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ABSTRACT 

Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds in-
volving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure ele-
ments. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly 
vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a non- 
functional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an in-
dividual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. 
Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to 
train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajecto-
ries. The training data describes H-bond occurrences at successive times along these trajectories by the values of at-
tributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is 
a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf 
node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can 
predict H-bond stability quite well. In particular, their performance is roughly 20% better than that of models based on 
H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a given 
conformation. The paper discusses several extensions that may yield further improvements. 
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1. Introduction  

A hydrogen bond (H-bond) corresponds to the attractive 
electrostatic interaction between a covalent pair D—H of 
atoms, in which the hydrogen atom H is bonded to a 
more electronegative donor atom D, and another non- 
covalently bound, electronegative acceptor atom A. Most 
H-bonds in a protein are of the form N—HO or 
O—HO, but other forms are possible. Due to their 
strong directional character, short distance ranges, and 
relatively large number in a folded protein, H-bonds play 
a key role in both the formation and stabilization of pro-
tein structures [1-3]. While H-bonds involving atoms 
from residues that are close to each other in the main- 
chain sequence stabilize secondary structure elements, 
H-bonds between atoms from distant residues stabilize a  

protein’s tertiary structure [1,3-5]. In particular, the later 
ones shape loops and other irregular features that may 
contain functional sites.  

Unlike covalent bonds, H-bonds greatly vary in stabil-
ity. They form and break while the conformation1 of a 
protein deforms. For instance, the transition of a folded 
protein from a non-functional meta-stable state into a 
functional (e.g. binding) state may require certain H- 
bonds to break and others to form [6]. The intrinsic 
strength of an individual H-bond has been studied from 
an energetic view point [7-11]. However, potential en-
ergy alone may not be a very good predictor of H-bond 
stability. Other local interactions may reinforce or weaken 
an H-bond. Moreover, several “redundant” H-bonds may 
1A protein conformation defines the relative positions of all the atoms 
in the protein. 
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contribute to rigidify the same group of atoms. To better 
understand the possible deformation of a protein in its 
folded state, it is desirable to create models that can re-
liably predict the stability of an H-bond not just from its 
energy, but also from its local environment. Such a 
model can then be used in a variety of ways, e.g. to study 
the kinematic deformability of a folded protein confor-
mation (by detecting its rigid components) and sample 
new conformations [12]. 

In this paper we apply inductive learning methods to 
train a protein-independent probabilistic model of 
H-bond stability from a training set of molecular dynam-
ics (MD) simulation trajectories of various proteins. The 
input to the training procedure is a data table in which 
each row gives the value of several (32) attributes, called 
predictors, of an H-bond and its local environment at a 
given time t  in a trajectory, as well as the measured 
stability of this H-bond over an interval of time  ,t  

t   . The output is a function   of a subset of pre-
dictors that estimates the probability that an H-bond pre-
sent in the conformation c achieved by a protein will be 
present in any conformation achieved by this protein 
within a time interval of duration  . The value of   
defines the timescale of the prediction. 

MD simulation trajectories provide huge amount of 
data yielding training data tables made of several hun-
dred thousand, or more, rows. To build regression trees 
from such tables we propose methods that run in 
 logO ab a  time, where a  is the number of rows and 

b  is the number of predictors. Tests demonstrate that 
the models trained with these methods can predict H- 
bond stability roughly 20% better than models based on 
H-bond energy alone. The models can also accurately 
identify a large fraction of the least stable H-bonds in a 
given conformation. In most tests, about 80% of the 10% 
H-bonds predicted as the least stable are actually among 
the 10% truly least stable. 

Section 2 gives a precise statement of the problem ad-
dressed in this paper. Section 3 presents the machine 
learning approach that is used to solve this problem. Sec-
tion 4 describes details of the training algorithm. Section 
5 discusses test results obtained with models trained us-
ing software implementing this algorithm. Section 6 
suggests future developments that may lead to improving 
trained models. 

2. Problem Statement 

Let c  be the conformation of a protein P  at some 
time considered (with no loss of generality) to be 0 and 
H  be an H-bond present in c . Let  M c  be the set 
of all physically possible trajectories of P  passing 
through c  and π  be the probability distribution over 
this set. We define the stability of H  in c  over the 

time interval   by: 

   

      
0

: , , 0,1 ,

1
, , , , d π ,
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



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 

    
 

  (1) 

where  , ,I q H t  is a Boolean function that takes value 
1  if H  is present in the conformation  q t  at time 
t  along trajectory q , and 0 otherwise. The value 
 , ,H c   can be interpreted as the probability that 

H  will be present in the conformation of P  at any 
specified time  0,t  , given that P  is at conforma-
tion c  at time 0 .  

Our goal is to design a method for generating good 
approximations   of  . We also want these ap-
proximations to be protein-independent, i.e., the argu-
ment c  may be a conformation of any protein. 

3. General Approach 

We use machine learning methods to train a stability 
model s from a given set Q  of MD simulation trajecto-
ries of various proteins. Each trajectory q Q  is a dis-
crete sequence of conformations of a protein. These 
conformations are reached at times it i   , 0,1,i   
2, ,  called ticks, where   is typically on the order of 
the picoseconds2. We detect the H-bonds3 which are pre-
sent in each conformation  1q t  using the geometric 
criteria given in [13] (see Appendix A). Note that an H- 
bond in a given protein is uniquely identified (across 
different conformations) by its donor, acceptor, and hy-
drogen atoms. So, we call the presence of a specific H- 
bond H in a conformation  1q t  an occurrence of H in 
 1q t . 
For each occurrence of an H-bond H in  1q t  we 

compute a fixed list of predictors, some numerical, oth-
ers categorical. Some are time-invariant, like the types of 
the donor and acceptor atoms and the number of residues 
along the main-chain between the donor and acceptor 
atoms. Others are time-dependent. Among them, some 
describe the geometry of H in  1q t , e.g. the distance 
between the hydrogen and the donor atoms and the angle 
made by the donor, hydrogen, and acceptor atoms. Oth-
ers describe the local environment of H in  1q t , e.g. 
the number of other H-bonds within a certain distance 
from the mid-point of H. The complete list of predictors 
used in our work is given in Appendix C. In total, it con-
tains 32 predictors. 

2MD simulation trajectories are computed by integrating the equations 
of motion with a time step on the order of the femtoseconds (10–15 s) in 
order to take into account high-frequency thermal vibrations. However, 
to reduce the amount of stored data, they are usually sub-sampled at a 
time step on the order of the picoseconds (10–12 s). 
3We only consider H-bonds inside a protein. We ignore H-bonds be-
tween a protein and the solvent. 
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We train   as a function of these predictors. The 
predictor list defines a predictor space   and every H- 
bond occurrence maps to a point in  . As some predic-
tors vary over time, two occurrences of the same H-bond 
at two different ticks usually map to two distinct points. 
Given the input set Q  of trajectories, we build a data 
table in which each row corresponds to an occurrence h  
of an H-bond present in a conformation  1q t  con-
tained in Q . So, many rows may correspond to the same 
H-bond at different ticks. In our experiments, a typical 
data table contains several hundred thousand rows (see 
Section 5.1.2). Each column, except the last one, corre-
sponds to a predictor p  and the entry  ,h p  of the 
table is the value of p  for h . The entry in the last 
column is the measured stability y  of the H-bond oc-
currence in conformation  1q t . More precisely, let H  
be the H-bond of which h  is an occurrence. In addition, 
let l   , where   is the duration over which we 
wish to predict the stability of h  (see Section 2), and let 
m l  be the number of ticks kt , 1, 2, ,k i i i l    , 
such that H  is present in  kq t . The measured stabil-
ity y  of h  is the ratio m l . Figure 1 plots a (typical) 
histogram of the measured stability of all H-bond occur-
rences in one protein trajectory. This histogram indicates 
that H-bond occurrences tend to be quite stable: over 
25% have measured stability 1, about 50% have meas-
ured stability higher than 0.8, and only 15% have meas-
ured stability less than 0.3. 

We build s as a binary regression tree [14]. This well- 
studied machine learning approach has been one of the 
most successful in practice. Regression trees are often 
simple to interpret. Not only may this simplicity eventu-
ally lead to pertinent insights to better understand H- 
bond stability; it also allows us to perform many experi-  

 

Figure 1. Histogram of the measured stability of H-bond 
occurrences in 1eia protein trajectory (the rightmost bar 
defines the fraction H-bond occurrences whose measured 
stability is exactly 1). 

ments, compare the generated trees, and analyze the rela-
tive importance of the predictors. Furthermore, the 
method can work with both categorical and numerical 
predictors in a unified way, as shown in Section 4.1. 

Each non-leaf node N in a regression tree is a Boolean 
test, called a split. Each split on a numeric predictor p  
divides the predictor space   into two half-spaces 
separated by a hyper-plane perpendicular to the coordi-
nate axis representing p . Each arc outgoing from N  
corresponds to one of these half-spaces. So, each node 
N  of the tree determines a region of   which is ob-
tained by intersecting all the half-spaces associated with 
the arcs connecting the root of the tree to N . We say 
that an H-bond occurrence falls into a node N  if it is 
contained in this region. The predicted stability value 
stored at a leaf node L  is the average of the measured 
stability values computed for all the H-bond occurrences 
in the training data table that fall into L . We expect this 
averaging, which is done over many pieces of trajectories, 
to approximate well the averaging defined in Equation 
(1). To avoid over-fitting the input data, only a relatively 
small subset of predictors (selected by the training algo-
rithm, as described in Section 4 is eventually used in a 
regression tree.  

Once a regression tree has been generated, it is used as 
follows. Given an H-bond H  in an arbitrary conforma-
tion c  of an arbitrary protein, the leaf node L  of the 
tree into which H  falls is identified by calculating the 
values of the necessary predictors for H  in c . The 
predicted stability value stored at L  is returned. (Note 
that by construction of the tree, any H-bond H  falls 
into one and only one leaf node.)  

4. Training Algorithm 

4.1. Basic Tree-Construction Algorithm 

We construct a model   as a binary regression tree 
using the CART (Classification and Regression Tree) 
method [14]. The tree is generated recursively in a top- 
down fashion, i.e. starting from the root. When a new 
node N  is created, it is inserted as a leaf of the tree if a 
predefined recursion depth has been reached or if the 
number of H-bond occurrences (from the training data 
table) falling into N  is smaller than a predefined 
threshold. Otherwise, N  is added as an intermediate 
node, its split is computed, and its left and right children 
L  and R  are created. A split s  is defined by a pair 
 ,p r , where p  is the split predictor and r is the split 
value. If p is a numerical predictor, then r is a threshold 
on p, and s p r . If p  is a categorical predictor, 
then r  is a subset of categories, and s p r . We 
define the score  ,w p r  of split  ,s p r  at a node 
N  as the reduction of variance in measured stability 
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that results from s. More formally: 

   

   

, Var

Var 1 Var

N

L L
L R

w p r Y

n n
Y Y

n n



      
  

    (2) 

 
where: 
 NY  is the distribution of the measured stability of the 

H-bond occurrences in the training data table falling 
into N , 

 LY  and RY are the distributions of the measured sta-
bility of the H-bond occurrences falling into L  and 
R , respectively, when split s  is applied, 

  Var Y  is the variance of distribution Y ,  
 n  is the number of H-bond occurrences falling into 

N , 
 Ln  is the number of H-bond occurrences falling into 

L  when split s  is applied.  
The algorithm chooses the split—both the predictor 

and the split value—that has the largest score. The com-
putation of the split value for each predictor is done as 
follows (where we denote by NH  the subset of H-bond 
occurrences in the training data table that fall into N ): 

1) For a numerical predictor, the values of this predic-
tor in NH  are sorted in ascending order. All midpoints 
between two distinct consecutive values are used as can-
didate split values. The one with the largest split score is 
used as the split value. This value is clearly optimal.  

2) For a categorical predictor, for every possible value 
v  of this predictor in NH , we first compute the mean 

 NY v  of the measured stability of all the H-bond oc-
currences in NH  where the predictor has value v . We 
then sort the possible values of the predictor into a list 
 1 2, , , Kv v v  ordered by  N iY v  All the 1K   splits 
that divide this list into two contiguous sub-lists—e.g. 
 1 2, , , jv v v  and  1 2, , ,j j Kv v v   —are considered. 
The one with the best score is selected. Statement 8.16 in 
[14] proves that no other split can give a better score.  

Since the number of values of a numerical predictor in 

NH  may often be large, it is worth noticing that an in-
cremental procedure can compute split scores efficiently. 
Consider two consecutive candidate split values is  and 

1is   in Step 1. Assume that we have computed the split 
score for is  and that we now want to compute the score 
for 1is  . We can easily identify the H-bond occurrences 
that are shifting from L  to R . Then we can update 

 VarL Y and  VarR Y by only considering these occur-
rences, in time linear in their number, as shown in Ap-
pendix B. As a result we can compute the scores of all 
the candidate split values in time linear in the number of 
values of the considered numerical predictor in NH . For 
a categorical predictor, the computation of the scores of 

all the candidate split values is also linear in the number 
of categorical values. 

At each layer of the tree the total number of samples 
does not exceed the number of rows in the training table. 
So, building each layer takes linear time in the table size. 
Since we limit the depth of a regression tree by a rela-
tively small constant (see Section 4.3), the complexity of 
the tree construction algorithm is dominated by the initial 
sorting of the table rows for each predictor. So, a tree is 
built in  logO ab a  time, where a  is the number of 
rows in the training data table and b  is the number of 
predictors. This makes it possible to process tables with 
dozens of attributes and several hundred thousand rows 
using an off-the-shelf computer. 

4.2. Violation of IID Property 

One important issue to deal with is the violation of the 
IID (independent, identically distributed) property in the 
training data table. The IID property would require that 
H-bond occurrences follow a certain fixed probability 
distribution, and that each row of a data table input to the 
learning algorithm is sampled according to this distribu-
tion, independent of the other rows. The satisfaction of 
this property is critical for the trained model   to pre-
dict reliably the stability of H-bonds in new protein con-
formations. However, it is likely to be violated, mainly 
because several H-bond occurrences in a data table cor-
respond to the same H-bond. More specifically, two oc-
currences of the same H-bond along the same trajectory 
are more likely to be similar (or even the same, in the 
case of time-independent predictors) along several di-
mensions of the predictor space   than two occur-
rences of distinct H-bonds, especially if these bonds be-
long to different proteins. This may result into correla-
tions between predictor values and measured stability 
that are bond-specific and thus do not extend to other 
bonds. To illustrate this point, Figure 2 plots the histo-
gram of the mean measured stability of all the distinct H- 
bonds occurring in one MD simulation trajectory. The 
figure shows that distinct H-bonds can have very differ-
ent mean measured stability. It also shows that many H- 
bonds are unstable. These bonds contribute few bond 
occurrences in the training data table, which leads the 
histograms in Figures 1 and 2 to have “inverse” shapes. 
While Figure 1 indicates that most H-bond occurrences 
are quite stable, Figure 2 indicates that many H-bonds 
are unstable. 

To address this issue, we apply a two-step split calcu-
lation procedure [17]. The training data table is divided 
at random into two tables 1T  and 2T . The split predic-
tor p  and the split value r  at a node N  are com-
puted separately, using one of these two tables:  

1) The best split value *
pr  is computed for each pre-  
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Figure 2. Histogram of the mean measured stability of H- 
bonds in 1eia protein trajectory. 

dictor p  using 1T :   *
1arg max ,p rr w p r , where 

 1 ,w p r  denotes the score of split  ,p r  on 1T .  

2) The best split predictor *p  is computed using 2T  

with the best split values computed at the previous step: 

  * *
2arg max ,p pp w p r , where  *

2 , pw p r  denotes 

the score of split  *, pp r  on 2T .  

3) The selected split is  * *, pp r . 

Assume that the best split value computed in the first 
step is obtained for some predictor p . If this best value 
results from a bond-specific correlation between p  
and measured stability in 1T , then this correlation is 
unlikely to happen again in 2T , since 1T  and 2T  have 
been separated at random. So, in the second step, predic-
tor p  will likely have a small score  *

2 , pw p r   and 
so will not be selected as the split predictor. To reduce 
the risk that the same bond-specific correlation exists in 
both 1T  and 2T , we divide the training data in such a 
way that all occurrences of the same H-bond end up in 
the same table. 

4.3. Tree Pruning 

To prevent model overfitting, we limit the size of a re-
gression tree by bounding its maximal depth by a rela-
tively small constant (5 in most of our experiments). We 
also define a minimal number of H-bond occurrences 
that must fall into a node for this node to be split. How-
ever, it is usually better to set these thresholds rather lib-
erally and later prune the obtained tree using an adaptive 
algorithm, as described below. 

We initially set aside a fraction 3T  of the training 
data table that has no overlap with the subsets 1T  and 

2T  used in Section 4.2. Once a tree has been constructed 
using 1T  and 2T , pruning is an iterative process. At 
each step, one non-leaf node N  whose split has mini-

mal score (on 1T ) becomes a leaf node by removing the 
sub-tree rooted at N . This process continues until the 
pruned tree only contains the root node. It creates a se-
quence of trees with decreasing numbers of nodes. We 
then estimate the prediction error of each tree as the 
mean square error of the predictions made by this tree on 

3T . The tree with the smallest error is selected. 3T  is 
selected so that it does not contain occurrences of H- 
bonds also represented in 1T  or 2T . 

5. Test Results 

In Section 5.1 we present the experimental setup with 
which the test results reported in Section 5.2 have been 
obtained. In Section 5.3 we analyze and discuss the con-
tents of regression trees generated in our experiments. 

5.1. Experimental Setup 

5.1.1. MD Trajectories 
In the experiments reported below, we used 6 MD simu-
lation trajectories picked from different sources. We call 
these trajectories 1c90A, 1e85A, 1g90A_1 and 1g90A_2 
from [18], and 1eia and complex from [19]. In all of 
them the time interval   between two successive ticks 
is 1 ps. Table 1 indicates the protein simulated in each 
trajectory, its number of residues, the force field used by 
the simulator, and the duration of the trajectory. Each 
trajectory starts from a folded conformation resolved by 
X-ray crystallography. 

Trajectories obtained with different proteins allow us 
to test if a model   trained with one protein can pre-
dict H-bond stability in another protein. Similarly, tra-
jectories generated with different force fields allow us to 
test a model   trained with one force field can predict 
H-bond stability in trajectories generated with another 
force field. We did additional experiments with a larger 
set of trajectories, but the results were similar to those 
reported below. 

5.1.2. Data Tables 
From each of the 6 trajectories we derived a separate 
data table in which the rows represent the detected H- 
bond occurrences and the columns give the values of the 
predictors and H-bond measured stability. Table 2 lists 
the number of distinct H-bonds detected in each trajec-
tory and the total number of H-bond occurrences ex-
tracted. Since most H-bonds are not present at all ticks, 
the number of H-bond occurrences is smaller than the 
number of distinct H-bonds multiplied by the number of 
ticks. So, for example, the data table generated from tra-
jectory 1e85A consists of 1,253,879 rows, 32 columns 
for predictors, and one column for measured stability. 
Note that complex was generated for a complex of two 
molecules. All H-bonds occurring in this complex are 
taken into account in the corresponding data table. The     
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Table 1. Characteristics of the MD simulation trajectories used to create the 9 datasets. 

Trajectory Protein # Residues Force field and warter model Temperature, Ko Duration, ns

1c90A Cold shock protein 66 
ENCAD [15] with F3C explicit water 

model 
298 10 

1e85A Cytochrome C 124 Same as above 298 10 

1eia EIAV capsid protein P26 207 
Amber 2003 with explicit SPC/E 

water model 
300 2 

1g90A_1 
PDZ1 domain of human Na(+)/H(+) 

exchanger regulatory factor 
91 Same as for 1c90A 298 10 

1g90A_2 Same as above 91 Same as for 1c90A 298 10 

complex 
Efb-C/C3d complex formed by the C3d 
domain of human Complement Compo-

nent C3 and one of its bacterial inhibitors 
362 

Amber 2003 with implicit solvent 
using the General Born solvation 

method [16] 
300 2 

 
Table 2. Number of distinct H-bonds and H-bond occur-
rences detected in each trajectory. 

Trajectory # H-bonds # Occurrences 
1c90A 263 363,463 
1e85A 525 1,253,879 
1eia 757 379,573 

1g90A_1 374 558,761 
1g90A_2 397 544,491 
complex 1825 348,943 

 
measured stability y  of an H-bond H in  1q t  is 
computed as described in Section 3, as the ratio of the 
number of ticks where the bond is present in the time 
interval  ,i it t l    in trajectory q divided by the total 
number of ticks l  in this interval. 

The values of the time-varying predictors are subject 
to thermal noise. Since a model   will in general be 
used to predict H-bond stability in a protein conforma-
tion sampled using a kinematic model ignoring thermal 
noise (e.g. by sampling the dihedral angles  ,  , and 
 ) [12], we chose to average the values of these predic-
tors over l  ticks to remove thermal noise. More pre-
cisely, let h  be an H-bond occurrence in q  it . The 
value of a predictor stored in the row of the data table 
corresponding to h  is the average value of this predic-
tor in  1i lq t   ,  1i lq t   ,…,  iq t , where i l k it t    
 l k    . 
The values of l  and l  are chosen according to dif-

ferent criteria. The choice of l  is based on two consid-
erations. It must be large enough for the measured stabil-
ity m l  to be statistically meaningful. It must also cor-
respond to the timescale over which one wants to predict 
H-bond stability. The choice of l  should be just 
enough to remove thermal noise from the predictor val-
ues. Experiment #5 in Section 5.2.5 shows that 50l   
is near optimal. We also chose 50l   in most of the 
tests reported below, as this value both provides a mean-
ingful ratio m l  and corresponds to an interesting pre-
diction timescale (50 ps). In Experiment #5, we will 
compare the performance of models generated with sev-
eral values of l . 

5.1.3. Performance Measures 
The performance of a regression model can be measured 
by the root mean square error (RMSE) of the predictions 
on a test dataset. For a data table   1 1,T x y  
   2 2, , , ,n nx y x y , where each ix , 1, ,i n  , de-
notes a vector of predictor values for an H-bond occur-
rence and iy  is the measured stability of the H-bond, 
and a model  , the RMSE is defined by: 

    21
RMSE , i ii

T y x
n

    

As RMSE depends not only on the accuracy of s, but 
also on the table T, some normalization is necessary in 
order to compare results on different tables. So, in our 
tests we compute the decrease of RMSE relative to a 
base model 0 . The relative base error decrease (or 
RBED) is then defined by: 

     
 

0
0

0

RMSE , RMSE ,
RBED , , 100%

RMSE ,

T T
T

T

 
 




   

In most cases, 0  is simply defined by  0

1
x

n
    

 ii
y , i.e. the average measured stability of all H- 

bond occurrences in the dataset. In other cases, 0  is a 

model based on the H-bond energy. 

5.2. Experiments 

5.2.1. Experiment #1: Training on one Data Table, 
Predicting on Another 

Here we trained 10  models on each one of the 6  data 
tables (i.e. 60 models total). We tested every model sepa-
rately on each of the other 5  data tables. For each 
model, the corresponding training data table was parti-
tioned into three tables 1T , 2T  and 3T , as described in 
Sections 4.2 and 4.3: 60%  of the data went to 1T , 
20%  to 2T , and 20% to 3T . In addition, to achieve 
greater independence between the three tables, no two 
tables contain occurrences of the same H-bond. The 10  
models trained with the same data table were generated 
with different partitions generated at random, but still 
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satisfying the previous ratios and condition. In all cases 
the maximal depth of a tree was set to 5 .  

Table 3 gives the mean value of RBED for each pair 
of data tables and Table 4 gives estimated standard de-
viation. More specifically, the chart of Figure 3 shows 
the distribution of the RBED values for the 10 models 
trained with 1c90A on each data table (so each of the 10 
models contributes 6  points in the chart). These results 
show that, on average, a model trained with one trajec-
tory predicts H-bond stability in another trajectory rea-
sonably well, even if the two trajectories were generated 
using different energy functions. However, we note that 
the variance of the 10 RBED values for each test data 
table is rather large.  

We also note that the mean RBED values are generally 
lower for models tested on complex, while the mean 
RBED values for models trained on complex and tested 
on other tables (last column of Table 3) are comparable 
to other values. Recall that the trajectory complex was 
generated for a complex made of a protein and a ligand, 
while every other trajectory was generated for a single 
protein. So, it is likely that complex contains H-bonds in 
situations that did not occur in any of the other trajecto-
ries. Figures 4 and 5 show trees trained with the data 
table 1c90A and complex. We will comment on gener-
ated trees in Section 5.3. 

5.2.2. Experiment #2: Training on Data from    
Multiple Trajectories 

Here, we trained models on data tables obtained by mix-
ing subsets of 5 data tables and we tested these models 
on the remaining data table. For each combination of 5 
data tables, we trained 10 models by mixing different 
fractions of the 5 data tables. For each model, the mixed 
data table was partitioned into three tables 1T , 2T  and 

3T  as in Experiment #1: 60%  of the data went to 1T , 

20%  to 2T , and 20%  to 3T . Again, no two tables  

contain occurrences of the same H-bond. Furthermore, 
we trained 4  groups of models varying in the tree’s 
maximal depth (5 or 15) and in the fraction of H-bond 
occurrences taken from each data table (10% or 50%). 
So, in total, 240 models were generated in this experi-
ment. 

Table 5 shows the mean RBED value for each com-
bination of data tables and each group of models and 
Table 6 shows estimated standard deviation. In columns 
3 through 8 we indicate the data table used for testing the 
models trained on a combination of the 5 other data ta-
bles. Figure 6 shows the distribution of the RBED val-
ues for the models built with the settings of in the first 
row of Table 5 (i.e. maximal depth of 5 and 10% from 
each data table).  

We note that the RBED values are significantly higher 
than in Experiment #1, meaning that models trained us-
ing data from several trajectories are more accurate than 
models trained using data from a single trajectory. This 
is not surprising, since a training data table generated 
from several trajectories is likely to provide richer data  

 

Figure 3. Distribution RBED values for the 10 models gen-
erated with 1c90A (Experiment #1). The horizontal line 
shows the average of all 50 RBED values.

Table 3. Mean values of RBED for each pair of data tables (Experiment #1). 

Test\Train 1c90A 1e85A 1eia 1g90A_1 1g90A_2 complex 
1c90A 37.89 42.87 11.72 37.04 38.70 35.44 
1e85A 44.91 58.82 31.67 53.04 53.10 42.20 
1eia 34.41 38.18 41.52 34.55 37.69 40.19 

1g90A_1 40.06 44.83 27.75 41.89 47.52 34.36 
1g90A_2 34.69 40.79 35.11 37.52 38.72 34.54 
complex 28.41 34.75 34.14 28.46 32.81 39.00 
Average 36.72 43.37 30.31 38.75 41.42 37.62 

Table 4. Standard deviation values of RBED for each pair of data tables (Experiment #1). 

Test\Train 1c90A 1e85A 1eia 1g90A_1 1g90A_2 complex 
1c90A 8.27 6.35 35.58 11.57 11.49 6.06 
1e85A 14.64 3.99 28.99 5.68 8.29 8.48 
1eia 5.85 1.85 3.46 5.86 3.55 1.93 

1g90A_1 9.04 7.69 14.95 11.99 9.07 11.70 
1g90A_2 12.00 4.87 11.94 10.97 8.36 3.57 
complex 5.00 1.62 2.49 7.83 3.09 2.58 



Learning Probabilistic Models of Hydrogen Bond Stability from Molecular Dynamics Simulation Trajectories 

Copyright © 2011 SciRes.                                                                                JILSA 

162

 

Figure 4. Regression tree trained with 1c90A (Experiment #1). 

 

Figure 5. Regression tree (only the top 3 layers are shown) trained with complex (Experiment #1). 

Table 5. Mean RBED values obtained in Experiment #2. 

Fraction of data Max tree depth 1c90A 1e85A 1eia 1g90A_1 1g90A_2 complex Average 
0.1 5 46.92 59.37 42.60 50.93 45.29 37.90 47.17 
0.5 5 47.07 59.59 43.15 50.69 45.45 38.08 47.34 
0.1 15 47.24 59.03 43.35 51.42 45.65 38.07 47.46 
0.5 15 46.87 59.04 43.46 51.38 45.89 38.38 47.50 

Table 6. Standard deviation of RBED values obtained in Experiment #2. 

Fraction of data Max tree depth 1c90A 1e85A 1eia 1g90A_1 1g90A_2 complex 
0.1 5 0.25 0.60 0.64 0.54 0.31 0.63 
0.5 5 0.25 0.36 0.83 0.66 0.22 0.48 
0.1 15 0.57 1.00 0.84 0.42 0.50 0.85 
0.5 15 1.27 1.10 1.00 0.62 0.59 0.60  
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about H-bond stability than a table derived from a single 
trajectory. Furthermore, the variance of RBED values is 
now very small, meaning that the training process yields 
models that are stable in performance. Finally, like in 
Experiment #1, the RBED values are again lower for 
models tested on complex. All these results suggest that 
we should try to train models with a larger set of trajec-
tories. We actually did some experiments using a few 
additional trajectories, but with no noticeable improve-
ment. Most likely these trajectories did not contain 
enough H-bonds in situations that did not already occur 
in the trajectories of Table 1. 

Another observation is that both deeper trees and lar-
ger data fractions tend to improve model accuracy, but 
the very small gain is not worth the additional model or 
computation complexity. Table 6 shows that standard 
deviation is higher for deeper trees that is an expected 
result of increasing model complexity. 

Figures 7 and 8 show two partial trees trained with 
combinations of all tables, except 1c90A (in Figure 7) 
and 1e85A (in Figure 8). 

 

Figure 6. Distribution RBED values for the models built 
with settings specified in the first row of Table 5. 

 

 

Figure 7. Top 3 layers of a tree trained with combination of all tables, except 1c90A (Experiment #2). The actual tree has 5 
layers (55 nodes).  

 

Figure 8. Top 3 layers of a tree trained with combination of all tables, except 1e85A (Experiment #2). The actual tree has 5 
complete layers (63 nodes).   



Learning Probabilistic Models of Hydrogen Bond Stability from Molecular Dynamics Simulation Trajectories 

Copyright © 2011 SciRes.                                                                                JILSA 

164

 
5.2.3. Experiment #3: Comparison with 

FIRST-Energy Model 
Here, the models are the same as those generated in Ex- 
periment #2 in the first row of Table 5 (maximal depth 
of 5 and 10% from each data table). But we now com-
pare them to a regression tree 0  built from the same 
training data using FIRST_energy as the only predictor 
(predictor #32 in Appendix C). FIRST_energy is the 
value of the function used in FIRST [10] to evaluate the 
energy of an H-bond occurrence; it is a slightly modified 
version of the Mayo energy [7]. We compute RBED 
values as defined in Section 5.1.4 where 0  is the sim-
ple regression tree. Table 7 shows the mean RBED val-
ues. Tests on all 6 data tables show that the more com-
plex models are significantly more accurate that the 
model based on FIRST_energy only. Overall, these re-
sults confirm that the stability of an H-bond occurrence 
depends not only on its energy, but also on other pa-
rameters. See Section 5.3 for more comments.  

5.2.4. Experiment #4: Identification of Least Stable 
H-Bonds 

Most H-bond occurrences tend to be stable. So, accu-
rately identifying the weakest ones is important if one 
wishes to predict the possible deformation of a protein 
[12]. Here, we measure how well the models generated 
in Experiment #2 (again, in the first row of Table 5) 
identify the least stable H-bonds occurrences in the test 
data table. In each test table T , we first identify the 
subset S  of the 10% least stable H-bond occurrences 
(i.e., the H-bond occurrences with the smallest measured 
stability). Using a regression tree   trained with a 
combination of data from the 5 other tables, we then sort 
the H-bond occurrences in T  in ascending order of 
predicted stability and we compute the fraction 

 0,1w  of S  that is contained in the first 100 %u  
occurrences in this sorted list, for successive values of 

 0,1u . We call the function  w u  the identification 
curve of the least stable H-bonds for  . 

Figure 9 plots identification curves for each of the 6 
test tables. Each plot consists of three curves: the red 
curve is the ideal identification curve (the one that would 
be obtained with a model that perfectly predict the 10% 
least stable H-bonds), the blue curve is obtained with one 
(randomly picked) regression tree computed in Experi-
ment #2, and the green curve is obtained by sorting H- 
bond occurrences in decreasing values of FIRST_energy. 
One can see that the models computed in Experiment #2 
perform well in general. For models tested on data tables  

Table 7. Mean values of RBED computed in Experiment #3. 

1c90A 1e85A 1eia 1g90A_1 1g90A_2 complex
26.36 27.95 5.65 22.63 19.63 19.42 

other than complex, about 80% of the 10% H-bond oc-
currences predicted as the least stable are actually among 
the 10% truly least stable. However, several curves show 
a rather long tail of poorly ranked unstable bonds. For 
example, the set of the 50% least stable bonds predicted 
by the model tested on 1eia still misses about 5% of the 
truly least stable bonds. Not surprisingly, the results for 
complex are much less satisfactory. The regression mod-
els generated in Experiment #2 perform consistently bet-
ter than the FIRST_energy-only models, but for 1eia the 
difference is small. 

5.2.5. Experiment #5: Models for Different Averaging 
and Prediction Windows 

Here the testing setup is the same as for Experiment #2 
(first row of Table 5), but we let the numbers of ticks l  
and l  vary. Recall from Section 5.1.b that l  is the 
number of ticks over which bond stability is measured, 
while l  is the number of ticks over which predictor 
values are averaged. 

First, we set l  to 50 ticks (50 ps), and we built and 
tested models for predictor averaging windows of suc-
cessive lengths l  = 2, 5, 10, 20, 50, 100, 200, and 500 
ticks. So, in total we built 400 models. Table 8 shows 
the mean RBED value for each test table and each value 
of l . 

Figure 10 shows the distribution of the RBED values 
for the models tested on 1c90A (10 models for each 
value of l ). An averaging window length of l  = 50 
ticks gives the best results. Shorter lengths fail to elimi-
nate thermal noise in predictor values, but longer win-
dows tend to smooth out important changes in predictor 
values. 

Next, we set l  to 50 ticks (50 ps) and we built and 
tested models for prediction windows of successive 
lengths l  = 10, 20, 50, 100, 200, and 500 ticks (so here 
we built 300 models). Table 9 shows the mean RBED 
value for each test table and each value of l .  

Figure 11 shows the distribution of the RBED values 
for the models tested on 1c90A. Again, a 50-tick predic-
tion window gives the best results. With shorter windows 
measured stability is less reliable. But longer windows 
lead to making predictions too far beyond an observed  

Table 8. Mean RBED values for different lengths l' of the 
predictor averaging window (Experiment #5). 

'l 1c90A 1e85A 1eia 1g90A_1 1g90A_2 complex
2 28.15 39.55 22.71 36.39 24.72 7.18 
5 38.71 48.65 31.08 43.75 38.05 22.03 
10 42.78 54.18 36.31 46.50 42.37 29.53 
20 45.58 57.43 40.48 49.40 44.66 34.78 
50 47.13 59.72 43.88 51.48 45.76 39.05 

100 46.58 59.44 43.81 50.96 45.52 38.54 
200 45.18 58.91 43.21 49.95 43.38 36.20 
500 41.40 56.25 41.81 46.94 37.99 30.69  
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Figure 9. Identification curves of the least stable bonds for different models. 

Table 9. Mean RBED values for different lengths l of the 
prediction window (Experiment #5) 

l 1c90A 1e85A 1eia 1g90A_1 1g90A_2 complex
2 27.13 34.60 21.45 30.54 26.17 17.61 
5 36.98 46.65 30.49 41.34 35.99 26.58 

10 42.49 53.16 36.17 47.02 41.50 32.23 
20 45.75 57.28 40.55 50.57 44.91 36.39 
50 47.09 59.78 43.87 51.50 45.79 38.81 
100 45.89 59.29 43.47 49.17 44.82 38.24 
200 43.32 56.76 42.17 45.38 42.55 35.24 
500 38.13 49.77 37.08 41.43 38.32 31.30 

H-bond occurrence; the pertinence of the predictor val- 
rather long timescales. For l  = 500 ticks, the mean 
RBED values start declining more significantly, while 
the plot of Figure 11 indicates that the variance of the 
RBED values also increases sharply. This is not surpris-
ing since a window of 500 ticks represents a large frac-
tion of each of the trajectories. 

5.3. Analysis of Regression Trees 

In all our regression trees the root split was done with  
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Figure 10. Distribution of RBED values for models tested 
on 1c90A for different lengths l ’ of the predictor averag-
ing window (Experiment #5). 

 

Figure 11. Distribution of RBED values for models tested 
on 1c90A for different lengths l of the prediction window 
(Experiment #5). 

predictor Dist_H_A (the distance between the H and ac-
ceptor atoms), which therefore appear as the single most 
discriminative attribute to predict H-bond stability. The 
mean measured stability of the two children of the root 
node differs by a ratio ranging from 1.5 to 2 depending 
on the specific tree. The importance of the distance be-
tween the H and the acceptor is consistent with previous 
findings. Levitt [8] found that most stable H-bonds have 
Dist_H_A less than 2.07Å. Jeffrey and Saenger [20] also 
suggested that Dist_H_A is a key attribute affecting 
H-bond stability, with a value less than 2.2Å for moder-
ate to strong H-bonds. Consistent with these previous 
findings, the split values of the deepest Dist_H_A nodes 
in our re gression trees vary slightly around 2.1Å. This 
distance was observed in [8] to sometimes fluctuate by 
up to 3Å in stable H-bonds, due to high-frequency 
atomic vibration. This observation supports our decision 
to average predictor values over windows of l  ticks, as 
it would be easy to incorrectly predict the stability of an 
H-bond from the value of Dist_H_A at a single tick. 

Predictor FIRST_energy, a modified Mayo potential [7] 
implemented in FIRST (a protein rigidity analysis soft-
ware) [10], is often used in splits close to the root. This is 
not surprising since it is a function of several other per-
tinent predictors: Dist_H_A, Angle_D_H_A, Angle_H_ 
A_AA, and Hybrid_state (hybridization state of the bond). 
Some other distance-based predictors (Dist_D_AA, Dist_ 
D_A, Dist_H_D), angle-based predictors and Ch_type 
predictor appear often in regression trees, but closer to 
the leaf nodes. They nevertheless play a significant role 
in predicting H-bond stability. For example, as shown in 
Figures 7 and 8, if Angle_H_A_AA is at least 105˚, an H- 
bond has very high stability (about 0.96); otherwise, the 
stability drops to 0.71. The preference for larger angle 
matches well with the well-known linearity of H-bonds 
[20,21].  

Other predictors that are used in splits only occasion-
ally have a less obvious role. A number of predictors 
(such as, Atom_type_A, Atom_type_AA, Resi_type_H, 
Rgd_type) never appeared in our trees. Either they have 
no or very small impact on H-bond stability, or they are 
highly correlated with other more discriminative predic-
tors. 

In order to get a more quantitative measure of the rela-
tive impact of the predictors on H-bond stability, let us 
define the importance of a predictor p in a regression tree 
by:  

     
ps N

I p w s n s


   

where pN  is the set of nodes where the split is made 
using p ,  w s  is the score of the split s , and  n s  
is the number of H-bond occurrences falling into the 
node where split s  is made4. We trained 10 models on 
data tables combining 10% of each the 1c90A, 1e85A, 
1eia, 1g90A_1, 1g90A_2 and complex data tables. Im-
portance scores for each predictor were averaged over 
these models and then linearly scaled to adjust the score 
of the least important predictor (with non-zero average 
importance) equal to 1. The average importance of every 
predictor appearing in at least one model is shown in 
Figure 12. The figure confirms that distance-based and 
angle-based predictors, as well as FIRST_energy, are the 
most important. It also shows that a number of other pre-
dictors—including Resi_name_H, Resi_name_A and 
Range (difference in residue numbers of donor and ac-
ceptor)—have less, but still significant importance. 

Overall, we observe that predictors that describe the 
local environment of an H-bond occurrence play a rela- 
tively small role in predicting its stability. In particular,  

4This measure is not perfect because some predictors are correlated. 
For instance, the value of FIRST_energy is correlated with other pre-
dictors. A better, but more complicated, measure of predictor impor-
tance uses ensembles of trees of a special form [17]. 
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Figure 12. Predictor importance scores. 

we had expected that descriptors such as #29 (Num_hb_ 
spaceNbr ) and #30 (Num_hb_spaceRgdNbr), which count 
the number of other H-bonds located in the neighbor-
hood of the analyzed H-bond, would have had more im-
portance. However, this may reflect the fact that the MD 
simulation trajectories used in our tests are too short to 
contain enough information to infer the role of such pre-
dictors. Indeed, while transitions between meta-stable 
states are rare in those trajectories, predictors describing 
local environments may have greater influence on the 
stability of H-bonds that must break for such transitions 
to happen. So, longer trajectories may eventually be 
needed to better model H-bond stability. 

6. Conclusions and Future Work 

In this paper we have described machine learning meth-
ods to train regression trees modeling H-bond stability in 
a protein. The training and test data are in the form of 
tables whose rows describe H-bond occurrences at suc-
cessive times along Molecular Dynamics simulation tra-
jectories and columns give the values of various predic-
tors. Each node in a regression tree is a Boolean test on a 
predictor. Each row (H-bond occurrence) in a data table 
determines a path in the tree from the root to a leaf node. 
A predicted stability is associated with each leaf node. 
The generated trees are relatively small and easily under-
standable. Trees can be built to predict H-bond stability 
over different time scales. 

Test results demonstrate that trained models can pre-
dict H-bond stability quite well. In particular, we have 
shown that their performance is significantly better 
(roughly 20% better) than that of a model based on H- 
bond energy alone. We have also shown that they can 
accurately identify a large fraction of the least stable H- 
bonds in a given conformation. However, our results also 
suggest that better results could be obtained with a richer 

set of MD simulation trajectories. In particular, the tra-
jectories used in our experiments might be too short to 
characterize the stability of H-bonds that break and form 
during a transition between meta-stable states.  

We believe that the training methods could be im-
proved in several ways: 
 To eliminate thermal noise, predictor values are aver-

aged over time windows of 50 ticks, independent of 
the elapsed time between two ticks (see Section 5.2.5). 
It would be better to averaging predictor values before 
sub-sampling MD simulation trajectories (see Foot-
note 2). This would result in a much shorter averaging 
window, hence it would greatly reduce the risk of fil-
tering out changes in predictor values that are impor-
tant for H-bond stability. Unfortunately, in our trajec-
tories we only had access to the data after sub-sam- 
pling. 

 More sophisticated learning techniques could be used. 
For example, instead of generating a single tree, we 
could generate an ensemble of trees, such as Gradient 
Boosting Trees [22] or Random Forests [23]. A re-
gression tree could also be enriched by using splits on 
linear combinations of predictors and by fitting linear 
regression models at the leaves.  

 We could use rigidity analysis methods such as those 
described in [12] to decompose a protein into rigid 
groups of atoms (based on distance constraints im-
posed by covalent and hydrogen bonds present in the 
current conformation). This would allow us to apply 
Bayesian techniques to align the predicted stability of 
individual H-bonds in the same rigid group. By doing 
so, we could better predict the collective behavior of 
related H-bonds and avoid solitary incorrect predic-
tions. 

 Finally, the notion of stability itself could be refined, 
for example by distinguishing between the case where 
an H-bond frequently switches on and off during a 
prediction window and the case where it rarely 
switches. 
Overall, we believe that considerable progress can still 

be made in learning more accurate and robust models of 
H-bond stability. 
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Appendix A: H-bond Identification 

We use the geometric criteria proposed in [13] to identify 
H-bonds in a protein conformation. These criteria, shown 
in Figure A.1., specify conditions on distances and an-
gles that must be satisfy by the atoms H (hydrogen), D 
(donor), A (acceptor), and AA (the atom covalently 
bonded to A) for the H-bond to be considered present. 

 
Figure A.1. Constraints on H-bond geometry. 

 
 
 
 
 
Appendix B: Computing the Split Score for 
a Numerical Predictor.  

Consider Step 1 (computation of the optimal split value 
of a numerical predictor) in Section 4.1. Let is  and 

1is   be two consecutive candidate split values. Assume 
that we have computed the split score for is  and that 
we now want to compute the score for 1is  . 

As we mentioned in Section 4.1, we can easily find the 
H-bond occurrences that are shifting from the left child L 
of node N to its right child R. Assume for simplicity, all 
predictor values are different. Then only one bond oc- 
currence shifts. Let iy  be measured stability for this 
occurrence. We keep sum of response values (SL, SR) 
and sum of square response values (QL, QR) for left and 
right node, and do the simple update: 

1i i iSL SL y   ; 

1i i iSR SR y   ; 

2
1i i iQL QL y   ; 

2
1i i iQR QR y    

Having these sum updated we immediately calculate 
variance of the response in left and right child as mean of 
the squares minus the square of the mean 

 
2

1 1

1 1
i i

L

QL SL
Var Y

i i
       

; 

 
2

1 1

1 1
i i

R

QR SR
Var Y

n i n i
         

. 

The response variance in the root node does not de-
pend on the split point, so we can easily calculate split 
score now 

     1

1 1
* *i N L R

i n i
W Var Y Var Y Var Y

n n
  

   . 

As a result we can calculate split score in a constant 
time.  

 
 
 
 
 

Appendix C: List of Predictors 
# Feature Name Feature Meaning Type 

Distance-related 
1 Dist_H_D Distance between H and donor (covalent bond length) F 
2 Dist_H_A Distance between H and acceptor (H-bond length) F 
3 Dist_A_AA Distance between acceptor and the atom it covalently bonded to F 
4 Dist_D_A Distance between donor and acceptor F 
5 Dist_D_AA Distance between donor and AA F 
6 Dist_H_AA Distance between H and AA F 

Angle-related 
7 Ang_D_H_A Angle Donor-H-Acceptor F 
8 Ang_H_A_AA Angle H-acceptor-the atom the acceptor covalently bonded to F 
9 Ang_D_A_AA Angle donor-acceptor-the atom the acceptor covalently bonded to F 
10 Ang_planar Angle between plane D-H-A and H-A-AA F 

Atom 
11 Atom_type_D Donor atom type (e.g. O, N, S, C) C 
12 Atom_type_A Acceptor atom type (e.g. N, O, S) C 
13 Atom_type_AA AA atom type (e.g. P, C, S) C 
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Residue 
14 Resi_name_H Donor residue name (3 letter code) C 
15 Resi_name_A Acceptor residue name (3 letter code) C 

16 Resi_type_H 
Donor residue type. Nonpolar (Ala, Val, Leu, Ile, Trp, Met, Pro), Polar_acidic (Asp, 

Glu), Polar_uncharged (Gly, Ser, Thr, Cys, Tyr, Asn, Gln), Polar_basic (Lys, Arg, His)
C 

17 Resi_type_A Acceptor residue type C 
18 Resi_sch_size_H Donor residue side-chain size, i.e. number of atoms in the side-chain F 
19 Resi_sch_size_A Acceptor residue side-chain size F 

Bond structure type 

20 Sec_type 

Secondary structure of the H-bond. MA (H-atom and O-atom are in same helix, middle 
portion), MB (same strand, middle), EA (same helix, end), EB (same strand, end), AL 
(helix-loop), BL (helix-loop), DA (different helices), SL (same loop), DL (different 

loops). Don't have DB (different strands) because it's hard to know which strand pairs 
with which strand to form the sheet. 

C 

21 Ch_type H and O are on mch or sch: MM (mch-mch), MS (mch-sch), SS (sch-sch) C 
22 Rgd_type SR (H and A are in the same rigid body), DR (different rigid body) C 
23 Range Difference in the residue numbers of donor and acceptor, i.e. abs(Residonor-Resiacceptor) F 
24 Hybrid_state Hybridization state (sp2-sp2, sp2-sp3, sp3-sp2, sp3-sp3) C 
25 Num_furcated_H Number of H-bonds share the H-atom as this H-bond F 
26 Num_furcated_A Number of H-bonds share the acceptor as this H-bond F 

Environment 

27 Num_potential_As 
Number of potential acceptors (N, O, or S) in 3Å of H (but not covalently bonded to it) 

besides the current acceptor 
F 

28 Num_hb_seqNbr 
Number of sequence-neighboring H-bonds, i.e., number of H-bonds of residues ±2 of 

Residonor and Resiacceptor 
F 

29 Num_hb_spaceNbr 
Number of space-neighboring H-bonds, i.e., number of H-bonds within 5Å of the 

mid-point of this H-bond 
F 

30 Num_hb_spaceRgdNbr 
Number of space-neighboring H-bonds in the same rigid-body, i.e., number of 
Num_hb_spaceNbr in the same rigid-body as this H-bond (cross-rigid = –100)5 F 

31 Surface Average surface percentage of the H atom and acceptor F 
Energy 

32 FIRST_energy Modified Mayo potential implemented in FIRST [10] F 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

5Here, we first use the FIRST software [TLR + 01] to decompose the 
protein into rigid groups of atoms based on distance constraints im-
posed by covalent and hydrogen bonds present in the current conforma-
tion. Num_hb_spaceRgdNbr is the number of H-bonds located within 
5Å of the mid-point of the analyzed H-bond in the same rigid compo-
nent. 


