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Abstract 
The paper proposes a solution to the problem classification by calculating the 
sequence of matrices of feature indices that approximate invariants of the data 
matrix. Here the feature index is the index of interval for feature values, and 
the number of intervals is a parameter. Objects with the equal indices form 
granules, including information granules, which correspond to the objects of 
the training sample of a certain class. From the ratios of the information gra-
nules lengths, we obtain the frequency intervals of any feature that are the 
same for the appropriate objects of the control sample. Then, for an arbitrary 
object, we find object probability estimation in each class and then the class of 
object that corresponds to the maximum probability. For a sequence of the 
parameter values, we find a converging sequence of error rates. An additional 
effect is created by the parameters aimed at increasing the data variety and 
compressing rare data. The high accuracy and stability of the results obtained 
using this method have been confirmed for nine data set from the UCI repo-
sitory. The proposed method has obvious advantages over existing ones due 
to the algorithm’s simplicity and universality, as well as the accuracy of the 
solutions. 
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1. Introduction 

The classification problem is the central problem in machine learning, and me-
thods for solving it are dealt with in a considerable number of research papers, 
which is constantly growing. Nevertheless, the analysis of modern methods, 
which is adequately described in [1] [2] [3], shows that some essential particu-
lars of this task have not been considered. 

The problem regards the set of real objects, the patterns of which are represented 
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by the feature vectors. The composition of features that describes the objects is, 
to a certain extent, random, and in some cases, the list can be changed or short-
ened. In addition, feature values contain random errors of measurement or ob-
servation. The influence of the inevitable uncertainty in the relationship between 
the real object and its model (pattern) is further increased, since the given in-
formation is divided between the object and its model, and neither of them is 
fully defined. 

However, the existing methods have been unable to consider these factors as 
they use mathematical tools within the framework of formalization of pure ma-
thematics. Such approaches have another drawback: in solving the problem, one 
must proceed from the assumption of existence of a metric in the feature space 
and a probability density function for the objects of each class. 

At the same time, all objects have feature values that are very similar or equal, 
so the object classes differ in the probability density functions for features, but 
not for objects. Yet only a generalized function can accurately consider the dis-
continuous densities of the features. Therefore, each of the existing methods is 
applied in a restricted area whose boundaries can be established, as a rule, only 
experimentally. 

Studies in recent decades regarding the principles of information processing 
in complex systems open up new possibilities for solving the problem and elim-
inate these gaps in the theory. Most of these works were triggered by soft com-
puting theory and were based on the concept of an organism as a granular sys-
tem. It is assumed that the system consists of holons or granules, which simul-
taneously represent a single entity and its part in the larger system on different 
hierarchical levels [4] [5] [6] [7]. Objects, subsets of programs or intelligent 
agents are examples of such entities. Here, the key issue is the operation for 
forming and separating granules. 

Granular computing is a paradigm of research in the field of artificial intelli-
gence. It covers multiple process modeling concepts of information processing 
in various hierarchical systems, as well as new approaches to learning with fuzzy 
databases [8] [9]. In this respect, the paradigm has common roots with the me-
thods of machine learning. In the general theory of pattern recognition [10], the 
remaining unfinished, objects are “split” into elements of multiple hierarchical 
levels linked by combinatorial relations, and the simplest standard blocks are at 
the lowest level. Recently, granulation has been used to solve the problem of 
classification based on two existing machine-learning methods [11]. 

The present work is based on the concept of soft computing L. Zadeh, ac-
cording to which the human mind considers the “comprehensive inaccuracy of 
the real world” [12] [13]. The author supposes that flows of inaccurate and par-
tially correct information enters the brain through visual, auditory, tactile and 
other sensors, and the brain selects only the information that is related to a spe-
cific task. This information corresponds to the original information “with a 
minimum degree of accuracy”. 

This concept is reflected in the proposed method, which builds upon a new 
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approach to feature description. The range of each feature value is divided into n 
equal intervals. Each interval can contain anywhere from zero to several objects 
forming granules. The length of the granules randomly depends on the ordinal 
interval, which is called index of the corresponding feature. Then, each object 
will be uniquely described by its index vector, and the data matrix will be trans-
formed into an index matrix. For each index, we can calculate the ratio between 
the number of objects from a certain class and the total number of objects, which 
defines the index frequencies and provides the sampling density estimate. These 
results allow us to establish the class of any object and the value of the parameter 
n that provides an acceptable margin of error. 

The effectiveness of adopted approach is explained by the fact that a given set 
of data defines a hierarchically organized system in which there are relations of 
the whole and part between its elements: features, objects and classes. The me-
chanism of operation of such a system is determined by frequencies of interac-
tion of granules in accordance with the simplest formulas of probability theory. 

Note that the uncertainty of initial data of the problem is taken into account 
indirectly under all transformations. They lead to random changes in the de-
scription of any object, but the relation between the object and its class remains 
the same. Therefore, we can assume that the granulation is based on an ap-
proximate calculation of the data matrix invariants whose role, with known er-
ror, is played by the index matrices. 

The article summarizes and develops previously completed studies [14] [15]. 
The method has been cross-checked on nine data sets from the UCI repository 
[16]. 

2. Transformation of Original Information 

The article is devoted to the classification problem, in which training and con-
trol samples of real objects x∈X  are considered. They are described with er-
rors by feature vectors ( )T

1, , Mkq q q=   and a distribution of objects into Mi  
disjoint classes. Objects have features of quantitative, categorical or mixed types, 
and there are no missing data. The task is to find an object classification rule for 
the training sample and evaluate its applicability to the control sample. 

To identify objects and their patterns q, we will use the sequence of numbers 
1, , , 1, ,s t t Ms= + 

, where t and Ms  are the number of objects in the train-
ing sample and the total number of objects in the combined sample, respectively. 
Then, ,s sx q  and s

kq  will represent an object s, its pattern and the thk  fea-
ture, respectively. Let Q  denote the data matrix for the combined sample, and 

iω  be the list of object numbers of class ,1i i Mi≤ ≤ . 
This problem relates to the field of artificial intelligence and has specific rele-

vant peculiarities. Here we are dealing with two entities of the arbitrary object 
number s: a real-world object sx  and information representing its pattern sq  
that contains errors. It follows that pattern, specified in the task, is one of the 
realizations of the random variable (see. Figure 1), and there is a set of patterns 
of its possible values. Each of the vectors of this set could replace the corres- 
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Figure 1. Scheme of interrelations between the real object, its class and the set of its pat-
terns. 
 
ponding row of the matrix Q . Note that these observations are consistent with 
the concept of soft computing. 

Hence, the set X  would be represented by another data matrix, and there are 
infinite set such matrices. These matrices share a common property: they can be 
regarded as invariants of the matrix Q  in relation to the class of objects, al-
though the concept of an invariant is defined for deterministic quantities. 
Therefore, it is advisable to find invariants that simplify the algorithm for solv-
ing the problem. 

For the implementation of the relevant mapping, we will consider the given 
data set as a system that processes multi-level data with a hierarchical structure 

( )( )( )Feature Object Class . We need to find an approximate mapping of this set 
into another set such that the result of partitioning it into subsets could be esti-
mated using the frequencies of the features. 

Let us make two general remarks concerning the calculation of granules. 
1) It should be noted that the frequencies of the features do not depend on the 

technique used to identify the feature values, such as magnitude, number or any 
other identifiers. On this basis, we can transform the system of reference for the 
features value and use any types of features, including mixed, in the calculations. 

In particular, for a non-quantitative feature, we should establish relationship 
of partial order on the set of options for its values under the arbitrary rule of 
their numbering. The value s

kq  will be equal to the number of the correspond-
ing options for the sequence numbers 1,2, . Let us assume that such trans-
formations of non-quantitative features are already incorporated into the matrix 
Q . 

2) The training set is designed to reduce the level of uncertainty of our know-
ledge of the properties of objects of each class. The uncertainty is measured by 
the value of information entropy, and it is obvious that increasing the entropy of 
each feature improves the solution quality. The maximum value of entropy is 
equal to log N , where N is the number of options for the feature values. It fol-
lows that the accuracy of the results increases with increasing N, which characte-
rizes the data variety. The conclusion is consistent with the law of requisite va-
riety [17], which is in line with the theory that the adaptation of an organism 
requires the perception of the maximum amount of information about the poss-
ible effects of the environment. 
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To implement the ideas in both of the comments, we will first calculate a ma-
trix that is of a convenient form and has sufficient accuracy to represent infor-
mation contained in the conditions of the task. To this end, we will sequentially 
apply randomization and indexing of information. 

The randomization procedure is designed to transform the feature values s
kq  

in the pseudo-feature values s s
k k sq q vα= + ⋅  for all k, where v is a random vari-

able that is uniformly distributed in the interval [ ]0,1 , and 0α ≥  is a con-
stant. In the case of high data variety, which often occurs for quantitative fea-
tures, 0α =  is taken. As a result of the randomization, we obtain a matrix of 
pseudo-features Q  of size Ms Mk⋅ , in which all the elements of each column 
are different. 

We assume that the interval min max,k kq q     is the domain of pseudo-feature 
objects kq  from the set X , where min

kq  and max
kq  are the minimum and 

maximum values of kq , respectively. Let the points ( ), 1m
k m k kq q m= + − ∆   be 

placed in the interval with step ( ) ( )max min 1k k kq q n∆ = − −  , where { }1, ,m n∈   
with 2n ≥ . The parameter n is an analogue of N and therefore is called the pa-
rameter of variety. 

Now we can clarify the concept of the index. The value s
km m=  is called the 

index feature k for object s, if ), , 1,s
k k m k mq q q +∈    . Then, the number of indices 

does not exceed Ms , and index 1m =  if mins
k kq q=  . For any n, the object s will 

be approximately described in the index space by the index vector 
( )T

1 , ,s s
Mkm m , and the combined sample will be represented by the matrix nQ  

of size Ms Mk⋅ . For the sequence 2,3,n = 
 we obtain a sequence of matrices 

{ }nQ . 
In these mappings, the initial data for the problem are significantly trans-

formed and boundaries of not quantitative features are become fuzzy. The on-
going changes could be illustrated by the example of the vector of an object with 
dissimilar features:  
( ) ( ) ( ) ( )T T T T, 21.7, 5,21.7, 5.1192031,892031, 11,75,red → → →     at 
consecutive steps: before quantization, after quantization, after randomization 
and after indexation. An object can receive these values if the number options of 
feature 1 are not less than 5 at 75n ≥ . 

3. Design Formulas 

It follows from the definition of index that s
km  is equal to the integer part value 

of s
k kq ∆  for any n, and hence is a random variable. In the general case, for 

each k, the group of objects of different classes with the same values of the or-
dered pair { },k m  falls within the interval ), , 1,k m k mq q +   . Taking into account 
the errors in the patterns, we introduce the assumption that it is possible to neg-
lect the difference of feature values for objects pair. According to this assump-
tion, the distribution of features in the domain will be piecewise constant on 
each interval ), , 1,k m k mq q +    and any object pair will match the index m. 

Then we can partition the combined sample into subsets called granules that 
contain objects of ordered pairs. Of particular interest is a subset of training 
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sample objects of a certain class, which we will call information granules. 
To calculate the composition of the granules, we establish on the set 

( ){ }1,s
kq s Ms∈  of partial order relations, at which the values of z

kq  on the axis 
object numbers ( )z z s=  will be arranged in non-decreasing order. The 
scheme for calculating indices and information granules of training sample ob-
jects for a feature varying from 12.5 to 15 at 60Ms t= =  is revealed in Figure 
2. It is shown that the composition of a granule has a stochastic nature. 

As a result of these transformations, the values of features will be measured on 
a single scale with a division value equal to one index. Therefore, the matrix nQ  
can be interpreted as an image of the combined sample, calculated by statistical 
modeling of its objects’ measurements. Now we are able to move on to analyzing 
the distribution of frequencies for the pair {𝑘𝑘,𝑚𝑚}. 

Let ,k ml  and ,
i
k ml  denote, respectively, the length of the granule { },k m  of 

objects of all classes of the training sample and only the class i. If no object of 
class i is in the interval m, then , 0i

k ml = , and by definition, the respective values 
of m are not indices. It is clear that , , ,

i i
k m k m k mg l l=  is the frequency of the in-

formation granules { },k m  of class i, and at the same time, it is the sample esti-
mate for the probability ,

i
k mp  of this granule as well as any of its objects. Ac-

cording to the problem statement, control and training samples belong to the 
single set. It follows that the objects of both samples have the same probability 

,
i
k mp  and frequency ,

i
k mg . 

Since the appearance of each of the Mk  features is an incompatible event, 
and these features form a complete group, the estimate of conditional probabili-
ty that the object s belongs to class i is equal to 

( ) , ,
1 1

1 1Mk Mk
s i i

i k m k m
k k

P s q q p g
Mk Mk

ω
= =

∈ ∈ = =∑ ∑ .               (1) 

From (1) it follows that ( )s
iP s q qω∈ ∈  equals the average frequency of in-

dex k
sm  for the object s of class i. This frequency plays the role of a summarized 

object characteristic that considers the totality of feature values. 
The estimation of the class of the object s is found using the obvious formula 

( ) ( )1,arg max s
s ii MiI P s q qω∈= ∈ ∈                     (2) 

The relation si  and sI  for the objects of the training and control samples, 
 

 
Figure 2. The scheme for calculating the indices and information granule { }, 4k  

with 8n = . 
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respectively, characterizes the algorithm’s ability to study and classify objects. 
The quality of teaching as a function of length of the training sample t is esti-
mated by overage error rates ( ),i t n

δ  for class i and by the overage rate for all 
classes ,t nσ . The classification accuracy is measured by the analogous frequen-
cies ( ),i t n

θ  and ,t nΣ  for the control sample objects. The calculated value of the 
class sI  corresponds to some n, at which an acceptable accuracy of the solution 
is achieved. 

4. Existence and Accuracy of the Solution 

We will consider the issue of convergence for the sequence of error rates. Let the 
granule { },k m  for a certain n contain an object s of the training sample of class 

si  and some object w. Then the following inequality is satisfied: 
0 s w

k k kq q≤ − ≤ ∆   is satisfied. If n →∞ , then the step 0k∆ →  and w s
k kq q=  . 

In addition, the matrix nQ  will be sparse, since an object falls into no more 
than Ms  from an infinite number of intervals, and for the remaining intervals 

, , 0i i
k m k ml g= = . 

In this case for 0α >  we get that w s= , since all the values of s
kq  will be 

different. It follows that s sI i=  and is achieved error-free training. If 0α = , 
the granule { },k m  can contain only objects for which w s

k kq q= . Since there 
cannot be two identical objects in a combined sample, this equality can be satis-
fied only for a narrow number of features. All the summands that define the av-
erage value of ,

i
k mg  for the object s will be greater than zero, while for an arbi-

trary object w all or only some of the summands are equal to zero. Here it is 
possible to have any relation average values of ,

i
k mg  for objects, and there is a 

risk of error. It is sufficient to take 0α >  to prevent this error. 
Classes can differ significantly in the convergence of error rates of learning 

( ),i t n
δ  (see Figure 3). The process of convergence of ,t nΣ  is illustrated in the 

graphs in Figure 4, which were calculated for the Abalone database for 1α = . 
To evaluate the results of calculations, we note here that the number of classes 

29Mi =  and, according to the UCI, the accuracies of solutions obtained by var-
ious classical methods were equal to 33% - 65%. 

 

 
Figure 3. The impact of the variety parameter n on the error rate of training ( ),i j n

δ  for 

the data set Glass at t Ms= . 
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Figure 4. The impact of the variety parameter n on the error rate of classification ,t nΣ  

for different lengths of the training sample t of data set Abalone at 1α = . 
 

Nevertheless, the high accuracy of training does not guarantee acceptable 
classification accuracy since training is the first step in determining the class. 
Within the second step, it is necessary to evaluate the accuracies of solutions for 
the control sample objects based on relations (1) and (2), according to which any 
object for each n is characterized by the frequency ,

i
k mg , if granules { },k m  ex-

ist. Otherwise, , 0i
k mg = . Evidently, the accuracy of classification depends on the 

intersection lengths of the index sets for the same features in the training and 
control samples. 

Here we face a problem of overtraining: if we restrict the value of n, it is poss-
ible to obtain a more accurate solution for the control sample, but the reliability 
of this result will be decreased because simultaneously the accuracy of learning 
will be lower. It is obvious that the simplicity of the algorithm reduces the com-
putational complexity and severity of this problem, as well as allows us to esti-
mate the effects of the characteristics of the matrix Q . 

The impact of the parameter 𝛼𝛼 can be observed in the example of the data set 
“Car evaluation”, where the variability of the data is low. Here objects are de-
scribed by six features of nominal and ordinal types, with each feature possess-
ing one of three or four values, and all objects of the same class having the same 
value for one of the features and only two variant values for other features. The 
task is complicated by the uneven distribution of the objects by class, since one 
class has 19 times more objects than the other does. Therefore, when 0α = , 
there are significant errors even for high values of ( ), 0.5Ms nn σ ≈ . The compu-
tational results for the case 1α = , given in Figure 5, show that even in the task 
with such “bad” data practically error-free training and classification are 
achieved. 

Now consider the joint impact of n and α  on the accuracy of solution. Let 
the objects 1s  and 2s  have the same value for feature 1 2s s

k kq q= . Randomiza-
tion should result in 1s

kq  and 2s
kq  belonging to different intervals of length 

k∆ , and these objects should be assigned different indices. Note that k∆  de-
creases with increasing n and ( )1 2

1 2

s s
k k s sq q v vα α− = − <  . It follows that to pre-

serve the randomization effect for large n, it is advisable to use larger values of 
α . 
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5. The Results of Solving Particular Tasks 

The information about data sets from the repository UCI is given in Table 1, 
where γ  is the ratio of the maximum to the minimum numbers of objects in 
different classes of the training sample. The tasks cover a wide range of values in 
terms of the numbers of objects (150-42121), features (3-16), classes (2-29), 
types of features (quantitative and mixed, including nominal, ordinal and integ-
er) and the degree of unevenness of the object distributions between classes of 
the training sample γ  (1-689). 

The algorithm of the method is based on the data grouping that predeter-
mines the decreasing influence of various kinds of outliers. Calculations have 
shown that the solution is stable for an infinite set of acceptable solutions: small 
oscillations of the parameters , tα  and n usually lead to insignificant changes 
in the error rate, and perceptible influence are rendered only by changes in n 
that are comparable with Ms . Therefore, for the parameter of variety, it is ad-
visable to consider a “dimensionless” and more stable characteristic n n Ms= . 

The calculations have confirmed that for sufficiently large n , the errors are 
reduced with increases in the values α  and n. For 2 3t Ms= , Table 1 shows 
 

 
Figure 5. The impact of the length of the training sample t of the data set Car evaluation 
on the error rate of classification ,t nΣ  with different values of the parameter of variety n. 
 
Table 1. Parameters of data sets. 

Data set Ms  Mk  Mi  Features γ  α  n  ,t nΣ  

Abalone 4177 8 29 mixed 689 1 1.6 0.069 

Adultb 42121* 14 2 mixed 3.2 10 1.5 0.034 

Breast Cancer 699 9 2 integer 1.9 1 6.9 0.01 

Car evaluation 1728 6 4 mixed 17.5 1 1.0 0.012 

Glass 214 9 6 quant. 8.5 1 4.2 0.029 

Haberman’s Survival 306 3 2 integer 2.8 1 13,1 0.116 

Irisa 150 4 3 quant. 1 0 4.0 0 

Letter Image  
Recognition 

20000 16 26 integer 1.1 1 2.6 0.076 

Wine a 178 13 3 quant. 1.5 0 2.3 0.016 

aObjects were numbered via a random number generator. b Objects with data errors are not considered. 
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the lower boundary of the value range of these parameters, under which the er-
ror rates are , 0.01t nσ ≤  and , 0.05t nΣ ≤ . 

The results were verified by 10-fold cross-validation, in which splits of com-
bined sample ,t nσ  and ,t nΣ  for each variant were calculated for , tα  and n , 
as listed in Table 1. It was found that all , 0t nσ = . The average error rates of 
classification over the splits, denoted by Σ , are provided in Table 1. 

From Table 1 it following that, in most cases, Σ  is smaller than the accepta-
ble rate of 0.05, but for Haberman’s Survival data set the norm is exceeded 2.3 
fold. This situation is caused by the fact that the data set has the lowest data va-
riety when the objects are described by three features of integer type and are di-
vided into two classes. To maintain high accuracy, this property was compen-
sated for by significantly increasing up n  to 13.1n = . Calculations have shown 
that increasing n  by 6.2%, 12.5% and 25% causes the error rate 0.116Σ =  to 
decrease to 0.089, 0.069 and 0.063, respectively. Note that the average error rate 
of currently used methods exceeds 18% [18]. 

This analysis can greatly simplify the process of solving practical problems, in 
which, instead of a control sample, a test sample is specified, for which the dis-
tribution of classes is unknown. Now, we can use tabulated values of α  and n  
as the first approximation, which is likely to be the final result. To verify this, 
from t objects of the training sample, we need to allocate β  objects (for exam-
ple, 2 3tβ = ) and use them directly for training; the remaining objects can be 
used to monitor the solution accuracy. 

Another important result was obtained by testing the method experimentally. 
A direct application of the above algorithm for the data set Adult gives the 
minimum values of , 0t nσ =  and , 0.24t nΣ =  at 2 3Msβ = . The relatively 
large number of errors can be explained by the fact that the variants of feature 
values are distributed very unevenly. In particular, one variant belongs to 92% of 
the objects, and each of the other options belongs to only 0.07% of objects, on 
average. In this case, because of the large total repeatability of objects with rare 
feature values, the probabilities of matching for pairs { },k m  of the training and 
control samples are decreased, which leads to an increased number of errors. 

To mitigate of noted effects of rare information, we will introduce the addi-
tional procedure of compression, or pre-granulation, which is also based on the 
above considerations about the data reliability. Now, the values s

kq  of corres-
ponding feature k are sorted in ascending order and divided into groups with the 
same feature values, which are identified by the sequence of variant numbers 

1,2, ,k kr j=  , where kj  is the number of feature variants. Then, we check 
whether the group with 1kr =  contains at least Msε ⋅  objects, and if not, 
then objects with 2kr =  are added to it, and the process continues until the 
condition is satisfied ( 0ε ≥  is design parameter). The value of s

kq  for all ob-
jects of the group, calculated in this way, is 1kr = . Similar calculations are per-
formed for subsequent values of kr  and kr . Obviously, in the general case 

k kj j≤ . 
After the additional transformation, the solution of task Adult has remained 

stable and errors are now closer to zero. The corresponding table data calculated 
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at 0.01ε = . Note that the error rates of 16 different solutions of the task, de-
rived from the well-known algorithms, are in the range 0.14 - 0.21 [18]. 

This procedure has proven effective in addressing a number of other data sets, 
for example, Letter Image Recognition. It can also be observed as a way to re-
duce the values of n  to reduce the computation time. 

6. Conclusions 

The paper proposes a methodology for solution classification problems, the core 
of which is an approximate calculation of the invariants of data matrix. The new 
approach implements the concepts of soft computing and granulation and is bi-
ologically inspired. In essence, it reduces to the transformation of all measured 
scale features, in which the values of features, called indexes, are defined ac-
cording to a single scale in the new units. 

Developed methodology is based on procedures of randomization and index-
ation of the data set (and, in some cases, also a pre-granulation procedure), 
which generate an infinite sequence of index matrices. These matrices are inva-
riants of the data matrix in relation to a class of objects. They provide error-free 
training and allow us to calculate the object class under the simplest formulas of 
total probability for any single type or mixed types of features. 

The proposed method differs from existing ones by the universality and sim-
plicity of the algorithm and, as a rule, almost an order of magnitude higher ac-
curacy. 

The obtained results go beyond the problem of classification and have inde-
pendent significance for the solutions of the problems of data analysis. It can be 
expected that the method will receive a hardware implementation, and its exten-
sion to multi-level data will lead to the development of effective image recogni-
tion systems and information retrieval. The application of the method does not 
require mathematical education, which increases its innovative potential. 
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