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ABSTRACT 

This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based 
on randomized sampling. A delay control system is converted into a unified state-space form. The numerical stability 
condition is developed and checked for sample points in the parameter space. These points are separated into stable and 
unstable regions by the decision function obtained from some learning method. The proposed method is very general 
and applied to a much wider range of systems than the existing methods in the literature. The proposed method is illus-
trated with examples. 
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1. Introduction 

Finding stabilizing regions for control systems in pa-
rameter space becomes important in recent years. Stabi-
lizing parameter regions will be instructive for controller 
tuning with greatest robustness or controller optimization 
with regard to other specific indexes. Most papers in the 
literature discuss about the stabilizing parameter re- 
gions for proportional-integral-derivative (PID) control-
lers. Wang et al. [1] designed a quasi-Linear Matrix Ine-
quality method to compute the stabilizing parameter re-
gions of multi-loop PID controllers, but it only dealt with 
systems with no time delays. Lee et al. [2-4] established 
some stability conditions by simple P or PI controllers 
for a class of unstable processes with time delays, but the 
application of their methods is confined to single-input 
single-output (SISO) systems whose transfer functions 
only have one zero. Nie et al. [5] gave a frequency 
method to calculate the loop gain margins of multivari-
able feedback system. Liu et al. [6] introduced a fast 
calculation approach for PI controller stable region based 
on D-partition method. Wang et al. [7] presented an ef-

fective graphical method to obtain exact P controller gain 
ranges for two input two output (TITO) systems with 
input time delay. However, this approach could not han-
dle systems with state-delays. Some other methods can 
be found in [8-13]. All the methods seek the solutions for 
the stabilizing parameter regions for limited classes of 
plants or controllers. 

In this paper, we design a general algorithm for deter-
mining stabilizing parameter regions for delay control 
systems based on randomized sampling. Each unknown 
parameter is assumed to follow the uniform distribution 
in a given range and a certain number of independent and 
identically distributed (i.i.d.) random sample points are 
generated in the parameter space based on the random-
ized algorithms [14]. Next, given a delay control system, 
we convert it into a unified state-space form. Efficient 
LMI stability criterion is developed for a control system 
with multiple delays in both input and state. Then each 
point in the parameter space is checked by the developed 
stability criterion. After that, these points are separated 
into stable and unstable regions by the decision function 
obtained from some learning method. The effectiveness 
of the proposed method is illustrated by simulation ex-
amples. 

*This research is funded by the Republic of Singapore’s National Re-
search Foundation through a grant to the Berkeley Education Alliance 
for Research in Singapore (BEARS) for the Singapore-Berkeley Build-
ing Efficiency and Sustainability in the Tropics (SinBerBEST) Pro-
gram. BEARS has been established by the University of California, 
Berkeley as a center for intellectual excellence in research and educa-
tion in Singapore. 

The rest of this paper is organized as follows. Section 
2 presents the idea of proposed method. Section 3 devel-
ops the stability criterion. Determining stabilizing pa-
rameter regions is discussed in Section 4. Section 5 gives 
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simulation examples and Section 6 concludes the paper. 

2. The Proposed Method 

We consider a unity feedback control system as shown in 
Figure 1. The plant may have some unknown parameters 
that may affect the system stability and the parameters of 
the controller are also needed to be designed. Hence, 
knowing stabilizing parameter regions is instructive for 
robustness analysis and design. Some methods [2-4] can 
give analytical solutions for stabilizing parameter regions, 
but these methods usually have many constraints and 
could only be applied to limited plants or controllers. 
Some numerical methods [11,12] also have some restric-
tions on system structures and their algorithms might be 
difficult to be implemented. The objective of this paper is 
to provide stabilizing parameter regions with a new ap-
proach which is totally different from the existing meth-
ods in this specific area. We illustrate the idea of our 
method with a simple example. 

We consider the model in [10] as follows, 

 
3 2

5 4 3 2

4 1
,

2 32 14 4 50

s s s
G s

s s s s s

  


    
 

with a PI controller 

  ,i
p

K
C s K

s
   

where pK  and iK  are unknown parameters. With the 
method in [10], the stabilizing parameter region is shown 
in Figure 2(a). 

The randomized algorithms have been applied to de-
sign robust controllers [14]. In their context, a fixed sin-
gle controller is obtained for an uncertain plant. The un-
certainty lies in some plant parameters. These parameters 
are sampled randomly to get a set of plants which repre-
sent and replace the original uncertain plant. One single 
controller (fixed controller parameters) is found to meet a 
performance measure such as H  for these sampled 
points. In our context, we want to find the entire regions 
of controller parameters which stabilize a plant. Fur-
thermore, the plant may also have some uncertain pa-
rameters such as delay. In the later case, we want to find 
the regions of combined parameter vector p from the 
controller and the plant which stabilize the control sys-
tem. We employ the idea of randomized sampling. Sup-
pose that each unknown parameter follows the uniform 
distribution in a given range, that is  10,15pK   , 

 10,40iK   and they distribute uniformly in their re-  
 

 

Figure 1. Unity feedback control system. 

 
(a) 

 
(b) 

Figure 2. Stabilizing parameter region for the example in 
[10]. (a) Result in [10]; (b) Result with the proposed method.  
 
spective range. Then a certain number of i.i.d. random 
points are sampled in the parameter space. Repeated 
samples are omitted. According to the randomized algo-
rithms [14], the number of points, N, should satisfy 

2

1 2
ln ,

2
N


                 (1) 

where we set a priori  0,1   as the accuracy parame- 
ter and  0,1   as the confidence level. Both   and 
  are usually taken small values, say less than 0.1. We 
choose 0.02   and 0.05   for our example. It could 
be calculated from (1) that  and then we choose 4611N 

5000N  . Throughout this paper,  is used for 
all simulation cases. 

5000N

Next, we check whether each of these points could 
stabilize the system by some stability criterion. The cha- 
racteristic equation of the closed-loop system is 

   
   

6 5 4 3

2

2 3 4 14

4 4 50 0.

p p i
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We can simply calculate the closed-loop poles for sta-
bility testing. If a point of ,p iK K   could stabilize the 
system, it is labeled as “stable”. Otherwise, if a point 
could not stabilize the system, it is labeled as “unstable”. 
However, calculating the closed-loop poles is not possi-
ble for systems with time delays. In this case, we present 
a Linear Matrix Inequality (LMI) stability criterion 
which will be discussed in next section. 

Lastly, the points in the parameter space are divided 
into stable and unstable regions by the decision function 
obtained from some learning method, such as the Neural 
Networks and the Support Vector Machines (SVM) [15]. 
We choose SVM as the classification tool and employ 
the LibSVM [16] kit with its arguments “-t” = 2 (Radial 
Basis Function (RBF) as kernel) and “-c” = 1,000,000 
(penalty parameter) to solve the problem. The resulting 
stabilizing parameter region is shown in Figure 2(b). It 
is seen from Figures 2(a) and (b) that the stable region 
from the proposed method is almost same as that in [10]. 
Hence, our method is effective and straightforward. 

3. Stability Criterion 

As stated in previous section, it is impossible to calculate 
the closed-loop poles for systems with time delays. 
Therefore, in this section, we present an effective algo-
rithm for stability testing which can be applied to a much 
wider range of systems. Given a delay system with PI or 
PID controller, we first convert it into a unified state- 
space form, which is a generalization of the method in 
[17] where a delay-free system is considered. Next, we 
present a conversion of delay systems with general dy-
namic controllers. Lastly, we present an LMI stability 
criterion for the unified state-space form. 

3.1. PI Control for Input-Delay Plant 

Consider a plant: 

     
   

,

,

x t Ax t Bu t d

y t Cx t

  





          (2) 

with a PI controller: 
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Let 
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so that 

   
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The vector  z t  can be viewed as a new state vari-
able of the system, whose dynamics is governed by 

     
0

,
0 0

A B
z t z t u t d

C

   
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   

         (3) 

where 

     

   
     

 
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z t z t

 
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   (4) 

Let  1 0C C  and  2 0C  I . Equation (4) can 
be rewritten as 

     1 1 2 2 ,u t F C F C z t   

or 

    1 1 2 2 .u t d FC F C z t d            (5) 

Substituting (5) into (3) yields 

    1 ,z t Az t A z t d               (6) 

where 

0
,

0

A
A

C

 
  
 

  

and 

 1 1 1 2 .
0

B
2A FC F C

 
  
 

  

When (2) is with a PID controller  

       
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0

d
d

d

t y t
u t F y t F y F

t
    ,  

the conversion could not be proceeded. This is because 
 u t  depends on  u t d  since  
     dy t

d
CAx t CBu t d

t


 

   . Then the control signal  

cannot be expressed only by state vectors as (4) or (5). In 
such a case, we could use a practical D controller: 

,
1

d

s
s

N


 

where d  is chosen by users to limit derivative gain on 
higher frequencies. Then, the practical PID controller 
falls in a format of general dynamic controller, which is 
handled in Section 3.3 below. 

N

3.2. PID Control for State-Delay Plant 

Consider a plant: 

      
   

1 ,

,

x t Ax t A x t d Bu t

y t Cx t

   





      (7) 
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with a PID controller: 

       
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d
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Let  and    1z t x t    2
0

d
t

z t y    . We have 
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Combining (7) and the definition of  yields z
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Denoting  1 0C C ,  2 0C I ,  3 0C CA ,  

 1 0dC CA ,    1 1y t C z t ,    2 2y t C z t  and  
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Then (7) is equivalent to 
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i.e., 
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which is also in the form of (6) with  A A BFC   
and  1 1 dA A BFC  . 

Remark 1. The systems (2) and (7) only contain one 
time delay. However, it would not be difficult to make 
conversion for systems with multiple time delays, which 
is omitted here for brevity. 

The previous two cases only tackle delay systems with 
PI or PID controller whose parameters appear in a linear 
form. In practical control systems, the controllers may be 
of higher orders and the parameters of controllers may 
also appear in a nonlinear form, such as the lead-lag 
compensators [18]. Thus, we consider the conversion for 
delay systems with general dynamic controller as fol-
lows. 

3.3. General Dynamic Controller for a Plant with 
Multiple Delays in Input and State 

Consider a plant (9)  
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whose minimal state-space realization can be expressed 
by 
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Combining the above expressions gives (10) 
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1h

       
     
   
 

1 1 1 1 1 1

1 2 1 1

1 2 1 1

2 .

h h

c c c

c h l c h l

l c h l

z t Az t A z t d A z t d

BD Cz t BC z t B D Cz t d

B C z t d B D Cz t d

B C z t d



 



     

   

    

 

 


 (10) 
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Remark 2. The system (6) is a special case of (11). 

3.4. The LMI Stability Criterion for a System 
with Multiple Delays in Input and State 

Theorem 1. The system (11) is asymptotically stable if 
there exist symmetric positive definite matrices , 
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1, ,P Q 

kQ 1, , kW W
where 

0,
  

   
             (12) 

,c c

c c

A BD C BC
A

B C A

 
  
 

  
where (13) holds, 

 

T
1 1 2 2

=1 =1

1 1

2 2

0 0
.

0

k k

i i k k
i i

k k

A P PA Q W PA W PA W PA W

Q W

Q W

Q W

       
 
   
       
 
   
 

      

     



 





k

                  (13) 

T T
1 1

T T
1 1 1 1

T T
1 1

,

k k

k k

k k k

d A W d A W

d A W d A W

d A W d A W

 
 
 

   
 
 
  

 
 

  
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 and 

1

2

0 0

.
0

k

W

W

W

 
 
  

   
  

     



 


 

Here and in the sequel, a block induced by symmetry is denoted by an ellipsis *. 
Proof. Define the Lyapunov functional as 

              
0

T T T

=1 =1

d d
i i

t tk k

i i i
i it d d t

V z t z t Pz t z s Q z s s d z s W z s s


d .
  

  
      

  
   







i

i

 

The derivative of  is  V z t

                    

      

T T T T

=1 =1

2 T T

=1 =1

d .
i

k k

i i i
i i

tk k

i i i i
i i t d

V z t z t Pz t z t Pz t z t Q z t z t d Q z t d

d z t W z t d z sW z s s


     

 
    

 

 

  

  

   
 

It follows from Jensen’s inequality [19] that 

           TT d .
i

t

i i i i
t d

d z s W z s s z t z t d W z t z t d


                

Then we have (14). 
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                

         

         
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=1 =1

T
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=1 =1 =1

T
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.
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i i i i
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i i i i
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i i i i i i
i i i

k

i i i
i

V z t z t P Az t A z t d Az t A z t d Pz t

z t Q z t z t d Q z t d

d Az t A z t d W Az t A z t d

z t z t d W z t z t d

              

   

               

          

 

 

  



   

    


              (14) 

 
Let 

       
TT T T

1 ,kw t z t z t d z t d      

and 

1 .kA A A    
    

One sees 

        T 2 T

=1

.
k

i i
i

V z t w t d W w t
      

  

By Schur complement, (12) guarantees 

 2 T

=1

0.
k

i i
i

d W
      

  

Therefore, the system (11) is asymptotically stable. 

4. Stabilizing Parameter Regions 

Each point in the parameter space corresponds to a sam-
ple of the parameter vector p, which is denoted by i , 

. We check whether each of these points could 
stabilize the system by the developed LMI stability crite-
rion. If a point i  could stabilize the system, it is la-
beled as “stable”. Otherwise, if i  could not stabilize 
the system, it is labeled as “unstable”. 

p
1, ,i   N

p
p

The points in the parameter space can be separated 
into stable and unstable regions by the decision function 
obtained from some learning method. In this paper, we 
choose SVM as the learning method due to its superior 
performance in a wide range of applications. Support 
Vector Machines (SVM), which was first introduced by 
Vapnik [20], has shown many attractive features in the 
fields of small sample, non-linear and high dimensional 
pattern recognition [21]. It can be promoted to classifica-
tion and regression problems. It employs the Structural 
Risk Minimization principle [21]. The goal of SVM is to 
find a decision function that minimizes the structural risk, 
which could be converted into a quadratic programming 
problem. In addition, the solution of an SVM problem is 
a globally optimal solution [22]. 

In this paper, SVM is employed to solve a binary 
classification problem. Given the data set  

 1 2, , , NS S S S
p

 with , where 

i  is a point in the parameter space and  (stable) 
or −1 (unstable) is the label of the point, SVM is to solve 
the following problem: 

 , , 1,2, ,i i iS p y i  
1iy 
N

   T

1 1 1

1

1
max ,

2

subject to 0,0 ,

N N N

i i j i j i
i i j

N

i i i
i

jy y p p

y C


    

 

  





  

 


 

where   is the Lagrange multiplier,  is the 
penalty parameter which can be set by users and 

0C 
    is 

a mapping from  to a higher dimensional space. i

There have already been many SVM tool kits that can 
be used to solve the classification problems. LIBSVM 
[16] is a simple and effective one developed by Chih-Jen 
Lin’s research group. Throughout this paper, the 
LibSVM kit is employed to do simulation with proper 
arguments. 

p

5. Simulation Examples 

In this section, four examples are presented to illustrate 
the effectiveness of the proposed method. 

Example 1. The analytical method in [2] cannot deal 
with a process containing multiple zeros, while our 
method does not have this constraint. Consider the plant: 

    
   

0.4 1 0.2 1
e ,

1 0.5 1 0.1 1
dss s

G s
s s s

 


  
 

with a P controller   2C s kI . This control system is 
converted to the form in (11) with 

1

11 8 20

1 0 0 ,

0 1 0

1.6 12 20

0 0 0

0 0 0

A

k k k

A

  
   
  
  

.

 
   
  





 

Let  ,p d k . Performing our method with the 
LibSVM arguments “-t” = 2 and “-c” = 100, the stabiliz-
ing parameter region is obtained and shown in Figure 3. 
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Figure 3. Stabilizing parameter region for Example 1. 
 

Example 2. The graphical method in [7] cannot deal 
with a process containing state-delays. However, our 
method does not have this restriction. Consider the plant: 

   

   

     

12.5 25

1 0

0 10 1
,

1.5 0 0

0 25 ,

x t x t

x t d u t

y t x t

   
  
 

           
   

 




   (15) 

with a P controller . This control system is 
converted to the form in (11) with 

u k  y

1

12.5 25 25
,

1 0

0 10
.

1.5 0

k
A

A

   
  
 
 

  
 




 

Let  ,p d k . Performing our method with “-t” = 2 
and “-c” = 1000, the stabilizing parameter region is 
obtained and shown in Figure 4. 

Example 3. Consider the plant (15) with 0.5d   
under the controller 

  .
a

C s
s b




               (16) 

Note that b appears in a nonlinear fashion, which is 
different from parameters of PID controllers. We can 
rewrite (16) as 

     
   

,

.

v t bv t y t

u t av t

  





 

This control system is converted to the form in (11) 
with 

 

Figure 4. Stabilizing parameter region for Example 2. 
 

1

12.5 25 0 10 0

1 0 0 , 1.5 0 0

0 25 0 0 0

a

A A

b

 
.

   
    
   
     

 



 

Let  ,p b a . Performing our method with “-t” = 2 
and “-c” = 1000, the stabilizing parameter region is ob-
tained and shown in Figure 5. 

Example 4. The proposed method also works well 
with a high-dimensional parameter space. Consider the 
plant: 

   

  

     

1 2

12.5 25

1 0

0 10 1
,

1.5 0 0

0 25 ,

x t x t

x t d u t d

y t x t

   
  
 

           
   

 




  

with a controller: 

    
   

,

.

v t bv t y t

u t v t

  
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This control system is converted to the form in (11) 
with 

1

2

12.5 25 0 0 10 0

1 0 0 , 1.5 0

0 25 0 0 0

0 0 1

and 0 0 0 .

0 0 0

A A

b

A

    
    
   
     

 
   
  

 




 

Let  1 2, ,p d d b . Performing our method with “-t” = 
2 and “-c” = 1000, the stabilizing parameter region is 
obtained and shown in Figure 6. 
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Figure 5. Stabilizing parameter region for Example 3. 
 

 

Figure 6. Stabilizing parameter region for Example 4. 
 

The above examples have well illustrated the effec-
tiveness of the proposed method which can be applied to 
a much wider range of systems than the existing methods 
in the literature. 

6. Conclusions 

This paper proposes a new and general method for de-
termining the stabilizing parameter regions for delay 
control systems. We first take a certain number of ran-
dom sample points in the parameter space. Next, we rep-
resent a delay control system in a unified state-space 
form. Then the numerical stability condition is developed 
and checked for sample points in the parameter space. 
These points are divided into two classes according to 
whether they can stabilize the system. The stabilizing 
parameter regions could be well defined by the decision 

function obtained from some learning method. The effec-
tiveness of the proposed method is well illustrated with 
examples. The proposed method does not have essential 
constraints and has a wide range of applications. Note 
that our method could be applied to a higher-dimensional 
parameter space, though the stabilizing parameter regions 
are difficult to be shown by graphics. 

It should be pointed out that the presented LMI stabil-
ity criterion is only sufficient since it is based on Lya- 
punov theory. A sufficient and necessary stability crite- 
rion and the additional potential values of the proposed 
method are to be investigated in future works.  

REFERENCES 
[1] Q. Wang, C. Lin, Z. Ye, G. Wen, Y. He and C. Hang, “A 

Quasilmi Approach to Computing Stabilizing Parameter 
Ranges of Multi-Loop Pid Controllers,” Journal of Proc- 
ess Control, Vol. 17, No. 1, 2007, pp. 59-72.  
doi:10.1016/j.jprocont.2006.08.006 

[2] S. Lee and Q. Wang, “Stabilization Conditions for a Class 
of Unstable Delay Processes of Higher Order,” Journal of 
the Taiwan Institute of Chemical Engineers, Vol. 41, No. 
4, 2010, pp. 440-445. doi:10.1016/j.jtice.2010.03.001  

[3] S. Lee, Q. Wang and C. Xiang, “Stabilization of All-Pole 
Unstable Delay Processes by Simple Controllers,” Jour- 
nal of Process Control, Vol. 20, No. 2, 2010, pp. 235-239.  
doi:10.1016/j.jprocont.2009.05.005 

[4] S. Lee, Q. Wang and L. Nguyen, “Stabilizing Control for 
a Class of Delay Unstable Processes,” ISA transactions, 
Vol. 49, No. 3, 2010, pp. 318-325. 
doi:10.1016/j.isatra.2010.03.006 

[5] Z. Nie, Q. Wang, M. Wu and Y. He, “Exact Computation 
of Loop Gain Margins of Multivariable Feedback Sys- 
tems,” Journal of Process Control, Vol. 20, No. 6, 2010, 
pp. 762-768. doi:10.1016/j.jprocont.2010.04.006 

[6] L. Jinggong, X. Yali and L. Donghai, “Calculation of Pi 
Controller Stable Region Based on d-Partition Method,” 
2010 International Conference on Control Automation and 
Systems (ICCAS), Gyeonggi-do, 27-30 October 2010, pp. 
2185-2189.  

[7] Q. Wang, B. Le and T. Lee, “Graphical Methods for 
Computation of Stabilizing Gain Ranges for Tito Sys- 
tems,” 2011 9th IEEE International Conference on Con- 
trol and Automation (ICCA), Santiago, 19-21 December 
2011, pp. 82-87.  

[8] Q. Wang, Y. He, Z. Ye, C. Lin and C. Hang, “On Loop 
Phase Margins of Multivariable Control Systems,” Jour- 
nal of Process Control, Vol. 18, No. 2, 2008, pp. 202-211.  
doi:10.1016/j.jprocont.2007.06.004 

[9] M. S¨oylemez, N. Munro and H. Baki, “Fast Calculation 
of Stabilizing Pid Controllers,” Automatica, Vol. 39, No. 
1, 2003, pp. 121-126.  
doi:10.1016/S0005-1098(02)00180-2 

[10] N. Tan, I. Kaya, C. Yeroglu and D. Atherton, “Computa- 
tion of Stabilizing Pi and Pid Controllers Using the Sta- 
bility Boundary Locus,” Energy Conversion and Man- 

Copyright © 2013 SciRes.                                                                                JILSA 

http://dx.doi.org/10.1016/j.jprocont.2006.08.006
http://dx.doi.org/10.1016/j.jtice.2010.03.001
http://dx.doi.org/10.1016/j.jprocont.2009.05.005
http://dx.doi.org/10.1016/j.isatra.2010.03.006
http://dx.doi.org/10.1016/j.jprocont.2010.04.006
http://dx.doi.org/10.1016/j.jprocont.2007.06.004
http://dx.doi.org/10.1016/S0005-1098(02)00180-2


Randomized Algorithm for Determining Stabilizing Parameter Regions for General Delay Control Systems 

Copyright © 2013 SciRes.                                                                                JILSA 

107

agement, Vol. 47, No. 18, 2006, pp. 3045-3058. 
doi:10.1016/j.enconman.2006.03.022 

[11] B. Fang, “Computation of Stabilizing Pid Gain Regions 
Based on the Inverse Nyquist Plot,” Journal of Process 
Control, Vol. 20, No. 10, 2010, pp. 1183-1187.  
doi:10.1016/j.jprocont.2010.07.004 

[12] E. Gryazina and B. Polyak, “Stability Regions in the Pa- 
rameter Space: D-Decomposition Revisited,” Automatica, 
Vol. 42, No. 1, 2006, pp. 13-26.  
doi:10.1016/j.automatica.2005.08.010 

[13] K. Saadaoui, S. Testouri and M. Benrejeb, “Robust Stabi- 
lizing First-Order Controllers for a Class of Time Delay 
Systems,” ISA transactions, Vol. 49, No. 3, 2010, pp. 277- 
282. doi:10.1016/j.isatra.2010.02.001 

[14] G. Calafiore, F. Dabbene and R. Tempo, “Research on 
Probabilistic Methods for Control System Design,” Auto- 
matica, Vol. 47, No. 7, 2011, pp. 1279-1293.   
doi:10.1016/j.automatica.2011.02.029 

[15] T. Hastie, R. Tibshirani and J. H. Friedman, “The Ele- 
ments of Statistical Learning: Data Mining, Inference, and 
Prediction,” Springer, New York, 2009. 
doi:10.1007/978-0-387-84858-7 

[16] C. C. Chang and C. J. Lin, “LIBSVM: A Library for Sup- 
port Vector Machines,” ACM Transactions on Intelligent 
Systems and Technology (TIST), Vol. 2, No. 3, 2011, p. 
27. doi:10.1145/1961189.1961199  

[17] F. Zheng, Q. Wang and T. Lee, “On the Design of Multi- 
variable PID Controllers via LMI Approach,” Automatica, 
Vol. 38, No. 3, 2002, pp. 517-526.  
doi:10.1016/S0005-1098(01)00237-0 

[18] G. Franklin, J. Powell, A. Emami-Naeini and J. Powell, 
“Feedback Control of Dynamic Systems,” , Vol. 3, Addi- 
son-Wesley, Reading, 1994. 

[19] K. Gu, V. Kharitonov and J. Chen, “Stability of Time- 
Delay Systems,” Birkhauser, Boston, 2003. 
doi:10.1007/978-1-4612-0039-0 

[20] V. Vapnik, “The Nature of Statistical Learning Theory,” 
1995. 

[21] S. R. Gunn, “Support Vector Machines for Classification 
and Regression,” ISIS Technical Report, Vol. 14, 1998. 

[22] P. H. Chen, C. J. Lin and B. Schölkopf, “A Tutorial on ν- 
Support Vector Machines,” Applied Stochastic Models in 
Business and Industry, Vol. 21, No. 2, 2005, pp. 111- 
136. 

 

 

http://dx.doi.org/10.1016/j.jprocont.2010.07.004
http://dx.doi.org/10.1016/j.automatica.2005.08.010
http://dx.doi.org/10.1016/j.isatra.2010.02.001
http://dx.doi.org/10.1016/j.automatica.2011.02.029
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1016/S0005-1098(01)00237-0
http://dx.doi.org/10.1007/978-1-4612-0039-0

