
Journal of Information Security, 2012, 3, 25-38
http://dx.doi.org/10.4236/jis.2012.31004 Published Online January 2012 (http://www.SciRP.org/journal/jis)

A Distributed Secure Mechanism for Resource
Protection in a Digital Ecosystem Environment

Ilung Pranata, Geoff Skinner, Rukshan Athauda
Faculty of Science and IT, University of Newcastle, Callaghan, Australia

Email: {Ilung.Pranata, Geoff.Skinner, Rukshan.Athauda}@newcastle.edu.au

Received October 2, 2011; revised November 9, 2011; accepted November 27, 2011

ABSTRACT

The dynamic interaction and collaboration of the loosely coupled entities play a pivotal role for the successful imple-
mentation of a Digital Ecosystem environment. However, such interaction and collaboration can only be promoted
when information and resources are effortlessly shared, accessed, and utilized by the interacting entities. A major re-
quirement to promote an intensive sharing of resources is the ability to secure and uphold the confidentiality, integrity
and non-repudiation of resources. This requirement is extremely important in particular when interactions with the un-
familiar entities occur frequently. In this paper, we present a distributed mechanism for improving resource protection
in a Digital Ecosystem environment. This mechanism can be used not only for any secure and reliable transaction, but
also for encouraging the collaborative efforts by the Digital Ecosystem community members to play a major role in
securing the environment. Public Key Infrastructure is also employed to provide a strong protection for its access work-
flows.

Keywords: Digital Ecosystem; Authentication; Authorisation; Distributed Mechanism

1. Introduction

Information and resource protection is a de-facto require-
ment that must be advocated by every enterprise, organi-
sation, and government entity. The importance of this
requirement is further escalated when the entities are
performing transactions in an online environment. Infor-
mation security has been long considered as a crucial
factor for e-commerce transactions. It is important to
note that lack of sufficient security protection may limit
the expansion of e-commerce technology [1]. However,
although several e-commerce security mechanisms have
been proposed and debated over a number of years, cur-
rent internet technology still poses a number of incidents
pertinent to the loss of information, unauthorized use of
resources, and information hacking. These incidents ge-
nerate an excruciating cost for the enterprises, ranging
from the loss of revenue to the damage of their reputation.
A recent survey [2] shows that the average cost resulted
from the worst incident at about £280k - £690k per in-
cident for a large organisation and £27.5k - £55k per in-
cident for a small and medium organisation.

Similarly, Digital Ecosystem (DE) faces the identical
issues due to its open environment where information
and resources are exchanged over the network. With
possibly thousands of Small and Medium Enterprises
(SMEs) that form series of communities in a DE envi-
ronment [3], protecting enterprise resources and acknowl-

edging which entities are trusted to access the resources
become extensive tasks for each enterprise. While ensur-
ing security protection is all about upholding the confi-
dentiality, integrity, availability and non-repudiation of
information, it is evident that the most consistent and
effective way to ensure the preservation of these security
properties is through the implementation of authentica-
tion, authorisation, encryption, and access control mecha-
nisms [1,4]. Additionally, the provision of an efficient
mechanism to measure the trustworthiness of entities will
further strengthen the information and resource protect-
tion [5]. While authentication ensures only the right enti-
ties that are allowed to consume the resources, authorisa-
tion restricts the access over multiple hosted resources
based on each entity’s privileges. Nevertheless, current
research in these areas for a DE environment is still very
much limited or not attempted. This research gap further
becomes our main motivation to focus our work in.

The remainder of this paper is structured as follows:
Section 2 provides an introduction of Digital Ecosystem
and its security challenges. Section 3 provides an over-
view of our proposed solution. Section 4 provides an
implementation of our proposed solution. Section 5 pre-
sents an security analysis on the proposed solution. This
is followed by Section 6 which shows the results of per-
formance and scalability testing on our solution. To con-
clude the paper, Section 7 summarizes our present work

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 26

and demonstrates several future works.

2. Digital Ecosystem & Its Security
Challenges

Since its first inception, the newly emerging concept of
Digital Ecosystem (DE) has received increasing atten-
tions from researchers, businesses, IT professionals and
communities around the world. A wide variety of re-
searches and initiatives have been undertaken that aimed
at the realization and implementation of a Digital Eco-
system concept. The enthusiasms were revealed inside
numerous projects funded by European Commission un-
der FP6 framework programme followed by FP7 frame-
work programme as well as in numerous pilot regional
workplans in Aragon, Tampere, Piedmont and West
Midland [6,7]. The derived objective of DE primarily
focuses on dynamic formation of a knowledge based
economy [8]. Further, it was proposed that a knowledge
based economy will lead to a creation of more jobs and a
greater social inclusion in sustaining the world economic
growth [6]. To realize this objective, it is critical to form
an open framework infrastructure in promoting a wide
use of Information and Communication Technology (ICT),
as well as to solve the digital divide issues of internet and
e-business adoption by small and medium enterprises [9].

The term “ecosystem” used inside DE notion is a fun-
damental biological science terminology to represent a
dynamic interrelation between organisms and species
that actively interact to conserve the environment [10].
Therefore, the similarity in concept and an analogy can
be drawn between Digital Ecosystem and natural ecology
community [9,11]. In a fundamental perspective, Digital
Ecosystem is described as a digital environment and in-
frastructure where multiple digital components form a
synergic correlation and collaboration with an evolution-
ary ability to adapt with its local circumstances [12].
Such digital components, or digital species used in other
literatures, encompass various applications, services, frame-
works, ontologies, knowledge, laws, taxonomies, repute-
tion, training modules, trust relationships, and business
models [9]. In a more technical term, Briscoe & Wilde
[13] clearly define DE as the Multi-Agent Systems [14]
that utilize distributed evolutionary computing [15,16] to
combine the suitable agents in meeting user requests for
applications. Further, the connectivity between the agents
must be defined by the geography or spatial proximity
unlike peer to peer [19] on which its peers’ connectivity
is based on bandwidth and information content.

In a DE environment where multiple interacting enti-
ties exist, the required efforts to enforce a strong authen-
tication and authorisation mechanism are extensive. We
identify three core issues that appear to be the challeng-
ing tasks to enforce such mechanisms. First, as the DE
community expands its size to incorporate more entities,

the resource providers face a challenge to identify the
legal entities that are able to access their resources. Sec-
ond, the fact that each entity would have different set of
access permissions to access multiple resources further
complicates the implementation of an efficient mecha-
nism. Third, it is probable that each resource provider
would host multiple resources and services in a DE en-
vironment. This situation, in turn, creates a great issue to
authorize the right entities to the right resources with the
right permissions. The failure to assign the right permis-
sions to the authorized entities would compromise the
usage of resources which would bring negative impact to
the resource provider. Therefore, it is apparent that en-
forcing strong and efficient authentication and authorisa-
tion mechanisms in a DE environment needs in-depth
solutions on the core issues.

However, the current internet mechanisms are still far
from adequate to provide a reliable authentication and
authorisation processes for a DE environment. This view
is reflected from our literature analysis over a number of
internet mechanisms. Several prominent authentication
mechanisms such as Identity Provider (IdP) or Credential
Provider [20], Credential Server (CRES) [21], Grid Se-
curity Infrastructure (GSI) MyProxy [22] utilizes a cen-
tralised approach for creating user credential although
their implementation differs between one another. These
mechanisms could be implemented in DE, however the
conspicuous issue of single server failure must be care-
fully considered. In an event where the credential pro-
vider server is down, there possibly a chaos in a DE
community due to the unavailability of credential ser-
vices for client authentication. Apparently, several au-
thorisation mechanisms such as CAS [23], Akenti [24],
and PMI [25] also take a similar centralised approach.

These mechanisms inherit several issues pertinent to
the centralised management. First, the central manage-
ment would face real issue with the bottleneck and fail-
ure on its servers. Security breach would occur if the
central servers fail to perform their authorisation proc-
esses over the clients. This situation exposes the re-
sources to the malicious attacks as there is no other au-
thorisation mechanisms are in place. Although it is pos-
sible to replicate the central server, the replication proc-
ess will bring abundance administrative issues and higher
chances for compromising the resources, considering a
huge amount of data that needs to be replicated. Second,
challenges occur when the central server attempt to as-
sign the access permissions to the DE member entities.
As a large number of resource providers that host one or
more resources, the central server needs to register each
resource and its access permissions individually. Further,
this situation becomes even more challenging as a single
resource could be associated with multiple different ac-
cess permissions, and each client may have different ac-

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 27

cess permissions assigned to him. Therefore, the central
management is not practical when there is huge number
of entities in a DE environment. Third, serious admini-
stration issues would occur as a DE environment grows
in size and diversity due to the great benefits that they
can achieve. A central server will be experiencing huge
burden to manage all client and resource providers’ ac-
counts and permissions even with the use of super com-
puters or grid collections of computers.

Several DE literatures in [6,10,13] clearly reveal that
DE is characterized as an open environment on which a
centralized structure is minimized. DE must be engi-
neered to provide a high resilience infrastructure while
avoiding single point of control and failure. Therefore, a
completely distributed control mechanism is required
that immune to the super control failure. It is evident that
the aforementioned internet mechanisms are inappropri-
ate to be implemented in a DE environment due to its
centralized management. We have dedicated a paper in
[26] that derive the analogy of DE concept and further
discuss its security challenges and requirements in detail.
In this paper, we focus at the implementation and valida-
tion of our proposed DRPM solution [27,28] to solve the
identified issues.

3. An Overview of DRPM

In this section, we provide a brief explanation of the im-
portant elements and workflows in in DRPM. Full dis-
cussion on these workflows could be found in [27,28].

3.1. Important Elements of DRPM

Two important elements of DRPM are client profile and
capability token. A client profile is created in registration
workflow when a client registers himself to access the
resources. Its main function is to allow resource provider
to capture all required, but voluntarily provided, client’s
information before any access to the resources is granted.
The data that is contained in a client profile provides
necessary information about who the client is and about
their intentions for using the requested resources. There-
fore, it ensures the resource provider that resources are
not going to the wrong entities which would further im-
pose the confidentiality and integrity of the resources.
The use of client profiles also facilitates auditing process
for the clients that are accessing a resource. For example,
there may be a situation where a resource provider needs
to make a trace back to determine which client was dele-
gated access to the resource in case there was an incident
involving a dispute or counterfeiting of the resource in
question. Such implementation would reduce the risk of
stolen data by the unauthorized entities.

At the end of registration process, an entity that is
deemed eligible to access the resources would be issued a

capability token. The purpose of this token is to simplify
the management of access permissions that appear to be
the challenge in collaborative environment, as have been
pointed out by the number of literature from the previous
section. A capability token functions as the authentica-
tion token for any subsequent access requests as well as
for granting the access permissions. It contains the nec-
essary right permissions for each client to perform a set
of operations on a particular resource. This capability is
produced by the resource provider on which a particular
resource is hosted. On subsequent access request, this
token is used by the resource provider to grant the client
access to the resources and further provide the authoriza-
tion process for the clients. Our basic design of capability
token, as shown in Figure 1, contains the client profile
identifier, resource provider identifier, resource identifier
and list of access permissions, and it is expressed in
XML [43] due to its simplicity, wide usability and self-
descriptive characteristics. A time-stamp can be imple-
mented in the capability token to determine the validity
period of a user in accessing the resources. In the event
where the trustworthiness of a new user is equivocal, a
short-life capability token can be issued. Once the trust-
worthiness of the user gradually increases, resource pro-
vider can replace the short-life token with longer time-
stamp validity. Additionally, the Uniform Resource Lo-
cator (URL) of resources is embedded in the token to
provide an automatic and seamless connection to re-
source servers.

3.2. A Secure Registration Workflow

The DRPM registration portal is used to generate a client
profile during the initial resource provisioning. The reg-
istration process comprises of three main stages: client
registration, public key exchanges, and secure transfer of
capability token. The resource provider endorsed certifi-
cate is utilized to identify the authentic resource provider

Figure 1. The structure of capability token.

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL.

Copyright © 2012 SciRes. JIS

28

ate the capability token from the signed message. based on its community endorsed public key certificate,
which will be discussed in the next sub-section. The Pub-
lic Key Infrastructure (PKI) is used to provide a secure
communication between the client and resource provider.
Figure 2 shows the principal workflow for securing three
stages of registration process.

Note that at the final step of registration process, client
will have his capability token and public key which was
retrieved from the resource provider. The capability to-
ken and resource provider public key will be stored in
client repository for subsequent requests. On another end-
point, the resource provider stores the client’s public key
in its own repository. We trust that the combination of
both encryption and hashing mechanisms further uphold
the confidentiality, integrity and non-repudiation of ca-
pability token during its transfer in the communication
channel.

The registration steps are detailed below:
1) A new client contacts the resource provider for re-

questing a resource. Resource provider sends its WoT
endorsed public key to the client. Once the client deter-
mines and accepts the trustworthiness of the public key,
he stores the resource provider trusted public keys and
fills his information on the registration portal.

3.3. A Secure Resource Access Workflow 2) After the client information is filled, the registration
portal creates a unique client and save this client profile. Once a client has been successfully registered with the

resource provider, client will present his capability token
to the resource provider on every access request. The
capability token which contains client assertions and au-
thorization permissions is primarily used as a base by the
resource provider for authenticating the client and grant-
ing the resource access. Three foremost protection re-
quirements for the resource access are the identification
of resource provider, secured transfer of capability token,
and authentication of a requesting client. A detailed
workflow that ensures security protection on each re-
source access is provided in Figure 3.

3) Resource provider then requests for client certificate
and stores the client public key on its repository. If re-
quired, WoT verification could be performed on client
certificate to ensure the trustworthiness of the client.

4) The resource provider generates a client capability
token based on client’s allowed permissions.

5) Resource provider uses its own private key to sign
the capability token. This process enhances the integrity
of capability token over the untrusted network.

6) Resource provider then uses client’s public key, re-
ceived from step 3, to encrypt the signed message and
send it to client end-point. The steps are as follow:

7) Client uses his own private key to decrypt the en-
crypted capability token.

1) Client retrieves the resource provider capability to-
ken. The capability token contains the client access per-
missions and the resource URL. At this stage, the client 8) Client then uses resource provider public key to gener-

Figure 2. DRPM secure registration workflow.

I. PRANATA ET AL. 29

Figure 3. DRPM resource access protection.

also determines a symmetric pass key which will be
shared with the resource provider and generate an Au-
thentication Token which consists both symmetric pass
key and capability token.

2) Client uses his private key to sign the capability to-
ken.

3) Client then encrypts the signed capability token us-
ing resource provider public key and he sends the en-
crypted message to the resource provider.

4) When resource provider received the encrypted
message, it uses its own private key to de-crypt the mes-
sage and retrieve the signed capability token.

5) Resource provider then verifies the signature of ca-
pability token using client public key. It then verifies the
integrity of the capability token by generating the hash
number from capability token.

6) Resource provider retrieves the access permissions
listed in capability token.

Note that, on the step 1 of the workflow the client de-
termines a symmetric pass key. This pass key will be
utilized to generate a symmetric key for further commu-
nication after client is authenticated. In an event where
the capability token is stolen due to man-in-middle attack,
the unauthorized entity will still not be able to access the
resource due as the symmetric key passphrase is shared
between the legitimate client and resource provider only.
This symmetric key would be used to secure communi-
cation after the authentication process. This is primarily
due to the limitation of PKI which requires higher com-
putation process. Further, a request for updating the re-
source provider public key could be made if the resource

provider generates a new pair of public-private keys due
to an unforeseeable security breach.

3.4. Engaging Community Protection

As discussed in Section 2, DE must limit its centralized
structure and promotes the involvement of Small and
Medium Enterprises (SMEs) for its successful imple-
mentation. It is evident that centralized approach using
either a Certificate Authority (CA) or Credential Provider
(CP) must be minimized. For DRPM, we propose an idea
to integrate the community trust services, such as Web of
Trust (WoT) into DRPM workflow, particularly in client
registration process. We present this idea as an alterna-
tive approach for protecting resources in a DE environ-
ment. Further, the implementation of WoT in DRPM
encourages active participation of DE member entities to
protect their environment.

Web of Trust (WoT) is a community endorsed certifi-
cate which provides a decentralized trust management in
a digital community. In WoT, there is no central author-
ity (such as CA) that every entity trust, instead each en-
tity is able to sign others certificates or public keys to
build an interconnected web of public keys. The identify-
cation of an entity is provided primarily by his public key
which is digitally signed by any number of “introducers”.
Three degree of trustworthiness is introduced to reveal
the reliability of the entity public key certificate: unde-
fined, marginal and complete. Final decision for trusting
the entity is rely on the user after examining the degree
of trustworthiness. The prominent application of WoT is
in Pretty Good Privacy (PGP) [30], which is used exten-

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 30

sively to secure emails. The implementation of WoT in
DRPM and the mechanism to ensure the trustworthiness
of WoT entities is not within the scope of this paper. This
issue becomes an inspiration for our future work.

4. DRPM Implementation

Our DRPM prototype is divided into two major applica-
tions: the resource provider application and the client
application. The resource provider application consists of
three main system components: listener component, reg-
istration component and resource component. The re-
spective tasks of these components are to listen for any
incoming connection from the client, to automatically
create client profile and capability token, to securely ex-
change and host multiple resources. In contrast, client
application is primarily utilized by resource consumer to
securely register and access the hosted resources. Further
explanation of each of the components that builds up our
prototype architecture is provided.

4.1. Resource Provider Architecture

4.1.1. Listener Server Component
The main functionality of listener server component is to
accept any incoming HTTP requests from DE client
members. Three main client requests on which this com-
ponent handles are client registration, provider key sign-
ing and provider key retrieval. Upon receiving a client
request, this listener component analyses the header of
the incoming HTTP connection. This process has an ob-
jective to determine the nature of client request. Our cli-
ent component, which would be discussed in detail in the
following sub-section, was able to create unique HTTP
headers to identify the objective of each request. Figure
4 explains the activity workflow that reflects full func-
tionalities of this listener server component.

In a case where an incoming HTTP request contains a
registration header, the listener component constructs a
certificate object that contains resource provider informa-
tion and its public key. This certificate object is then sent
to the client together with the registration page URL for
redirection purposes. When client receives a token, he
may verify the certificate to ensure the trustworthiness of
resource provider and subsequently, he is redirected to the
registration page. In a case where an incoming HTTP
request contains a signed key header, the listener compo-
nent sends provider public key to the client for signing
process. We implemented a transaction lock on which
other clients are not able to retrieve provider key during
the signing process. Further, a configurable timeout of 5
minutes were adopted for each signing process. If the
timeout is reached and client has not returned the signed
key, the transaction lock will be released. In the last case
where the client request is to retrieve provider key, this
listener component would response back with provider
public key.

When starting the listener server component, the sys-
tem administrator would need to configure three URL
addresses: URL address where the listener server is lo-
cated, URL address of registration page component, and
URL address of resource login component. These URLs
are used by the clients to connect to the resource provider
server and its resources, and for the listener server to
redirect the client to the registration components. An-
other functionality of the listener server component is to
generate both public and private keys. The KeyManager
module of this component presents the existing resource
provider public and private keys. It has a functionality to
re-create both public and private keys. If the new keys
are created, these keys will be stored securely in the key
repository on the resource provider server.

Figure 4. Listener server activity workflow.

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 31

4.1.2. Registration Page Component
The registration page component contains a set of mini-
mum information which needs to be filled in by the client.
For our testing, we uploaded 4 resources on which the
access permissions of each resource could be requested.
In real implementation, types of resources and their ac-
cess permissions are highly dependent on the configure-
tion that is set by each resource provider. During the reg-
istration process, client public key is obtained and stored
by resource provider in its server repository. The ob-
tained public key will be used in future access requests.
That is to verify the signature of the presented capability
token. When a client submits his information and indi-
cates which resources that he intends to consume the
registration page component then creates a client profile
based on the supplied information. This client profile will
be stored in resource provider’s database. After the crea-
tion of client profile, this component constructs a capa-
bility token and generates a hash no of this token. The
hash no is then stored in the database for subsequent re-
source access verification. The newly created capability
token goes through encryption and signing process (by
calling the EncrypAndSignToken method). Figure 5 de-
monstrates the capability token that was taken before and
after the encryption and signing process.

4.1.3. Resource Page Component
This is the critical component where the resources and
critical information are hosted. Therefore, a considerable
amount of security must be implemented. When this
component is requested by client, a series of validation
checks are conducted to determine the availability of
capability token, its originality and integrity. This com-
ponent contains a login module that performs these

checks. When resource component receives a HTTP re-
quest with access header, login module checks the avail-
ability of capability token in the request. It obtains client
capability token from the incoming request. The module
then calls the decryptFile and the verifySignature method
to decrypt and verify the signature as showed in Figure 3.
If any of these processes fails, access request will be re-
jected as a failed authentication process, otherwise the
client will be redirected to the resource page component
where he will be given access based on the permissions
that is contained in his capability token.

Note that, when a client is able to access the resource
page component, it means that he has been authenticated
by the resource provider as a genuine client. However, at
this stage the access permissions which are presented by
the client in his capability token have not been authorised.
A hash no verification of capability token is performed
for this purpose (through createVerifyHash module). The
hash no will be compared with the hash no that was ob-
tained during the registration process. If hash no verifica-
tion succeeds, the resource page component retrieves all
access permissions from client’s capability token, and it
further granted the resource access based on these listed
permissions. If the verification fails, a notification would
be presented to the client and access to the resource
would be disallowed.

4.2. Client Architecture

4.2.1. Key Admin Component
Similar to the KeyManager module of resource provider
listener component, this component allow clients to gen-
erate, manage and distribute his public and private keys.
Any created keys would be stored in keys repository

(a) (b)

Figure 5. The original (a) and the encrypted-signed (b) capability token.

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 32

which is kept in client workstation. This component was
proved to be very useful for client administrator to man-
age his own keys.

4.2.2. Client Registration Component
This component is a critical module for a client to Regis-
ter for new resources. A client provides his intended re-
source provider listener server URL and its port for a
secure communication. When a client registers for re-
source, a new HttpWebRequest will be created and sent
to the resource provider listener server. This HttpWe-
bRequest serves as a request message from client to lis-
tener component to process and return the provider’s
certificate and its registration page URL. Upon receiving
the response, the component processes and de-serializes
this response. in order to obtain the certificate object. The

requested client would then be able to view the WoT
certificate, and simultaneously he is redirected to the
resource provider registration page. Figure 6 shows our
implementation of client registration component.

We built this secure component in a windows applica-
tion with a simple web browser interface. This compo-
nent is equipped with a capability to generate a HTTP
protocol request for its initial communication. We set a
temporary listener which is started when the client clicks
on “register” button. This objective of temporary listener
is to receive the encrypted token and further decrypts the
token with resource provider public key which is ob-
tained from its certificate object. The signature verifica-
tion process follows after the decryption process. Figure
7 explains the entire activity workflow during resource
registration from the client node point of view.

Figure 6. Client registration component.

Figure 7. Activity workflow in client component.

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 33

4.2.3. Resource Access Component
DE client uses this component to access resources that
are hosted in resource provider server. This component
establishes communication and exchange processes of
capability token and resources. A client is able to select
which resource provider that he wants to access the re-
sources based on his retrieved capability tokens. The
component also lists all resources and their respective
granted permissions. The lists of resource providers, re-
sources, and permission types are retrieved from all ca-
pability tokens that are stored in client repository. When
a client submits an access request, the capability token of
its resource provider is retrieved and a symmetric key
passphrase is generated. A temporary object will then be
created to encapsulate this capability token and symmet-
ric key passphrase. This object is further encrypted and
signed as discussed previously in Figure 3.

5. Security Validation & Analysis

In order to validate our proposed solution, we developed
several scenarios that showed various unauthorised at-
tempts to access the resources. In each scenario, we fo-
cussed at how the existing prototype could mitigate any
threats that were attempting to access the resources. The
test outcomes of these scenarios would further attest the
ability of our proposed solution to uphold the confidenti-
ality, integrity and availability of resources and informa-
tion while strengthening the authentication and authori-
sation mechanisms in a DE environment. These scenarios
are detailed below:
 Scenario 1: If a capability token is stolen, would the

unauthorised entity be able to read its content?
In our solution, a capability token is always encrypted

and signed before it is being transferred in the network.
The strongest encryption algorithm for e-commerce
transactions (RSA algorithm) is utilized to prevent the
unauthorised entity to read the content of capability to-
ken. Moreover, the Public Key Infrastructure (PKI) is

fully utilized in our solution. With these measures in
place, the confidentiality of capability token is always
enforced. The unauthorised entity is only able to read the
scramble data unless it has the corresponding private key
to decrypt it. Figure 7 above has showed the encrypted
capability token before it is being sent in the network.
 Scenario 2: If an unauthorised entity attempts to use

the stolen capability token to camouflage himself as a
legitimate client, would he be able to access the re-
sources?

In this situation, the unauthorised entity would not be
allowed to access the resource for two reasons:

1) Resource provider always verifies the signature of
capability token with the client public key on every ac-
cess requests. Unless the unauthorised entity successfully
obtained the client private key, the verification process of
this capability token will be failed, and access will not be
granted. Figure 8 shows the failed verification processes
of capability token signature.

2) In an event when an unauthorised entity performs
the man-in-middle or relay attack during an active com-
munication between client and resource provider, he
would be able to obtain the capability token. However,
the unauthorised entity will still not be able to access the
resource due to the symmetric key passphrase that is
shared between the legitimate client and resource pro-
vider only.
 Scenario 3: If an unauthorised entity or client modi-

fies the capability token by adding or removing the re-
sources or permission types, would he be able to con-
sume the resources?

We implement a hashing mechanism for the resource
provider to check the integrity of capability token. If
there is any change, either minor or major change, in the
capability token, the hash verification process will fail
and the resource access will not be granted, as shown in
Figure 9. This verification process further upholds the
integrity of a capability token before any access to the
resources is given.

Figure 8. Access disallowed as failure to verify token signature.

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 34

Figure 9. Access disallowed as failure to verify the hash no.

 Scenario 4: It is possible that a client is redirected to

the unauthorized sites that claim to be the legitimate
resource provider, how would DRPM prevent such
situation?

This situation is known as phishing attack on which
the client is redirected to the fraudulent link where he
enters the personal details to the fraudster without any
knowledge that he is the victim of the crime [31]. Our
proposed capability token contains a ResourceURL field
which functions to automatically redirect the client to the
legitimate resource provider website. Further, the en-
cryption method that is implemented before any token
transfer is performed further upholds the confidentiality
of a capability token during the transfer process. There-
fore, our solution further reduces the possibility of phishing
attack in a DE environment.

The verification and evaluation of DRPM proved to be
successful, and it further resolved our main research is-
sue of “authenticating the genuine client and managing
multiple authorisation permissions over various resources”.
Our prototype implementation and testing has proved to
solve several security concerns which were derived in
section V as well as various threat scenarios that are
likely to occur in a DE environment. Finally, the unique
authentication and authorisation mechanisms offered by
DRPM in conjunction with its secure architecture pro-
vide a complete and full fledge security solutions for a
DE environment.

6. Performance and Scalability Analysis

6.1. Performance Testing

In this section, we briefly review our analysis on the com-
putational cost of DRPM prototype. To measure the per-
formance impact of DRPM, three different scenarios
from the workflows are identified. They are: the over-
head cost during initial registration process where pro-
vider’s public key and its registration page are sent to the
client, the overhead cost in processing client’s registra-
tion that includes generating capability token and secure-

ing communication, and the overhead cost during re-
source access workflow. In addition, we compare the
overhead cost of cryptography between two sets of ma-
chine.

All performance tests were conducted in two machines,
and these machines respectively act as client and server.
Our client machine run on a 1.86 GHz Intel Centrino
with 1 Gb of RAM while our provider server machine
run on a 2.26 GHz Intel Core2 Duo processor with 2 Gb
of RAM and IIS 7 web server. Both machines were using
NET framework 2.0 and MSSQL Server 2008 for the
database. It is important to note that both client and pro-
vider server machines are below today’s average of client
and server computer standards. This configuration was
taken to measure the performance of using DRPM pro-
totype on the low end machines. As both client and pro-
vider server were connected via local high speed
Ethernet LAN with 100 Mbps, we assume that the net-
work latency during testing was insignificant. Therefore,
it was not considered on the final performance results.

We conducted 52 repeated experiments for each sce-
nario to obtain various performance results of DRPM.
The result of the first two results was omitted due to the
need for the application prototype to be compiled and the
process workers to be started by the Just in Time (JIT)
compiler in Net Framework 2.0. Therefore, only the re-
sults of subsequent 50 experiments were obtained. Due to
the length limitation of the paper, we only present the
mean and standard deviation of the experiment results.
Further, the overhead costs derived from each scenario
are calculated by applying the mean scores to the formula
below:

Processing Time
Overhead Cost : 100%

Total Time Taken

The result of our performance testing on DRPM pro-
totype is shown in Table 1.

The average total time take for initial registration re-
est was 226.18 milliseconds. This timing accounted for
loading registration page and processing provider cer-

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 35

ficate. Furthermore, the average total time for client reg-
tration in our test was 593.24 milliseconds. This timing
accounted for 134.56 milliseconds of server process and
458.68 milliseconds of client process. Our findings showed
that token creation process accounted was accounted for
the lowest time needed compare to other server processes
such as encryption and signing process. The highest over-
head cost (61.88%) was needed by other server process
such as running complex stored procedures in database,
forming response to client, and etc. In client process, the
highest overhead cost was token decryption process. It
was followed by signature verification process which
was almost 88% faster than the former process. The rest
client process accounted for 31.05 milliseconds (6.77%)
was for processing response, storing token to repository,
and etc.

As shown in Table 2, the overall time needed for ac-
cessing resource in our test was 701.28 milliseconds.
This timing was account for 55.92 milliseconds for ser-
ver login process and 645.36 milliseconds for client

process and resource page loading. The result for server
login process showed that the decryption process took
the majority of server login time. This was followed by
signature verification which was almost 88% faster than
the decryption process aligned with the registration work-
flow decryption-signature process. Overall time take to re-
trieve the access permissions from token was 1.46 milli-
seconds for 1 Kb token size. As the capability token is
intended for storing the access permissions in lightweight
XML format, we expect that it only contains limited in-
formation; therefore its file size should not over than 5
Kb. Hash verification performance was a surprising re-
sult in our DRPM prototype testing. This was due to the
process of hash verification method which involves gen-
erating hash no from the token (using SHA-1 algorithm)
and comparing it with the original hash that is obtained
from the database. The rest 5.34 milliseconds (9.54%)
was needed for other server login processes such as
reading private keys from key ring, forming HttpWebRe-
sponse message, writing logs, creating sessions and etc.

Table 1. Registration workflow overhead cost (in milliseconds).

Scenario Steps on Workflow Processing Type Mean Standard Deviation Overhead Cost

Registration: initial
request

Server (Step 1) Loading Page 226.18 89.08 N/A

Creating Token 6.84 6.89 5.08%

Encrypt and Sign 44.46 6.84 33.04% Server (Steps 2-6)

Total Server Time 134.56 48.17 N/A

Decrypt 375.78 46.19 81.92%

Verify Signature 51.86 46.77 11.31%

Registration:
processing

Client (Steps 7-8)

Total Time 458.68 55.32 N/A

Table 2. Resource access workflow overhead cost (in milliseconds).

Scenario Steps on Workflow Processing Type Mean Standard Deviation Overhead Cost

Decrypt 43.48 4.04 77.75%

Verify Signature 5.08 1.90 9.08%

Verify Hash 0.52 0.71 0.93%

Retrieve Permissions From token 1.5 0.50 2.68%

Server (Steps 4-6)

Total Server Time 55.92 5.15 N/A

Encrypt & Sign 435.84 55.75 67.53%

Resource Access

Client (Steps 1-3)

Total Client Time 645.36 70.15 N/A

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 36

Token encryption and signature process accounts for

the majority of total client process time. The rest 209.52
milliseconds (32.47%) was needed for other client proc-
esses including the activity to form HttpWebRequest, to
retrieve token from repository, to process HttpWebRe-
sponse that was obtained from server, to redirect to re-
source page, to load resource page from server side and
etc. Another finding from our testing was the overhead
cost of cryptography processes which include decryption,
encryption, sign and verification was reduced by almost
89% by doubling up the machine specification. This
could be found by comparing any cryptography process
between the client machine and server machine. Figure
10 shows the overhead percentage of each process.

6.2. Scalability Testing

We tested the scalability of the listener server component
to handle multiple HttpWebRequest requests as shown
Figure 11. This test was conducted by utilizing the Apa-

che JMeter [32] tool that specializes on the web scalabil-
ity and performance testing. The purpose of this test was
to review the scalability of the listener component to
handle multiple client registration requests.

In our test bed, 1000 users were generated to access
the listener component concurrently. Our test shows that
the average elapsed time of this set of results was 162
milliseconds with the aggregate highest elapsed time of
327 milliseconds and the aggregate lowest elapsed time
of 5 milliseconds. The scalability testing on other com-
ponents such as registration, login, resource page, etc.
were not able to be conducted by JMeter. This is primar-
ily due to the need to utilize the prototype to create the
request stream that holds the encrypted and signed capa-
bility token. We tested the scalability of other compo-
nents only with a small number of machines (5 or less)
and only a small number of clients (4 or less). Therefore,
scalability of these components was not addressed in the
experiment.

Figure 10. Overhead cost on DRPM prototype.

Figure 11. DRPM listener component scalability testing.

Copyright © 2012 SciRes. JIS

I. PRANATA ET AL. 37

7. Conclusions

In this paper, we introduced the concept of Digital Eco-
system (DE), and we also outlined the challenges that are
faced by DE, in particular the authentication and au-
thorisation mechanism. We have also highlighted the
requirement of DE to minimize the centralized structure
and promoting the engagement of Small and Medium
Enterprises (SMEs) for its successful adoption. We fur-
ther propose a unique solution the Distributed Resource
Protection Mechanism (DRPM) that attempt to solve the
identified challenges. DRPM focuses on the creation of
client profile and capability token to protect the critical
resources. Moreover, we propose a secure DRPM archi-
tecture with adoption of Public Key Infrastructure (PKI).
This further allows DRPM functions as a complete and
full fledge security solution for Digital Ecosystem.

This paper also provides our implementation of secure
DRPM which consists of two major system architectures:
resource provider system and client system. Several sce-
narios of security threats are provided in this paper to
analyse and evaluate the ability of our secure DRPM im-
plementation to mitigate these threats. The analysis shows
that the secure DRPM proposal is able to uphold the con-
fidentiality, integrity, and non-repudiation of the resources.
In addition, the performance and scalability analysis of
DRPM are presented. Future works include the investi-
gation of an effective trust mechanism in DRPM. As
pointed in this paper, the utilisation of Web of Trust
(WoT) would engage the interacting entities to actively
protect their DE environment. At this point, however,
DRPM does not include any trust mechanism that could
allow the interacting entities to determine which resource
providers are honest and which are not. The inclusivity
of trust mechanism would significantly improve the
overall security protection in DE environment. Therefore,
investigation on the effective trust mechanism to improve
the overall DRPM security is needed.

REFERENCES
[1] D. Boughaci and H. Drias, “A Secure E-Transaction

model for E-Commerce,” IEEE GCC Conference (GCC),
Manama, 20-22 March 2006.
doi:10.1109/IEEEGCC.2006.5686242

[2] C. Potter and A. Beard, “Information Security Breaches
Survey 2010,” Technical Report, PricewaterhouseCoop-
ers, 2010.

[3] P. ltner and T. Grechenig, “A Joint Infrastructure of
‘Digital Corporate Organisms’ as Facilitator for a Virtual
Digital Retail Ecosystem,” 4th IEEE International Con-
ference on Digital Ecosystems and Technologies (DEST),
Dubai, 12-15 April 2010.

[4] Y.-L. Fang B. Han and Y.-B. Li, “Research and Imple-
mentation of Key Technology Based on Internet Encryp-

tion and Authentication,” International Conference on
Networking and Digital Society (ICNDS’09), Guiyang,
30-31 May 2009.

[5] X. Tian and W. Dai, “Study on Information Management
and Security of E-commerce System,” International
Symposium on Intelligence Information Processing and
Trusted Computing (IPTC), Huanggang, 18-20 November
2010.

[6] P. Dini, M. Darking, N. Rathbone, M. Vidal, P. Hernan-
dez, P. Ferronato, G. Briscoe and S. Hendryx, “The Digi-
tal Ecosystems Research Vision: 2010 and Beyond,”
2011.
www.digital-ecosystems.org/events/2005.05/de_position_
paper_vf.pdf

[7] EComm, “Technologies for Digital Ecosystems,” 2005.
www.digital-ecosystems.org/doc/flyer-de-sector.doc.

[8] F. Nachira, P. Dini and A. Nicolai, “A Network of Digital
Business Ecosystems for Europe: Roots, Processes and
Perspectives,” 2011.
http://www.digital-ecosystems.org/book/DBE-2007.pdf

[9] F. Nachira, E. Chiozza, H. Ihonen, M. Manzoni and F.
Cunningham, “Towards a Network of Digital Business
Ecosystems Fostering the Local Development,” Discus-
sion Paper, Bruxelles, 2002.

[10] H. Boley and E. Chang, “Digital Ecosystem: Principles
and Semantics,” Inaugural IEEE International Confer-
ence on Digital Ecosystems and Technologies (IEEE
DEST 2007), Cairns, 12-23 February 2007.

[11] M. Hadzic, E. Chang and T. Dillon, “Methodology
Framework for the Design of Digital Ecosystem,” ISIC
IEEE International Conference Systems, Man and Cy-
bernetics, Montreal, 7-10 October 2007.

[12] DigitalEcosystem.org, “Digital Ecosystems: The New
Global Commons for SMEs and Local Growth,” 2011.
http://www.digital-ecosystems.org/de/refs/ref_books.html

[13] G. Briscoe and P. Wilde, “Digital Ecosystems: Evolving
Service-Oriented Architectures,” 1st International Con-
ference on Bio Inspired Models of Network, Information
and Computing Systems, New York, June 2006.

[14] M. Wooldridge, “Introduction to MultiAgent Systems,”
Wiley, New York, 2002

[15] E. Cantu-Paz, “A Survey of Parallel Genetic Algorithms,”
Reseaux et Systemes Repartis, Calculateurs Paralleles,
Vol. 10, 1998, pp. 141-171.

[16] J. Stender, “Parallel Genetic Algorithms: Theory and
Applications,” IOS Press, Amsterdam, 1993.

[17] A. Berson, “Client/Server Architecture,” 2nd Edition,
McGraw-Hill Companies, Upper Saddle River, 1996.

[18] W3C, “Web Services Architecture,” 2011.
http://www.w3.org/TR/ws-arch/

[19] R. Schollmeier, “A Definition of Peer-to-Peer Network-
ing for the Classification of Peer-to-Peer Architectures
and Applications,” Proceedings of 1st IEEE International
Conference on Peer to Peer Computing, Linkoping,
27-29 August 2001.

[20] H. Koshutanski, et al., “Distributed Identity Management
Model for Digital Ecosystems,” International Conference

Copyright © 2012 SciRes. JIS

http://dx.doi.org/10.1109/IEEEGCC.2006.5686242
http://www.digital-ecosystems.org/de/refs/ref_books.html

I. PRANATA ET AL. 38

on Emerging Security Information, Systems and Tech-
nologies (Securware’07), Valencia, 14-20 October 2007.

[21] J. M. Seigneur, “Demonstration of Security through Col-
laborative in Digital Business Ecosystem,” Proceedings
of the IEEE SECOVAL Workshop, Athens, September
2005.

[22] J. Novotny, “An Online Credential Repository for the
Grid: MyProxy,” Proceedings of the IEEE 10th Interna-
tional Symposium on High Performance Distributed
Computing (HPDC-10), San Fransisco, 7-9 September
2001.

[23] L. Pearlman, et al., “A Community Authorization Service
for Group Collaboration,” Proceedings of the 3rd Inter-
national Workshop on Policies for Distributed Systems
and Networks, Monterey, 5-7 June 2002.
doi:10.1109/POLICY.2002.1011293

[24] M. Thompson, et al., “Certificate-Based Access Control
for Widely Distributed Resources,” Proceedings of the
8th Conference on USENIX Security Symposium, Wash-
ington DC, 23-26 August 1999.

[25] J. Weise, “Public Key Infrastructure Overview,” Sun
Microsystem, Sun BluePrints Online 2001.

[26] I. Pranata, G. Skinner and R. Athauda, “A Survey on the
Security Requirements for a Successful Adoption of
Digital Ecosystem Environment,” 2nd International Con-
ference on Information Technology Security (ITS 2011),
Singapore, 24-25 November 2011.

[27] I. Pranata, G. Skinner and R. Athauda, “Community
Based Authentication and Authorisation Mechanism for
Digital Ecosystem,” 5th IEEE International Conference
on Digital Ecosystems and Technologies (DEST’11),
Seoul, 31 May-3 June 2011.

[28] I. Pranata, G. Skinner and R. Athauda, “Distributed
Mechanism for Protecting Resources in a Newly Emerged
Digital Ecosystem,” 11th International Conference on
Algorithms and Architectures for Parallel Processing
(ICA3PP 2011), Melbourne, 24-26 October 2011.

[29] W3C, “Extensible Markup Language (XML),” 2011.
http://www.w3.org/XML/

[30] P. R. Zimmermann, “The Official PGP User’s Guide,”
MIT Press, Cambridge, 1995.

[31] FTSC, “FSTC Counter-Phising Initiative,” Financial Ser-
vices Technology Consortium, New York, 2004.

[32] Apache JMeter, 2011. http://jakarta.apache.org/ jmeter/

Copyright © 2012 SciRes. JIS

http://dx.doi.org/10.1109/POLICY.2002.1011293

