
Journal of Intelligent Learning Systems and Applications, 2012, 4, 274-278
http://dx.doi.org/10.4236/jilsa.2012.44028 Published Online November 2012 (http://www.SciRP.org/journal/jilsa)

Subgraph Matching Using Graph Neural Network

GnanaJothi Raja Baskararaja, MeenaRani Sundaramoorthy Manickavasagam

Department of Mathematics, V. V. Vanniaperumal College for Women, Virudhunagar, India.
Email: gnanajothi_pcs@rediffmail.com, smmeenarani@gmail.com

Received May 4th, 2012; revised August 1st, 2012; accepted August 8th, 2012

ABSTRACT

Subgraph matching problem is identifying a target subgraph in a graph. Graph neural network (GNN) is an artificial
neural network model which is capable of processing general types of graph structured data. A graph may contain many
subgraphs isomorphic to a given target graph. In this paper GNN is modeled to identify a subgraph that matches the
target graph along with its characteristics. The simulation results show that GNN is capable of identifying a target sub-
graph in a graph.

Keywords: Subgraph Matching; Graph Neural Network; Backpropagation; Recurrent Neural Network;

Feedforward Neural Network

1. Introduction

In many practical and engineering applications the un-
derlying data are often represented in terms of graphs.
Graphs generally represent a set of objects (nodes) and
their relationships (edges). In an image, nodes represent
the regions of the image that have same intensity or color,
and the edges represent the relationship among these
regions.

Subgraph matching has a number of practical applica-
tions such as object localization and detection of active
parts in a chemical compound. Subgraph matching is
mainly analyzed in object localization problem. For ex-
ample in military areas to identify a particular object, say
tank from a satellite photograph, the whole area can be
converted into a graph with nodes having labels repre-
senting color, area, etc. of the region. The subgraph which
represents a tank can be made identified by subgraph ma-
tching. The suspected area to which a tank belongs can
be restricted and the corresponding restricted graph can
be considered for identification.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,
and G. Monfardini have proposed a GNN structure which
can be considered as an extension of recurrent neural net-
work (RNN) to process very general types of graphs. The
GNN model implements a function  that maps a graph
G into an m-dimensional Euclidean space. The function
depends on the node, so that the classification depends
on the properties of the node. F. Scarselli, M. Gori, A. C.
Tsoi, M. Hagenbuchner, and G. Monfardini have ap-
plied GNN to different types of problems such as
Mutagenesis problem [1], subgraph matching problem

[1], Clique problem [2], Half Hot problem [2], and Tree
depth problem [2]. A. Pucci, M. Gori, M. Hagenbuchner,
F. Scarselli, and A. C. Tsoi [3] have applied GNN to the
movie lens data set and have discussed the problems and
limitations encountered by GNN while facing this par-
ticular practical problem. A comparison between GNN
and RNN is made by V. Di Massa, G. Monfardini, L.
Sarti, F. Scarselli, M. Maggini, and M. Gori [4] and they
have shown that problem GNNs outperforms RNNs in an
experimental comparision on an image classification.

In the subgraph matching problem discussed by F.
Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.
Monfardini [1], the goal of the problem is to identify all
the nodes of a larger graph which also belong to the con-
sidered subgraph. In this paper, the trained GNN is iden-
tifying a subgraph that matches the target graph along
with its characteristics.

The structure of the paper is organized as follows:
Section 2 describes GNN in the linear case, Section 3
explains subgraph matching problem, Section 4 gives the
proposed algorithm for generating the graphs and identi-
fying the subgraph in the training data. Experimental
results and discussion are given in Section 5.

2. Graph Neural Networks

A graph G = (V,E), where V is a set of points called
nodes, and E is a collection of arcs connecting two nodes
of V. Let ne[n] be the set of nodes connected to the node
n by arcs in E. Figure 1 represents example graph with 5
nodes. The nodes of G are attached with random label

c
nl R . A state vector s

nx R is attached to each node n,

Copyright © 2012 SciRes. JILSA

Subgraph Matching Using Graph Neural Network 275

which represents the characteristics of the node (i.e. adja-
cent nodes, degree, label etc.). The state vector of a node
with dimension s is computed using a feedforward neural
network called Transition network which implements a
local transition function fw.

    , ,n w n ne n ne nx f l x l 


 (1)


 

, ,
u ne n

h l x lw n u u


  (2)

For each node n, hw is a function of the state, label of
the neighboring node and its own label. Each node is
associated with a feedforward neural network. Number
of input patterns of the network depends on its neighbors.
The hw is considered to be a linear function. When

,   ,, ,w n u u n u u nh l x l A x b  s
nb R is defined as the out-

put of feed forward neural network called bias network
which implements w , ,

,n u sxs

: c sR R  n w nb l
A R is defined as the output of the feed forward

neural network called forcing network which implements
,

22: c s s
w R R  

    , resize , ,n u w n u u
sxne

A l x l
n

 

where and resize operator allocates s2 elements
in the output of forcing network to a s × s matrix.

 0,1

Let x, l denote the vector constructed by stacking all
the states and all the node labels respectively of the graph.
Equation (1) can be written as  ,w x F x l

 

. Banach
fixed point theorem ensures the existence and the uni-
queness of solution of Equation (1) in the iterative
scheme for computing the state   1 ,wx t F 

.

x t l



,
where x(t) denotes the tth iteration of x. Thus the states
are computed by iterating

n w n ne n ne n This computation is
interpreted as a recurrent network that consists of units
namely the transition networks which compute fw. The
units are being connected as per graph topology.

       1 , ,x t f x t x l 

The output of each node of a graph is produced by a
feedforward neural network called output network which
takes as input the stabilized state of the node generated
by the recurrent network and its label. For each node n,
the output on is computed by the local output function gw
as . Figures 2 and 3 represent output net-
work and graph neural network correspondingly for the
example graph.

 ,n w n no g x l

3. Subgraph Matching Problem

The subgraph matching problem is a computational task
in which two graphs G and H are given as input, and one
must determine whether G contains a subgraph that is
isomorphic to H. In Figure 4, a graph G and a target
graph H which is to be identified in G is given. H. Bunke
[5] has demonstrated applications of graph matching by

l 1

l 2

l 3 l 4

l 5

Figure 1. Example graph.

ln(1)

ln(d)

xn(1)

xn(s)

1(bias)

1

h

1

.

.

.

.

.

.

.

.

.

bias

Figure 2. Output network.

giving examples from the fields of pattern recognition
and computer vision. O. Sammound, C. Solnon, and K.
Ghedira [6] have proposed ant colony optimization algo-
rithm for solving graph matching problems and have
compared with greedy algorithm approach on graph
matching problems. D. Eppstein [7] has solved the sub-
graph isomorphism problem in planar graphs in linear
time, for any pattern of constant size applying dynamic
programming. C. Schellewald and C. Schnorr [8] have
presented a convex programming approach for subgraph
matching.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,
and G. Monfardini [1] have used GNN to identify all
nodes of subgraphs in larger graph which are isomorphic
to target graph. In Figure 4, for the graph G a single in-
put pattern is considered. As the graph G contains four
subgraphs isomorphic to H, the GNN will identify all the
nodes which are used to form the target subgraph. If this
pattern is used for training or testing the GNN, the ex-
pected output is a vector (0 1 1 1 1 1 1 0 1 1).

In the proposed work, as the graph contains four sub-
raphs isomorphic to H, four different input patterns are g

Copyright © 2012 SciRes. JILSA

Subgraph Matching Using Graph Neural Network

Copyright © 2012 SciRes. JILSA

276

l1,x2, l2
l1,x5, l5

l2,x1, l1
l2,x3, l3

l2,x4, l4

 l3,x2, l2
 l3,x4, l4

 l3,x5, l5

l4,x2, l2
l4,x3, l3

l4,x5, l5

…

fw

fw

fw

fw

fw

fw

fw

fw

fw

fw

fw

fw

fw

fw

fw

fw

gw

gw

gw

gw

l1

l2

l3

l4

O1

O2

 O3

 O4

…

…

…

…

fw fw fw fw gw

O5
l5

l5,x1, l1

l5,x3, l3
l5,x4, l4

Figure 3. Graph neural network.

5. Find all possible nCm combinations of the n nodes
of the graph G that form the subgraph H. For each possi-
ble combination, 8

3

7

4

5

2

6

1

910

G

1

2 5

4 3

H

1) Label the m nodes of the graph G by the label given
to the nodes of H and the target of the corresponding
nodes as 1.

2) Label the remaining n-m nodes with different ran-
dom numbers and their corresponding target as 0.

(a) (b)
4.2. GNN Training

Figure 4. Subgraph matching.
6. Initially assign the state vector of each node as zero

vector.

generated. In each input pattern, a subgraph isomorphic
to H is assigned node labels corresponding to H. Training
or testing phase of GNN identifies nodes of a subgraph
isomorphic to H for every input pattern. For the graph G
expected output of the input pattern are (0 1 1 1 1 0 0 0 0
1), (0 1 0 0 1 1 0 0 1 1), (0 0 1 1 1 0 1 0 0 1), and (0 0 0 0
1 1 1 0 1 1).

7. Generate bias network with c input neurons, h hid-
den neurons, and s output neurons.

8. Generate single hidden layer forcing network with
2*c + s input neurons, h hidden neurons, and s*s output
neurons.

9. Generate output network with c + s + 1 input neu-
rons, h hidden neurons and 1 output neuron.

4. Training Algorithm 10. Assign weights randomly for all the network from
(0,1). 4.1. Preprocessing

11. Calculate output of the Transition network and bias
network. 1. Generate connected graphs randomly with n number

of nodes say 1, 2 ··· n. 12. Compute state vector for each node of the graph
using Equation (2). 2. Select a subgraph H with m nodes which is to be

identified in the graph G. 13. Repeat steps 11 and 12 until the state vector of
each node is stabilized. 3. Label each of the m nodes of the subgraph H from a

set of random numbers. 14. Calculate output of the output network by feeding
the stabilized states and label of the node as input and
then calculate mean squared error.

4. Introduce the subgraph H into the generated graph
G to assure G is with at least one subgraph H.

Subgraph Matching Using Graph Neural Network 277

15. Weights of all the networks are updated using back-
propagation technique namely Generalized Delta rule.

16. Repeat steps 11 to 15 until desired accuracy is ob-
tained.

5. Results and Discussion

The GNN model is developed using Matlab code. The
network is trained and tested to match the subgraph on 5
nodes with graphs of 6 nodes to 10 nodes. Graphs are
generated randomly with fixed number of nodes (n).
Each pair of nodes in the graph are connected with some
probability ( = 0.2). Each graph is checked for connec-
tivity. If not connected, random edges between non ad-
jacent nodes are added until the graph becomes con-
nected. Select a random graph H on 5 nodes that is to be
matched with the generated graph G. Label the vertices
of H randomly from 20 to 30. The generated graph G
may or may not have the subgraph H in it. A subgraph H
is included in the generated graph G to assure the exis-
tence of the subgraph in G. A graph G may have more
copies of H in it. They are identified by considering all
possible nCm combinations of the nodes in G. The sub-
graph H may be present with different orientations in G.
They are identified by considering all permutations of a
possible m combination of the nodes of G. For all identi-
fied combinations the corresponding nodes of G are as-
signed the labels of the nodes of H and the target for
these nodes are assigned 1. The remaining nodes are la-
beled with random numbers from 1 to 15 and the target
for these nodes are assigned 0. For all possible combina-
tion of n and m, each combination corresponding to a
subgraph is taken as a separate input pattern and p de-
notes the number of input patterns.

In the example graph of Figure 4, a permutation 2 9 6
5 10 among the numbers given by the combination 2 5 6
9 10 form the subgraph given by H. The labels (20, 25,
21, 27, 24) (say) given to the nodes of H are correspond-
ingly assigned to the nodes 2, 9, 6, 5, 10 of G. The cor-
responding target vector of G is (0 1 0 0 1 1 0 0 1 1).
Another permutation of this combination namely 2, 10, 5,
6, 9 also forms the subgraph given by H and the label
given to these nodes are 20 to node 2, 25 to node 10, 21
to node 5, 27 to node 6 and 24 to node 9. The corre-
sponding target vector is also (0 1 0 0 1 1 0 0 1 1). Hence,
the same combination forms different input patterns
though the target vector is same.

The transition function hw and the output function gw
are implemented by three layered neural networks with 5
hidden neurons. Sigmoidal activation function was used
in the hidden and output layers of the network. This ex-
periment is simulated for 5 different runs. In every run
different p input patterns are generated and is used for
training and testing, but first 30 patterns are considered

for validation. In this experiment, label dimension (c) is
considered as 1 and state dimension as 2. Termination
condition is fixed as mean squared error 0.1. The weights
of the networks are initialized randomly from (0, 1).
Value of  used in the function of the transition network
is randomly chosen between 0 and 1. When the value is
more than 0.5, there is the possibility of dividing by zero
in calculating the state vector xn. Hence  is set as 0.005.
The learning rate and momentum used in the generalized
delta training algorithm are 0.1 and 0.01 respectively.
The learning rate and parameter values are fixed by trial
and error. The wrongly chosen values made the training
diverge. In each run, the number of input patterns varied.
The accuracy in terms of percentage is obtained for mean
squared error value less than 0.1. Number of graphs and
number of nodes of the graphs considered on each run
and obtained results are tabulated in Table 1. The ex-
perimental results show that the time taken for conver-
gence increased when the number of input patterns in-
creased. Experimental results show that more than 96.5%
of the graphs are identified correctly on each run.

6. Conclusion

GNN is modeled to find the desired subgraph with any
orientation in a graph. Label, and adjacency of the nodes
are used to represent the nodes of a graph as input to
GNN. From all possible combinations and permutation

Table 1. Accuracies obtained for different nodes in G ma-
tching with 5 node graph.

N
No. of
Graphs

No. of
input

patterns
Accuracy (%) Epoch

Time
(sec)

6 15

32
60
56
58
52

90.6
100
92.9
100
92.3

7
4
5
10
10

23
26
29
61
53

7 15

126
152
102
160
104

96.8
98

88.2
100
100

1
2
2
4
5

26
51
33

102
78

8 15

218
236
232
198
256

97.2
100
97.8
100
92.6

3
3
3
2
6

163
177
172
102
367

9 10

374
212
246
366
248

99.5
100
96.7
100
99.6

2
2
9
3
3

324
131
620
391
229

10 10

384
384
514
378
372

100
100
100
100
100

6
6
6
2
7

1122
1137
1691
389
622

Copyright © 2012 SciRes. JILSA

Subgraph Matching Using Graph Neural Network

Copyright © 2012 SciRes. JILSA

278

among them, subgraphs with different orientations are
identified and set as target vectors. Output network of
GNN is trained using backpropagation algorithm after
the transition and bias network is stabilized for the input
pattern. Labeling the subgraph plays an important role
for convergence. The learning parameter and momentum
value used in training also play an important role on con-
vergence. The values of these parameters are identified
by trial and error. The result obtained in different runs
show that GNN is capable of identifying a particular sub-
garph in a given graph in any orientation.

REFERENCES
[1] F. Scarseli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G.

Monfardini, “The Graph Neural Network Model,” IEEE
Transactions on Neural Networks, Vol. 20, No. 1, 2009,
pp. 61-78. doi:10.1109/TNN.2008.2005605

[2] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G.
Nfardini, “Computational Capabilities of Graph Neural
Networks,” IEEE Transactions on Neural Networks, Vol.
20, No. 1, 2009, pp. 81-102.
doi:10.1109/TNN.2008.2005141

[3] A. Pucci, M. Gori, M. Hagenbuchner, F. Scarselli and A.

C. Tsoi, “Applications of Graph Neural Networks to
Large-Scale Recommender Systems Some Results,” Pro-
ceedings of International Multiconference on Computer
Science and Information Technology, Vol. 1, No. 6-10,
2006, pp.189-195.

[4] V. Di Massa, G. Monfardini, L. Sarti, C. F. Scarselli, M.
Maggini and M. Gori, “A Comparision between Recur-
sive Neural Networks and Graph Neural Networks,” In-
ternational Joint Conference on Neural Networks, 2006,
pp. 778-785.

[5] H. Bunke, “Graph Matching: Theoritical Foundations,
Algorithms, and Applications,” Proceedings of Interna-
tional Conference on Vision Interface Vision Interface,
Montreal, 14-17 May 2000, pp. 82-88.

[6] O. Sammound, C. Solnon and K. Ghedira, “Ant Colony
Optimization for Multivalent Graph Matching Problems,”
2006.
liris.cnrs.fr/Documents/Liris-2395.pdf

[7] D. Eppstein, “Subgraph Isomorphism in Planar Graphs
and Related Problems,” Journal of Graph Algorithms and
Applications, Vol. 3 No. 3, 1999, pp. 1-27.

[8] C. Schellewald and C. Schnorr, “Subgraph Matching with
Semidefinite Programming,” Proceedings of Internatio-
nal Workshop on Combinatorial Image Analysis, Palmero,
14-16 May 2003, pp. 279-289.

http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005141

