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ABSTRACT 

Subgraph matching problem is identifying a target subgraph in a graph. Graph neural network (GNN) is an artificial 
neural network model which is capable of processing general types of graph structured data. A graph may contain many 
subgraphs isomorphic to a given target graph. In this paper GNN is modeled to identify a subgraph that matches the 
target graph along with its characteristics. The simulation results show that GNN is capable of identifying a target sub- 
graph in a graph. 
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1. Introduction 

In many practical and engineering applications the un- 
derlying data are often represented in terms of graphs. 
Graphs generally represent a set of objects (nodes) and 
their relationships (edges). In an image, nodes represent 
the regions of the image that have same intensity or color, 
and the edges represent the relationship among these 
regions. 

Subgraph matching has a number of practical applica- 
tions such as object localization and detection of active 
parts in a chemical compound. Subgraph matching is 
mainly analyzed in object localization problem. For ex- 
ample in military areas to identify a particular object, say 
tank from a satellite photograph, the whole area can be 
converted into a graph with nodes having labels repre- 
senting color, area, etc. of the region. The subgraph which 
represents a tank can be made identified by subgraph ma- 
tching. The suspected area to which a tank belongs can 
be restricted and the corresponding restricted graph can 
be considered for identification. 

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, 
and G. Monfardini have proposed a GNN structure which 
can be considered as an extension of recurrent neural net- 
work (RNN) to process very general types of graphs. The 
GNN model implements a function  that maps a graph 
G into an m-dimensional Euclidean space. The function 
depends on the node, so that the classification depends 
on the properties of the node. F. Scarselli, M. Gori, A. C. 
Tsoi, M. Hagenbuchner, and G. Monfardini have ap- 
plied GNN to different types of problems such as 
Mutagenesis problem [1], subgraph matching problem 

[1], Clique problem [2], Half Hot problem [2], and Tree 
depth problem [2]. A. Pucci, M. Gori, M. Hagenbuchner, 
F. Scarselli, and A. C. Tsoi [3] have applied GNN to the 
movie lens data set and have discussed the problems and 
limitations encountered by GNN while facing this par- 
ticular practical problem. A comparison between GNN 
and RNN is made by V. Di Massa, G. Monfardini, L. 
Sarti, F. Scarselli, M. Maggini, and M. Gori [4] and they 
have shown that problem GNNs outperforms RNNs in an 
experimental comparision on an image classification. 

In the subgraph matching problem discussed by F. 
Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. 
Monfardini [1], the goal of the problem is to identify all 
the nodes of a larger graph which also belong to the con-
sidered subgraph. In this paper, the trained GNN is iden-
tifying a subgraph that matches the target graph along 
with its characteristics. 

The structure of the paper is organized as follows: 
Section 2 describes GNN in the linear case, Section 3 
explains subgraph matching problem, Section 4 gives the 
proposed algorithm for generating the graphs and identi-
fying the subgraph in the training data. Experimental 
results and discussion are given in Section 5. 

2. Graph Neural Networks 

A graph G = (V,E), where V is a set of points called 
nodes, and E is a collection of arcs connecting two nodes 
of V. Let ne[n] be the set of nodes connected to the node 
n by arcs in E. Figure 1 represents example graph with 5 
nodes. The nodes of G are attached with random label 

c
nl R . A state vector s

nx R  is attached to each node n, 
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which represents the characteristics of the node (i.e. adja- 
cent nodes, degree, label etc.). The state vector of a node 
with dimension s is computed using a feedforward neural 
network called Transition network which implements a 
local transition function fw. 

    , ,n w n ne n ne nx f l x l 


              (1) 


 

, ,
u ne n

h l x lw n u u


                (2) 

For each node n, hw is a function of the state, label of 
the neighboring node and its own label. Each node is 
associated with a feedforward neural network. Number 
of input patterns of the network depends on its neighbors. 
The hw is considered to be a linear function. When  

,   ,, ,w n u u n u u nh l x l A x b  s
nb R is defined as the out- 

put of feed forward neural network called bias network 
which implements w , ,  

,n u sxs

: c sR R  n w nb l
A R  is defined as the output of the feed forward 

neural network called forcing network which implements 
, 

22: c s s
w R R  

    , resize , ,n u w n u u
sxne

A l x l
n

   

where and resize operator allocates s2 elements 
in the output of forcing network to a s × s matrix. 

 0,1

Let x, l denote the vector constructed by stacking all 
the states and all the node labels respectively of the graph. 
Equation (1) can be written as  ,w x F x l

 

. Banach 
fixed point theorem ensures the existence and the uni- 
queness of solution of Equation (1) in the iterative 
scheme for computing the state   1 ,wx t F 

.

x t l



, 
where x(t) denotes the tth  iteration of x. Thus the states 
are computed by iterating  

n w n ne n ne n  This computation is 
interpreted as a recurrent network that consists of units 
namely the transition networks which compute fw. The 
units are being connected as per graph topology. 

       1 , ,x t f x t x l 

The output of each node of a graph is produced by a 
feedforward neural network called output network which 
takes as input the stabilized state of the node generated 
by the recurrent network and its label. For each node n, 
the output on is computed by the local output function gw 
as . Figures 2 and 3 represent output net- 
work and graph neural network correspondingly for the 
example graph. 

 ,n w n no g x l

3. Subgraph Matching Problem 

The subgraph matching problem is a computational task 
in which two graphs G and H are given as input, and one 
must determine whether G contains a subgraph that is 
isomorphic to H. In Figure 4, a graph G and a target 
graph H which is to be identified in G is given. H. Bunke 
[5] has demonstrated applications of graph matching by 
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Figure 1. Example graph. 
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Figure 2. Output network. 
 
giving examples from the fields of pattern recognition 
and computer vision. O. Sammound, C. Solnon, and K. 
Ghedira [6] have proposed ant colony optimization algo-
rithm for solving graph matching problems and have 
compared with greedy algorithm approach on graph 
matching problems. D. Eppstein [7] has solved the sub- 
graph isomorphism problem in planar graphs in linear 
time, for any pattern of constant size applying dynamic 
programming. C. Schellewald and C. Schnorr [8] have 
presented a convex programming approach for subgraph 
matching. 

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, 
and G. Monfardini [1] have used GNN to identify all 
nodes of subgraphs in larger graph which are isomorphic 
to target graph. In Figure 4, for the graph G a single in-
put pattern is considered. As the graph G contains four 
subgraphs isomorphic to H, the GNN will identify all the 
nodes which are used to form the target subgraph. If this 
pattern is used for training or testing the GNN, the ex-
pected output is a vector (0 1 1 1 1 1 1 0 1 1). 

In the proposed work, as the graph contains four sub- 
raphs isomorphic to H, four different input patterns are g 

Copyright © 2012 SciRes.                                                                                JILSA 



Subgraph Matching Using Graph Neural Network 

Copyright © 2012 SciRes.                                                                                JILSA 

276 

 

l1,x2, l2  
l1,x5, l5 

l2,x1, l1  
l2,x3, l3 

l2,x4, l4 
 

 l3,x2, l2 
 l3,x4, l4 

 l3,x5, l5 

l4,x2, l2 
l4,x3, l3 

l4,x5, l5 

…

 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

fw 

gw 

gw 

gw 

gw 

l1 

l2 

l3 

l4 

O1 

O2 

 O3 

 O4 

…

…

…

…

fw fw fw fw gw 

O5 
l5 

l5,x1, l1 

l5,x3, l3  
l5,x4, l4 

 

Figure 3. Graph neural network. 
 

5. Find all possible nCm combinations of the n nodes 
of the graph G that form the subgraph H. For each possi- 
ble combination, 8
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1) Label the m nodes of the graph G by the label given 
to the nodes of H and the target of the corresponding 
nodes as 1. 

2) Label the remaining n-m nodes with different ran- 
dom numbers and their corresponding target as 0. 

(a)                         (b) 
4.2. GNN Training 

Figure 4. Subgraph matching. 
6. Initially assign the state vector of each node as zero 

vector. 
 
generated. In each input pattern, a subgraph isomorphic 
to H is assigned node labels corresponding to H. Training 
or testing phase of GNN identifies nodes of a subgraph 
isomorphic to H for every input pattern. For the graph G 
expected output of the input pattern are (0 1 1 1 1 0 0 0 0 
1), (0 1 0 0 1 1 0 0 1 1), (0 0 1 1 1 0 1 0 0 1), and (0 0 0 0 
1 1 1 0 1 1). 

7. Generate bias network with c input neurons, h hid- 
den neurons, and s output neurons. 

8. Generate single hidden layer forcing network with 
2*c + s input neurons, h hidden neurons, and s*s output 
neurons. 

9. Generate output network with c + s + 1 input neu- 
rons, h hidden neurons and 1 output neuron. 

4. Training Algorithm 10. Assign weights randomly for all the network from 
(0,1). 4.1. Preprocessing 

11. Calculate output of the Transition network and bias 
network. 1. Generate connected graphs randomly with n number 

of nodes say 1, 2 ··· n. 12. Compute state vector for each node of the graph 
using Equation (2). 2. Select a subgraph H with m nodes which is to be 

identified in the graph G. 13. Repeat steps 11 and 12 until the state vector of 
each node is stabilized. 3. Label each of the m nodes of the subgraph H from a 

set of random numbers. 14. Calculate output of the output network by feeding 
the stabilized states and label of the node as input and 
then calculate mean squared error. 

4. Introduce the subgraph H into the generated graph 
G to assure G is with at least one subgraph H. 
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15. Weights of all the networks are updated using back- 
propagation technique namely Generalized Delta rule. 

16. Repeat steps 11 to 15 until desired accuracy is ob- 
tained. 

5. Results and Discussion 

The GNN model is developed using Matlab code. The 
network is trained and tested to match the subgraph on 5 
nodes with graphs of 6 nodes to 10 nodes. Graphs are 
generated randomly with fixed number of nodes (n). 
Each pair of nodes in the graph are connected with some 
probability ( = 0.2). Each graph is checked for connec- 
tivity. If not connected, random edges between non ad- 
jacent nodes are added until the graph becomes con- 
nected. Select a random graph H on 5 nodes that is to be 
matched with the generated graph G. Label the vertices 
of H randomly from 20 to 30. The generated graph G 
may or may not have the subgraph H in it. A subgraph H 
is included in the generated graph G to assure the exis- 
tence of the subgraph in G. A graph G may have more 
copies of H in it. They are identified by considering all 
possible nCm combinations of the nodes in G. The sub- 
graph H may be present with different orientations in G. 
They are identified by considering all permutations of a 
possible m combination of the nodes of G. For all identi- 
fied combinations the corresponding nodes of G are as- 
signed the labels of the nodes of H and the target for 
these nodes are assigned 1. The remaining nodes are la- 
beled with random numbers from 1 to 15 and the target 
for these nodes are assigned 0. For all possible combina- 
tion of n and m, each combination corresponding to a 
subgraph is taken as a separate input pattern and p de- 
notes the number of input patterns. 

In the example graph of Figure 4, a permutation 2 9 6 
5 10 among the numbers given by the combination 2 5 6 
9 10 form the subgraph given by H. The labels (20, 25, 
21, 27, 24) (say) given to the nodes of H are correspond- 
ingly assigned to the nodes 2, 9, 6, 5, 10 of G. The cor- 
responding target vector of G is (0 1 0 0 1 1 0 0 1 1). 
Another permutation of this combination namely 2, 10, 5, 
6, 9 also forms the subgraph given by H and the label 
given to these nodes are 20 to node 2, 25 to node 10, 21 
to node 5, 27 to node 6 and 24 to node 9. The corre- 
sponding target vector is also (0 1 0 0 1 1 0 0 1 1). Hence, 
the same combination forms different input patterns 
though the target vector is same. 

The transition function hw and the output function gw 
are implemented by three layered neural networks with 5 
hidden neurons. Sigmoidal activation function was used 
in the hidden and output layers of the network. This ex- 
periment is simulated for 5 different runs. In every run 
different p input patterns are generated and is used for 
training and testing, but first 30 patterns are considered  

for validation. In this experiment, label dimension (c) is 
considered as 1 and state dimension as 2. Termination 
condition is fixed as mean squared error 0.1. The weights 
of the networks are initialized randomly from (0, 1). 
Value of  used in the function of the transition network 
is randomly chosen between 0 and 1. When the value is 
more than 0.5, there is the possibility of dividing by zero 
in calculating the state vector xn. Hence  is set as 0.005. 
The learning rate and momentum used in the generalized 
delta training algorithm are 0.1 and 0.01 respectively. 
The learning rate and parameter values are fixed by trial 
and error. The wrongly chosen values made the training 
diverge. In each run, the number of input patterns varied. 
The accuracy in terms of percentage is obtained for mean 
squared error value less than 0.1. Number of graphs and 
number of nodes of the graphs considered on each run 
and obtained results are tabulated in Table 1. The ex- 
perimental results show that the time taken for conver- 
gence increased when the number of input patterns in- 
creased. Experimental results show that more than 96.5% 
of the graphs are identified correctly on each run. 

6. Conclusion 

GNN is modeled to find the desired subgraph with any 
orientation in a graph. Label, and adjacency of the nodes 
are used to represent the nodes of a graph as input to 
GNN. From all possible combinations and permutation 
 
Table 1. Accuracies obtained for different nodes in G ma- 
tching with 5 node graph. 

N 
No. of 
Graphs

No. of 
input 

patterns
Accuracy (%) Epoch 

Time 
(sec) 

6 15 

32 
60 
56 
58 
52 

90.6 
100 
92.9 
100 
92.3 

7 
4 
5 
10 
10 

23 
26 
29 
61 
53 

7 15 

126 
152 
102 
160 
104 

96.8 
98 

88.2 
100 
100 

1 
2 
2 
4 
5 

26 
51 
33 

102 
78 

8 15 

218 
236 
232 
198 
256 

97.2 
100 
97.8 
100 
92.6 

3 
3 
3 
2 
6 

163 
177 
172 
102 
367 

9 10 

374 
212 
246 
366 
248 

99.5 
100 
96.7 
100 
99.6 

2 
2 
9 
3 
3 

324 
131 
620 
391 
229 

10 10 

384 
384 
514 
378 
372 

100 
100 
100 
100 
100 

6 
6 
6 
2 
7 

1122 
1137 
1691 
389 
622 
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among them, subgraphs with different orientations are 
identified and set as target vectors. Output network of 
GNN is trained using backpropagation algorithm after 
the transition and bias network is stabilized for the input 
pattern. Labeling the subgraph plays an important role 
for convergence. The learning parameter and momentum 
value used in training also play an important role on con- 
vergence. The values of these parameters are identified 
by trial and error. The result obtained in different runs 
show that GNN is capable of identifying a particular sub- 
garph in a given graph in any orientation. 
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