to the publicly available specification) and “ok” 
denotes that the generator provides the property. 

Note that none of the existing approaches shows “ok” 
for all five requirements. The analysis of our approach 
(see Section 6) will show that CFNGs (collision-free 
number generators) fulfill all requirements. 

 
Table 1. Related work—a short analysis and comparison. 

Method Security Randomness Efficiency Uniqueness Privacy 

Centralized generation and check - ok - ok ok 

Local generation and check ok ok - ok ok 

Local PRNG-based generation - ok ok ok ok 

Location- and time-based 
generation (GPS-based) 

?? ?? ok ok ?? 

UUIDs (MAC-based) ok ok ok ok - 

UUIDs (PRNG-based) ok ok ok - ok 

National method (Austria) - ok ok - ok 

Design goals of CFNGs (see Section 6 for proofs) ok ok ok ok ok 
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5. The Concept of Collision-Free Numbers 

The core concept of collision-free number generators 
(CFNG) is closely related to pseudo-random number 
generators based on the CTR-mode of block-ciphers which 
uses a random but fixed key k throughout its lifetime (see 
Figure 6(a)). The crucial difference of CFNGs compared 
to a PRNG in CTR-mode is that the key used by the 
CFNG is freshly chosen at random for each call of the 
generator (see Figure 6(b)). 

Informally, our approach is based on three facts: 
 Use counters that generate system-wide unique out-

puts u. This can easily be achieved by using counters 
of the following form: u = ID||cnt, where ID is a hier-
archically structured identifier (e.g. the ICCSN of a 
smartcard), unique for each generator, and cnt is a 
locally stored value, which is incremented before 
each call of the generator. 

 Employ some injective mixing function  ,f u r  which 
hides the value of u by use of a so called randomizer r. 
This randomizer is freshly chosen at random for each 
call of the generator and deleted immediately after 
usage. 

 In order to fix the uniqueness, embed the randomizer 
r in the output o of the generator by use of an injec-
tive bit permutation (or expansion). For the ease of 
discussion, we will use the concatenation (||) throughout 
the remainder of this article. 

More formally defined, the output o of a basic—type 
1—CFNG (denoted as CFNG1 in the remainder of this 
article) is of the form 

     ,  CFNG1 ,ro f u r r f u r    

with f being an injective mixing transformation for an 
arbitrary but fixed randomizer r and u, r defined as above. 
We suggest to either use an injective one-way mix-
ing-transformation for fr, according to Shannon [21] (e.g. 
symmetric encryption), or an injective probabilistic one- 
way function, based on an intractable problem (e.g. the 
discrete logarithm problem [7]). 
 

 
(a)                     (b) 

Figure 6. Block-cipher in CTR-mode and the concept of 
CFNG (type 1). 

Note that originally, CFNGs have been called quasi- 
random number generators (QRNG). Since our genera-
tors provide numbers being neither pseudo-random nor 
random, QRNG—alphabetically and concerning the out- 
puts being somewhat between PRNGs and true RNGs— 
would be the perfect name. Unfortunately the abbrevia- 
tion QRNG collides with generators for quasi random 
sequences used for statistical testing. Hence to avoid this 
duplicate, we changed the name to CFNG. 

6. Fulfillment of Requirements 

6.1. Security 

In our approach, all security critical parameters like ran- 
domizers or keys are nonces (numbers used once) gener- 
ated on demand, i.e., at each call of the generator. They 
are neither stored, nor transferred outside the generator. 
Hence, compromising one generator cannot affect any 
other generator in the system. 

6.2. Uniqueness 

In the following we will first give a proof for the 
uniqueness of outputs of Type 1 CFNGs. Based on this 
proof we will analyze Type 2 and Type 3 generators. 
Note that the lifetime of the system and especially of the 
generators employed within this system is defined by the 
time, none of the counters cnt used inside of the CFNGs 
has an overflow. 

Theorem: Outputs of Type 1 CFNGs are unique dur- 
ing their lifetime. 

Proof: Consider two outputs of two arbitrary type 1 
CFNGs:    1 1 1 1 1

 CFNG1  ro f  u r  and  
   2 2 2 2 2CFNG1o f u r  r , with r1, r2 being random 

and 1 1 1  and u ID cnt 2 2 2 . With respect to 
the randomizers r1 and r2, there are two cases: 

u ID cnt

1) 1 2r r : This directly means that o1 ≠ o2. 
2) 1 2r r r  : Now, both calls of the generators em-

ploy the same randomizer and fr becomes injective. 
Hence  1rf u  and  2rf u  will be different if and 
only if 1 1u I 1  and D cnt 2 2u ID cnt 2  differ in at 
least one bit. This is always true, because 
 Different generators use different identifiers  

 1 2ID ID , and 
 If we call the same generator twice (i.e., 1 2ID ID ), 

the values cnt1 and cnt2 will differ, because the counter is 
incremented at each call of the generator. 

Hence the outputs o1 and o2 will be different again.  
Corollary: Outputs of type 2 and type 3 CFNGs are 

unique during their lifetime. 
Proof: Function g, applied to the unique inputs in type 

2 and type 3 CFNGs is an injective one-way-function. 
Hence g cannot destroy the uniqueness of the outputs.  
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6.3. Privacy Protection 

When analyzing CFNGs which employ a block cipher E 
for f   ro E ID cnt r c r  , it is obvious that the 
identity of the generator is not protected sufficiently. 
Everybody who gets hold of an output o can retrieve the 
identifier ID of the according generator by simply de- 
crypting c by use of r:   DrID cnt c . We will later 
see that this may not be a problem in certain application 
scenarios, but in order to guarantee the protection of the 
generator’s ID we have either to change our requirements 
on f, or we have to slightly change the design of CFNGs. 
 To provide privacy, f has to be a cryptographic one- 

way function. Candidates include injective probabil-
istic one-way functions based on an intractable prob-
lem like the (ECC) discrete logarithm problem [7]. 

 In the case that f is a (bijective) symmetric encryption 
function, we can employ an additional (injective) one- 
way-function g to the output or to the randomizer of 
the original CFNG, which results in the variants de- 
picted in Figure 7. 

Both variants shown in Figure 7 eliminate the attack 
described above. Now the attacker is faced with the 
problem of inverting function g, which is practically im- 
possible. Hence, the output of function f in case of type 2 
CFNGs, and the randomizer r in case of type 3 CFNGs, 
stays secure and the identity of the generator is safe 
again. 

6.4. Randomness 

Remember that in case of type 1 CFNGs, the second half 
of the output is the randomizer, which is—as the name 
implies—generated at random. Function f is (with respect 
to the random input r) an injective mixing transformation, 
like a symmetric or asymmetric encryption function. Hence 
its output is pseudo-random. 

Function g, applied in type 2 and type 3 CFNGs is a 
(injective) one-way-function. The randomness of its out- 
put depends on the randomness of its input, which is ei-
ther the pseudo-random output of f (type 2 CFNG), or the 
randomizer r (type 3 CFNG). 

Concerning the randomness of the outputs, we will 
briefly analyze the three types of CFNGs separately: 

Type 1 CFNGs: The output is a concatenation of 
pseudo-random and random bits, and hence should “look 
random”. 

Type 2 CFNGs: The input of function g is, as noted 
above, partially pseudo-random and random. So, the 
randomness of type 2 CFNGs should not be worse than 
the randomness of type 1 CFNGs. 

Type 3 CFNGs: The output is a concatenation of 
pseudo-random and random bits, transformed by use of 
function g. So again, the output should “look random”. 

For all three types of generators, the statement “should 

look random” has been verified by conducting statistical 
tests with the DIEHARD test suite [6]. See Table 3 for 
exemplary DIEHARD results on 500.000 outputs o of a 
type 1 CFNG (i.e., 128.000.000 bit) of the form 

 AESko ID cnt k , where ID is a 96 bit identifier (all 
zeros), cnt is a 32 bit counter (which runs from 0 to 
499.999) and k is a 128 bit key randomly chosen for each 
encryption. Hence the length of one output o is 256 bit. 
According to [22] we defined three areas: safe, doubtful, 
and failure, (see Table 2) where more results in the safe 
area indicate that the output is closer to randomness and 
more results in the failure area indicate that the tested 
sequence deviates from true randomness. 

Analyzing Table 3 with respect to the areas failure, 
doubt and safe we get 8, 13 and 26 entries, which is (as 
expected) quite close to the output of AES encrypted data 
(see [22]). Note that other test outputs and generators 
might have different outcomes, but this analysis of out- 
puts of type 1 CFNGs strongly supports our brief theo- 
retical analysis given above: the outputs “look random”. 

6.5. Efficiency 

Our system is very effective with respect to communica- 
tions. The only time we need to interact with a generator 
is during initialization, where the unique identifier ID is 
loaded into the generator’s memory. After that, especially 
during the generation of CFNs, there is no need for any 
communication at all. 

Concerning the computation of CFNs, the approach is  
 

Table 2. Interpretation of DIEHARD p-values: safe—dou- 
bt—failure. 

Area p-value p 

Failure area (f) 0 < p ≤ 0.10 or 0.90 ≤ p ≤ 1 

Doubt area (d) 0.10 < p ≤ 0.25 or 0.75 ≤ p < 0.90 

Safe area (s) 0.25 < p < 0.75 

 

 

Figure 7.Variants of CFNGs ensuring privacy protection. 
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Table 3. DIEHARD test on type 1 CFNGs. 

Test Name p-value Area Test-Name p-value Area Test-Name p-value Area

0.883838 d 0.31904 s 0.92747 f 

0.985774 f 0.63408 s 0.60832 s 

0.707886 s 0.14583 d 0.05893 f 

0.283701 s 0.74402 s 0.59841 s 

0.727969 s 0.95016 f 0.10172 d 

0.300982 s 0.45042 s 0.77173 d 

0.619710 s 0.99874 f 0.25175 s 

0.261471 s 0.39829 s 0.32827 s 

Birthday Spacing 

0.233554 s 0.69937 s 0.74176 s 

0.988664 f 

Monkey Test 

0.73568 s 

Monkey Test 

0.32743 s 
Overlapping Permutations 

0.256193 s Minimum Distance 0.576871 s Overlapping Sums 0.219271 d 

0.414570 s 3D-Spheres 0.111133 d 0.200393 d 

0.338007 s Squeeze 0.215885 d 
Craps 

0.197837 d Binary Rank 

0.758256 d 0.211515 d 0.001859 f 

0.552591 s 
Runs 

0.829193 d 
Runs 

0.007574 f 
Count the 1s 

0.842024 d Parking Lot 0.728020 s    

 
Table 4. Comparison of software- and hardware-based 
CFNGs. 

quite efficient, as well. See Table 4 for a summary of 
different variants of type 1 CFNGs and Table 5 for de-
tailed timings of the CFNGs implemented in software on 
a SmartCafe Expert 2.0 JavaCard (see [23] and [24] for 
more details on the implementation of CFNGs). In case 
of Type 2 CFNGs, we used two different approaches to 
implement function g: elliptic curve scalar multiplication 
(SM) and modular exponentiation (ME). 

 SW Implementation HW implementation 

Symmetric 
encryption 

Quite low Very low 

Asymmetric 
encryption 

Acceptable Very low 

 As far as memory is concerned, each generator needs 
to locally store its ID and the current value of the counter 
cnt. One may argue that compared to true random num-
bers or pseudo-random numbers, CFNs are quite long. 
The following comparison—which clarifies that CFNGs 
are worth consideration—is based on generating 2n numbers 
of bit-length N by use of RNGs, CFNGs, and PRNGs: 

Table 5. Time for generating a CFN. 

CFNG f g |r| |output| time 

Type 1 DESr(u) - 56 bit 160 bit 1.5 s

Type 1 Skipjackr(u) - 80 bit 160 bit 2.0 s

Type 2 Skipjackr(u) ME 80 bit 160 bit 3.4 s

Type 2 DESr(u) SM 56 bit 160 bit 9.3 s

RNG: Remembering the birthday paradox, you will 
have a fair chance (~50%) to get a duplicate after gener-
ating approximately 2N/2 values (of bit-length N). Of 
course, keeping slightly below 2N/2 values will signifi-
cantly reduce the probability of duplicates, but no matter 
how many outputs you generate, you cannot completely 
eliminate the risk of duplicates. In the worst case sce-
nario, the second value generated is the first duplicate! 

 
2N/4 generators in our system can generate 2N/4 outputs 
each, without any collisions. Note that if you need more 
generators and less outputs per generator, simply shift 
some bits from cnt to ID (i.e., increase the length of ID 
and decrease the length of cnt) and vice versa. As long as 

2ID cnt ID cnt N    you will not get any dupli- 
cates when generating 2N/2 values. 

CFNG: Now think of CFNGs which generate the same 
number of CFNs. When employing a block cipher E for f, 
 E ID cnt ID cnt ID cnt   . If   ID c nt  = N/4, 

the length of r results in |r| = N/2. With this setup, the  
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PRNG: Obviously, PRNGs which use a common se- 
cret key and hierarchically structured counters can gen- 
erate 2N unique outputs of size N without any duplicates. 
Nevertheless, since compromising one means compro- 
mising all, PRNGs are no option here. 

Note that employing cryptographic mechanisms like 
hash-functions or encryption always slows down the gen- 
eration process. But, when we want to protect the privacy of 
the generator’s identity, the use of cryptographic primi- 
tives is mandatory. Modern smartcard microprocessors 
(like SmartCafe Expert 5.0 JavaCard from Giesecke and 
Devrient [25]) and modern CPUs (like Intels West-
mere-based and Sandy Bridge processors [26]) provide 
encryption functions (like AES) implemented in hard-
ware, but most commonly only provide software-based 
hash-functions. 

Practical test on a SmartCafe Expert 5.0 JavaCards 
from Giesecke and Devrient [25] showed that hardware- 
based encryption is two to four times faster than hard- 
ware based hashing of the same data, and 10 to 15 times 
faster than hashing by use of software [27]. Hence, com-
pared to the existing solutions like UUIDs or GUIDs 
which use hash-functions, our approach which uses en-
cryption is quite competitive. 

7. Fields of Application 

Originally, CFNGs have been designed to eliminate the 
attack scenarios, briefly described in the introduction of 
this article. Besides that, we discovered that the concept 
of CFNGs could be quite useful in the field of unique 
identifiers as well. Additionally, by changing from sym- 
metric to asymmetric algorithms, CFNGs can be used to 
generate unique pseudonyms, which can directly be used 
as keys in cryptographic protocols. 

7.1. Unique Cryptographic Parameters and Keys 

Reconsidering the attacks in Section 1.1 we will first de- 
scribe how CFNGs will fix the problems with random- 
ness in cryptographic protocols. Simply spoken, we will 
replace random parameters by system-wide unique but 
random parameters, generated by the use of application- 
specific CFNGs. 

Primes: The security of an RSA scheme (used for en- 
cryption or digital signature) is based on the factorization 
problem, or more precisely, on the problem of factoring 
the modulus n which is the product of two random 
primes: n = pq. If the randomness in the prime generation 
process is based on CFNGs, there will be no duplicates 
and no attacks based on common primes. Note that the 
attacker knows only n, so we have implicit privacy pro- 
tection here. As a consequence we can use a type 1 
CFNG with f being a symmetric encryption algorithm. So 
the primes will be of the following form: 

   CFNG1 E ,kp pad ID cnt k pad   

where pad is a sequence of random padding bits which 
ensures the required length (512 bit upwards). Padding 
the unique header simplifies the prime generation process. 
In a first step, we set the least significant bit of p to 1, so 
that p is an odd number. If p is not prime, we can now 
simply add 2 and check again. This will be repeated until 
p is prime. As long as this repeated adding 2 does not 
interfere with the unique header, our resulting prime will 
be unique. 

ElGamal Randomizers: When using the ElGamal 
signature scheme, we need some random parameter r, 
called randomizer, to digitally sign a message. As above, 
this randomizer is protected by an intractable problem, 
the discrete logarithm problem. So, we can again use a 
type 1 CFNG to generate our randomizers: 

   CFNG1 E ,kr pad ID cnt k pad   

where the padding bit sequence pad can be omitted, if 
 Ek ID cnt k  is of sufficient length. 

Nonces: Random numbers used once (nonces) are es-
sential for the security of zero knowledge protocols (ZKP). 
So again, we employ a CFNG to generate the nonces s. 
Unfortunately, many ZKPs include messages that contain 
the nonce in unprotected form, or messages of a protocol 
round can be used to extract the nonce. Hence, to provide 
explicit privacy protection, we have to use a type 2 or 
type 3 CFNG: 

       
     

CFNG2 CFNG1 , r  

         or CFNG3 , .

s g g f u

s f u r g r

  

 

r
 

7.2. Unique Identifiers and Pseudonyms 

In specific scenarios, we do not care about the privacy 
protection of the generators identity. In this case, simply 
employ a type 1 CFNG based on symmetric encryption 
and where necessary, (randomly) pad the output to the 
appropriate length. 

However, in the majority of cases, digital identifiers 
and digital pseudonyms (of the same generator) should 
be unlinkable to each other. This means that we have to 
provide privacy protection for the identifier, embedded in 
the CFNGs. So we can either use a type 1 CFNG with a 
one-way function f or a type 2 or type 3 CFNG. 

To explain the operating principle, we will first discuss 
an RSA-based type 1 generator of the form: 

     ,CFNG1 RSA e no I  D cnt e n  

where e is the public exponent of the RSA system and n 
is the modulus. Although being quite long (|n| ≥ 1024 bit), 
these identifiers contain a public key (e,n) which can be 
used to 
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the key (e,d) with public key   SM DES ,e u r r , P) 
and private ECC key  DES ,d u r

1) Authenticate the holder of the identifier by verify-
ing his digital signature or to r , can be used as 

sketched above. For a detailed discussion of ECC-based 
pseudonyms we refer the reader to [28]. 

2) Send encrypted messages to the holder of the iden-
tifier, provided that the holder has stored the according 
private key. Finally, when replacing DES by Skipjack (SJ) with 

CBC mode and ciphertext stealing, these ECC-based 
type 2 CFNGs (see Figure 9 and [29]) are a secure and 
efficient replacement for UUIDs which fulfills all re- 
quirements on UUIDs (universally unique identifiers). In 
particular, the generated identifiers, which are based on 
48 bit user identifiers (UI), are system-wide (or in 
UUID’s language universally) unique, whereas UUIDs 
are not! 

Figure 8 shows the usage of digital pseudonyms in the 
context of an authentication scheme based on digital sig-
natures. The prover employs an RSA-based type 1 CFNG 
to generate his unique digital pseudonym  

   ,RSA e no ID cnt e n . After the generation, P sends 
o to the verifier. The verifier extracts the public key (e, n) 
and sends a challenge r to the prover. The prover signs 
the challenge and sends the signature s to the verifier, 
who finally verifies the signature with the public key of 
the prover. 

 

In order to keep the identifiers as short as possible, but 
also protect the identity of the generator, we suggest to 
use CFNGs of type 2 or type 3 based on elliptic curve 
cryptography (ECC), elliptic curve scalar multiplication 
(SM) and point compression (PC). Generators with the 
shortest outputs, but still secure and privacy protecting 
are of the form: 

      CFNG2 PC SM DES , ,o u r r  P

 

 

where P is a so-called generator point of the elliptic 
curve (see [8] for details on ECC). By using this type of 
generator we can achieve outputs with a length form 128 
bit upwards. Scenarios which only need short-term secu- 
rity may use 128 bit outputs, but the long-term security 
requires 160 bit or more. Since the output of the elliptic 
curve scalar multiplication (SM) is an ECC public key,  Figure 8. Usage of digital pseudonyms. 
 

 

Figure 9. Prototypical Implementation of a type 2 CFNG (160 bit output). 
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8. Conclusion 

Security critical parameters and identifiers, chosen purely 
random, come with the intrinsic risk of duplicates. These 
duplicates may cause severe problems in cryptographic 
schemes, cryptographic protocols and applications. In 
this article, we proposed an efficient mechanism which 
could replace true random number generators in the men- 
tioned fields of application. In contrast to true random 
number generators, the so called collision-free number 
generators (CFNGs) provably do not generate any dupli- 
cates during their life-time. Nevertheless, the proposed 
generators are secure (compromising one or more gen- 
erators does not compromise the whole system), efficient 
(in terms of computation, communications and memory) 
and they additionally protect the generator’s identity (i.e., 
outputs are unlinkable to each other and the generator’s 
identity). 

REFERENCES 
[1] P. Schartner, “Security Tokens—Basics, Applications, Ma- 

nagement, and Infrastructures,” IT-Verlag, Sauerlach, 2001. 

[2] M. Schaffer, P. Schartner and S. Rass, “Universally 
Unique Identifiers: How to Ensure Uniqueness While 
Protecting the Issuer’s Privacy,” Proceedings of Security 
and Management 2007, CSREA Press, Las Vegas, 2007, 
pp. 198-204. 

[3] R. L. Rivest, A. Shamir and L. Adleman, “A Method for 
Obtaining Digital Signatures and Public-Key Cryptosys-
tems,” Communications of the ACM, Vol. 21, No. 2, 1978, 
pp. 120-126. doi:10.1145/359340.359342 

[4] T. ElGamal, “A Public Key Cryptosystem and a Signature 
Scheme Based on Discrete Logarithms,” IEEE Transactions 
of Information Theory, Vol. IT-31, No. 4, 1985, pp. 469- 
472. doi:10.1109/TIT.1985.1057074 

[5] S. Goldwasser, S. Micali and C. Rackoff, “The Knowl-
edge Complexity of Interactive Proof Systems,” SIAM 
Journal on Computing, Vol. 18, No. 1, 1989, pp. 186- 
208. doi:10.1137/0218012 

[6] G. Marsaglia, “The DIEHARD Test Suite 2003,” 2003. 

[7] A. J. Menezes, S. A. Vanstone and P. C. Van Oorschot, 
“Handbook of Applied Cryptography,” CRC Press, Lon-
don, 1996. 

[8] D. Hankerson, A. J. Menezes and S. A. Vanstone, “Guide 
to Elliptic Curve Cryptography,” Springer-Verlag, Berlin, 
2004. 

[9] National Institute of Standards and Technology—NIST, 
“FIPS Publication 46-3: Data Encryption Standard (DES),” 
NIST, Gaithersburg, 1999. 

[10] NIST, “FIPS Special Publication 800-38A: Recommen-
dation for Block Cipher Modes of Operation—Methods 
and Techniques,” NIST, Gaithersburg, 2001. 

[11] ISO/IEC, “ISO/IEC 10116: Modes of Operation of an 
n-bit Block Cipher,” 1991. http://www.iso.org 

[ 12] NIST, “SKIPJACK and KEA Algorithm Specifications,” 

NIST, Gaithersburg, ver. 2.29, 1998. 

[13] NIST, “FIPS Publication 197: Advanced Encryption Stan-
dard (AES),” NIST, Gaithersburg, 2001. 

[14] NIST, “FIPS Publication 180-1: Secure Hash Standard 
(SHA),” NIST, Gaithersburg, 1995. 

[15] H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD- 
160: A Strengthened Version of RIPEMD,” Proceedings 
of Fast Software Encryption (FSE), LNCS, Springer, Ber-
lin, Vol. 1039, 1996, pp. 71-82. 

[16] NIST, “FIPS Publication 180-2: Secure Hash Standard,” 
NIST, Gaithersburg, 2002. 

[17] IPCOM, “Method of Generating Unique Quasi-Random 
Numbers as a Function of Time and Space,” PriorArt-
Datbase, IPCOM#000007118D, 2002. 

[18] P. Leach, M. Mealling and R. Salz, “RFC 4122: A Uni-
versally Unique IDentifier (UUID) URN Name-Space,” 
2005. http://www.ietf.org/rfc/rfc4122.txt  

[19] Microsoft Developer Network, “Globally Unique Identi-
fiers (GUIDs),” 2008.  
http://msdn.microsoft.com/en-us/librarycc246025.aspx 

[20] Republik Österreich, “Bundesgesetz über Regelungen zur 
Erleichterung des Elektronischen Verkehrs mit Öffentlichen 
Stellen (E-Government-Gesetz—E-GovG),” BGBl. I 10/2004, 
2010. http://www.ris.bka.gv.at 

[21] C. E. Shannon, “Communication Theory of Secrecy Sys-
tems,” Bell System Technical Journal, Vol. 28, No. 4, 1949, 
pp. 656-715. 

[22] M. Alani, “Testing Randomness in Ciphertext of Block- 
Ciphers using DIEHARD,” International Journal of Com-
puter Science and Network Security—IJCSNS, Vol. 10, 
No. 4, 2010, pp. 53-57. 

[23] M. Schaffer, P. Schartner and S. Rass, “Efficient Genera-
tion of Unique Numbers for Secure Applications,” Tech-
nical Report TR-Syssec-07-01, Klagenfurt University, Sys-
tem Security Group, Klagenfurt, 2007. 

[24] P. Schartner and M. Schaffer, “Implementing Collision- 
Free Number Generators on JavaCards,” Technical Re-
port TR-Syssec-07-03, Klagenfurt University, System 
Security Group Klagenfurt, 2007. 

[25] Giesecke and Devrient, “Sm@rtCafe JavaCards,” 2011.  
http://www.gi-de.com. 

[26] Intel, “Intel Processors Supporting AES-NI,” 2011.  
http://www.intel.com. 

[27] P. Schartner, “A Low-Cost Alternative for OAEP,” Pro-
ceedings of International Workshop on Security and De-
pendability for Resource Constrained Embedded Systems 
SD4RCES, ICPS Series, ACM Digital Library, in Print, 
2011. 

[28] P. Schartner and M. Schaffer, “Efficient Privacy-Enhanc- 
ing Techniques for Medical Databases, BIOSTEC, Com-
munications in Computer and Information Science, Springer, 
Berlin, Vol. 25, 2008, pp. 467-478. 

[29] P. Schartner, “Unique Domain-Specific Citizen Identifi-
cation for E-Government Applications,” Proceedings of 
the 6th International Conference on Digital Society— 
ICDS 2012, Valencia, 30 January-4 February 2011. 

Copyright © 2012 SciRes.                                                                                  JIS 

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1137/0218012

