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ABSTRACT 

This paper describes a computational model for the implementation of causal learning in cognitive agents. The Con-
scious Emotional Learning Tutoring System (CELTS) is able to provide dynamic fine-tuned assistance to users. The 
integration of a Causal Learning mechanism within CELTS allows CELTS to first establish, through a mix of datamin-
ing algorithms, gross user group models. CELTS then uses these models to find the cause of users' mistakes, evaluate 
their performance, predict their future behavior, and, through a pedagogical knowledge mechanism, decide which tu-
toring intervention fits best. 
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1. Introduction  

Conscious Tutoring System (CTS, [1]) to which we 
added Emotions (E) and Learning (L) is a general cogni- 
tive architecture designed to be put to work as a Tutor for 
astronauts learning to manipulate Canadarm2. Cana- 
darm2 is a robotic arm installed on the International 
Space Station's (ISS). ISS has been designed and imple- 
mented to accommodate scientific experiments and life 
in the space. Thus, it needs to be supplied constantly 
with foods, fuel, inspections, etc. For instance, astronauts 
may use Canadarm2 to charge or discharge the received 
food from the space shuttles. Thus, manipulating Cana- 
darm2 is a difficult task, which requires astronauts to 
undergo a serious amount of training. The seven degrees 
of freedom of the Canadarm2 is the first difficulty to 
overcome, as it considerably increases the number of 
possible operations. The second difficulty is sight limita- 
tion. It is impossible to have an overall view of the sta- 
tion; therefore, theastronaut can only see the arm through 
a steady climb camera installed on the station and on the 
Canadarm2. Furthermore, the astronaut must choose 
among these cameras because there are only three 
screens [2]. 

CELTS’ emotional mechanism simulates the peripher- 
alcentral theory of emotions [2]. The peripheral-central 
approach takes into account both the short and long route 
of information processing and reactions, as in humans. 

Both the short and long routes perform in a parallel and 
complementary fashion in CELTS’ architecture. The 
Emotional Mechanism (EM) learns and at the same time 
contributes emotional valences (positive or negative) to 
the description of the situation. It also contributes to the 
decisions made and the learning achieved by the system.  

CELTS’ Episodic Mechanism (EPM) simulates the 
multiple-trace theory of memory consolidation [2]. The 
multiple-trace theory postulates that every time an event 
causes memory reactivation, a new trace for the activated 
memory is created in the hippocampus. Memory con- 
solidation occurs through the reoccurring loops of epi- 
sodic memory traces in the hippocampus and the con- 
struction of semantic memory traces in the cortex. Thus, 
the cortical neurons continue to rely on the hippocampus 
even after encoding. We used sequential pattern mining 
algorithms to simulate this behavior of memory consoli- 
dation in CELTS. To do so, every informationbroad- 
casted in the system during a training session between 
CELTS and learners is assigned to a specific time. Thus, 
CELTS’ EPM extracts information from registered 
events in the system. Given a problem, EPM is capable 
of finding the best solution among different solutions 
conceived by the expert in its BN [2]. 

One of CELTS’ most significant limitations in its cur- 
rent implementation is its incapacity to find out why a 
learner made a mistake-the causes of the mistake. To 
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address this issue, we propose to implement a Causal 
Learning mechanism (CLM) in CELTS and combine it 
with its existing Emotional Learning mechanism (see [3, 
4] for more details).  

In humans, the process of inductive reasoning stems in 
part from activity in the left prefrontal cortex and the 
amygdala; it is a multimodular process [5]. We base our 
proposed improvements to CELTS’ architecture on this 
same logic. CELTS’ modular and distributed organiza- 
tion is ideal for the use of distinct mathematical methods 
and algorithms that can be tailored to the specific re- 
quirements of the Emotional Learning mechanism and 
the newly integrated CLM. In humans, causal memory is 
influenced by the information retained by the episodic 
memory. Inversely, new experiences are influenced by 
our causal memory [6-9]. 

Furthermore, causal learning is the process through 
which we come to infer and memorize an event’s reasons 
or causes based on previous beliefs and current experi- 
ence that either confirm or invalidate previous beliefs 
[10]. In the context of CELTS, we refer to Causal Learn- 
ing as the use of inductive reasoning to generalize causal 
rules from sets of experiences. CELTS’ observes learn-
ers’ behavior without complete information regarding the 
reasons for their behavior. Our prediction is that, through 
inductive reasoning, CELTS can infer the proper set of 
causal relations from its observations of the learners’ 
behavior. It must be noted that CELTS in its Episodic 
Learning mechanism uses sequential pattern mining al- 
gorithms as a means for deductive reasoning. That is, 
from the information exchanged between learners and 
CELTS, the Episodic learning mechanism infers that if a 
user forgets to adjust the camera before any Canadarm2 
movement and chooses a bad joint, he or she will make a 
collision risk on the ISS.  

The goal of CELTS’ Causal Learning Mechanism 
(CLM) is two-fold: 1) is to find causal relations between 
events during training sessions in order to better assist 
users; and 2) to implement partial procedural learning in 
CELTS’ Behavior Network (BN)1, which is based on 
Maes’ Behavior Network [11]. To implement CELTS’ 
CLM, we draw inspiration from Maldonado’s work [10] 
that defines three hierarchical levels of causal learning: 1) 
the lowest level, responsible for the memorization of task 
execution; 2) the middle level, responsible for the com- 
putation of retrieved information; and 3) the highest level, 
responsible for the integration of this evidence with pre- 
vious causal knowledge.  

In the present paper, we begin with a brief review of 
the existing work concerning the implementation of 

Causal Learning in cognitive agents (Section 2). In sec- 
tion 3, we propose our new architecture combining ele- 
ments of the Emotional mechanism and Causal Learning, 
focusing especially on the two-fold aspect of the causal 
learning mechanism described above. Finally, we present 
results from our experiments with CELTS.  

2. Causal Learning Models and Their 
Implementation in Cognitive Agents 

Scientists propose causal Bayes nets (acyclic graphs) as 
an alternative approach to establishing causal relation 
between events. Different methods are proposed for 
finding causal relations between events such as scientific 
experiments, statistical relations, temporal order, prior 
knowledge, and so forth [12].The key issue for the con- 
struction of a causal Bayes net is finding conditional 
probability between events. Mathematics is used to de- 
scribe conditional and unconditional probabilities be- 
tween a graph’s variables. The structure of a causal graph 
restricts the conditional and unconditional probabilities 
between the graph’s variables. We can find the restric- 
tion between variables using the Causal Markov As- 
sumption (CMA). The CMA suggests that every node in 
an acyclic graph is conditionally independent of its as- 
cendants, given the node’s parents (direct causes). For 
instance, suppose one observes that each time one forgets 
to adjust his car’s side and front mirrors (M), he tends to 
have poor control over the wheel (W) and cause colli- 
sions (C) with other cars. We can link these variables in 
the following way: 1) M → W → C; and 2) W ← M → 
C. The first graph shows that the probability of for- get-
ting mirror adjustment is independent of the probability 
of making a collision with other cars, conditional on the 
occurrence of poor wheel control. The second graph 
demonstrates that the probability of poor wheel control is 
independent of the probability of making a collision with 
other cars and is conditional on forgetting mirror adjust-
ment. The CMA establishes such separation between 
nodes to all acyclic graphs’ nodes. Thus, knowing a 
graphs’s structure and the values of some of the variables, 
we are capable of predicting the conditional probability 
of other variables. Causal Bayes nets are also capable of 
predicting the consequences of direct external interven-
tions on their nodes. When, for instance, an external in-
tervention occurs on a node (N), it must solely change its 
value and not affect other node values in the graph ex-
cept through the node N’s influences. In conclusion, one 
can generate a causal structure from sets of effects and 
conversely predict sets of effects from a causal structure 
[13]. 

To our knowledge, two research groups have at- 
tempted to incorporate Causal Learning mechanisms in 
their cognitive architecture. The first is Schoppek with 

1CELTS’ Behavior Network (BN) (Figure 4(D)) is a high-level proce-
dural memory, a network of partial plans that analyses the context to 
decide what to do, which behavior to set off. 
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the ACT-R architecture [14], who has not included a role 
for emotions in his causal learning and retrieval proc- 
esses. ACT-R constructs the majority of its information 
according to the I/O knowledge base method. It also uses 
a sub-symbolic form of knowledge to produce associa- 
tions between events. As explained by Schoppek [15] 
causal learning in ACT-R occurs through implicit learn- 
ing of information. To learn causes in ACT-R, sub- 
symbolic knowledge applies its influence through activi- 
tion processes that are inaccessible to production rules. 
However, the causal model created by Schoppek in 
ACT-R “overestimates discrimination between old and 
new states” and every assumption for the creation of a 
causal model must be detailed by a programmer. The 
second is Sun [16], who proposed the CLARION archi- 
tecture. In CLARION’s current version, during bottom- 
up learning, the propositions (premises and actions) are 
already present in top level (explicit) modules before the 
learning process starts, and only the links between these 
nodes emerge from the implicit level (rules). Thus, there 
is no unsupervised causal learning for the new rules cre- 
ated in CLARION [17].  

As it is mentioned above, various causal learning 
models have been proposed, such as Gopnik’s [18]. All 
proposed models use a Bayesian approach for the con- 
struction of knowledge. Bayesian networks work with 
hidden and non-hidden data and learn with little data. 
However, Bayesian networks need experts to assign pre- 
defined values to variables, and this is often a very diffi- 
cult and time-consuming task [19]. In the context of a 
tutoring agent like CELTS, this is a serious issue, be- 
cause we wish that CELTS could learn and adapt its 
knowledge of causes automatically without any human 
intervention. Another problem for Bayesian learning, 
crucial in the present context, is the risk of combinatory 
explosion in the case of large amounts of data. In the 
case of our agent, constant interaction with learners cre- 
ate the large amount of data stored in CELTS modules. 
For this last reason, we believe that a combination of 
sequential pattern mining (SPM) algorithms with asso- 
ciation rules (AR) is more appropriate to implement a 
causal learning mechanism in CELTS.  

The other advantage of causal learning using the com- 
bination of AR and SPM is that CELTS can then learn in 
a real-time incremental manner—that is, the system can 
update its information by interacting with various users. 
A final reason for choosing the combination of AR and 
SPM is that the aforementioned problem explained by 
Schoppek, which occurs with ACT-R, cannot occur 
when using association rules for causal learning. How-
ever, it must be noted that although data mining algo- 
rithms learn faster than Bayesian networks when all data 
is available, they have problems with hidden data. Fur- 

thermore, like Bayesian learning, there is a need for ex- 
perts, since the rules found by data mining algorithms 
must be verified by a domain expert [19].  

3. Causal Memory and Causal Learning in 
CELTS’ Architecture 

CELTS architecture relies on the functional “conscious- 
ness” [20] mechanism for much of its operations. It also 
bears some functional similarities with the physiology of 
the nervous system. Its modules communicate with one 
another by contributing information to its Working Me- 
mory through information codelets2 [21] (see [22] for 
more details). Before explaining CELTS’ Causal Learn- 
ing, we will describe in the next subsection in detail our 
causal model for cognitive architectures. 

CELTS’ causal model takes into account the existence 
of specific cognitive processes—be they associative or 
causal.  

CELTS’ Causal Learning takes place during its cogni- 
tive cycles.A cognitive cycle starts by a perception and 
usually ends with an action. It is conceived as an iterative, 
cyclical, active process that allows interactions between 
the different components of the architecture 

After the information from the environment reaches 
CELTS’ Perceptual mechanism (Figure 1), it is sent to 
the Working memory (WM). CELTS’ WM (Figure 1) is 
monitored by expectation codelets and other types of 
codelets (see CELTS’ emotional mechanism for more 
details [23]). If expectation codelets observe information 
coming in WM confirming that the behaviors expected 
result failed, then the failure brings CELTS’ Emotional 
and Attention mechanisms back to that information. To 
deal with the failure, emotional codelets that monitor 
WM first send a portion of emotional valences sufficient 
to get CELTS’ Attention mechanism to select informa- 
tion about the failed result and bring it back to con- 
sciousness. The influence of emotional codelets at this 
point remains for the next cognitive cycles, until CELTS 
finds a solution or has no remedy for the failure. Since 
relevant resources need to be recruited to allow CELTS’ 
modules to analyze the cause of the failure and to allow 
deliberation to take place concerning supplementary 
and/or alternative actions, the consciousness mechanism 
broadcasts this information to all modules. Among dif- 
ferent modules inspecting the broadcasted information 
by the consciousness mechanism, the Episodic and 
Causal Learning mechanisms are also collaborating to 
find previous sequences of events that occurred before    
2Based on Hofstadter et al.’s idea, a codelet is a very simple agent, “a 
small piece of code that is specialized for some comparatively simple 
task”. Implementing Baars theory’s simple processors, codelets do 
much of the processing in the architecture. In our case, each informa-
tion codelet possesses an activation value and an emotional valence 
specific to each cognitive cycle. 
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Figure 1. CELTS’ architecture. 

the failure of the action. These sequences of events are 
the interactions that took place between CELTS and us- 
ers during Canadarm2 manipulation by users in the vir- 
tual world (Figures 2(B)-(D)). They are saved to differ-
ent CELTS’ Memories respecting the temporal ordering 
of the events that occurred between users and CELTS. 
The retrieved sequences of events contain the nodes 
(Figures 2(B)-(D)). Each node contains at least an event 
and an occurrence time (see CELTS’ Episodic Learning 
[23] for more information). For instance, in Figure 2(D), 
different interactions may occur between users and 
CELTS depending on whether the nodes’ preconditions 
in the Behavior Network (BN) become true. Through this 
information, CELTS, using sequential pattern mining 
algorithms, extracts useful information. For example, if a 
user forgets to adjust the camera before he or she moves 
Canadarm2 and consequently chooses an incorrect joint, 
then the user will make collision risk. Such aforemen- 
tioned information is gained through deductive reasoning 
in CELTS. Given such information, we were interested 

in finding the causes of the problem produced by the 
users in the virtual world. To do so, from all past events, 
the Causal Learning mechanism (CLM) constantly ex- 
tracts association rules (e.g. X → Y) between sets of 
events with their confidence and support3 [24]. These 
rules indicate the groups of events that are frequently 
associated to other groups of events. From these associa- 
tion rules, CLM then eliminates the association rules that 
do not meet a minimum confidence and support accord- 
ing to the temporal ordering of events within a given 
time interval. This eliminates a large amount of non- 
causal rules from the retrieved sequences of events. After 
finding the candidate rule as the cause of the failure, 
CELTS’ CLM re-executes it and waits for the user feed-       

 

3Given a transaction database D, defined as a set of transactions T = {t1

t2, , tn} and a set of items I = {i1, i2, , in}, where t1, t2, , tn  I, 

the support of an itemset X  I for a database is denoted as sup(X) and 

is calculated as the number of transactions that contain X. The support 
of a rule X  Y is defined as sup  X Y T . The confidence of a rule 

is defined as conf (X  Y) = sup  X Y /sup(X). 
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Figure 2. Virtual world simulator of Canadarm2 and CELTS’ BN. 
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back. However, if after the execution of the candidate 
rule it turns out that the rule did not help the user to solve 
the problem, then CELTS’ CLM writes in a failure in the 
WM. The failure leads CELTS’ Causal Learning to ex- 
amine other related nodes to the current failure with the 
highest support and confidence. Each time a new node is 
proposed by Causal Learning and executed by BN, an 
expectation node brings back to the consciousness 
mechanism the confirmation from users to make sure 
that the found rule was the cause of the failure. Finally, if 
a new cause is found, it will be integrated in CELTS’ 
Causal Memory. In the end, if o solution can be found, 
the Causal Learning mechanism puts the following mes- 
sage in WM: “I have no solution for this problem.” 

This way of finding causal relations between different 
events is in accordance with what is suggested at the onset 
of this document such as statistical relations, temporal 
order, and prior knowledge.  

After having proposed our causal model for CELTS, 
we now explain in detail the intervention of the causal 
process in CELTS’ cognitive cycles. It is important to 
remember that two routes are possible during CELTS’ 
cognitive cycle—a short route4 (no causal learning oc- 
curs in this route) and a long route (various types of 
learning occur in this route such as episodic, causal and 
procedural). In both cases, the cycle begins with the per- 
ceptual mechanism. Hereafter, we briefly summarize 
each step in the cycle and in italics describe the influence 
of emotions (here called pseudo-amygdala5 or EM and/ 
or of CLM).  

For a visual representation of the process, please refer 
to Figure 1. 

Step 1: The first stage of the cognitive cycle is to 
perceive the environment, that is, to recognize and 
interpret the stimulus (see [1] for more information)6. 

EM: All incoming information is evaluated by the 
Emotional Mechanism when low-level features recog- 
nized by the perceptual mechanism are relayed to the 
emotional codelets, which in turn feed activation to emo- 
tional nodes in the Behavior Network (BN). Strong reac- 
tions from the “pseudo-amygdala” may cause an imme- 
diate reflex reaction in CELTS [23,25]. 

Step 2: The percept enters Working Memory 
(WM): The percept is brought into WM as a network 

of information codelets that covers the many aspects 
of the situation (see [1] for more information). 

CLM: CLM also inspects and fetches WM relevant in- 
formation. Relevant traces from different memories are 
automatically retrieved. These will be sequences of events 
in the form of a list relevant to the new information. The 
sequences include the current event, its relevant rules and 
the residual information from previous cognitive cycles in 
WM. The retrieved traces contain codelet links with other 
codelets. Each time new information codelets enter WM, 
the memory traces are updated depending on the new 
links created between these traces and the new informa- 
tion codelets. Once information is enriched, CLM sends it 
back to the WM. 

Step 3: Memories are probed and other uncon- 
scious resources contribute: All these resources react 
to the last few consciousness broadcasts (internal 
processing may take more than one single cognitive 
cycle).  

Step 4: Coalitions assemble: In the reasoning phase, 
coalitions of information are formed or enriched. At- 
tention codelets join specific coalitions and help them 
compete with other coalitions toward entering “con- 
sciousness.”  

EM: Emotional codelets observe the WM’s content, 
trying to detect and instill energy to codelets believed to 
require it and attach a corresponding emotional tag. As 
a result, emotions influence which information comes to 
consciousness and modulate what will be explicitly 
memorized.  

Step 5: The selected coalition is broadcasted: The 
Attention mechanism spots the most energetic coali- 
tion in WM and submits it to the “access conscious- 
ness,” which broadcasts it to the whole system. With 
this broadcast, any subsystem (appropriate module or 
team of codelets) that recognizes the information may 
react to it.  

CLM: CLM starts by retrieving the past frequently re- 
appearing information that best matches the current in- 
formation resident in WM, ignoring their temporal part. 
This occurs by constantly extracting associated rules 
from the broadcasted information and the list of events 
previously consolidated. Then, CLM eliminates the rules 
that do not meet the temporal ordering of events. 

Steps 6 and 7: Unconscious behavioral resources 
(action selection) are recruited. Among the modules 
that react to broadcasts is the Behavior Network (BN): 
BN plans actions and, by an emergent selection proc- 
ess, decides upon the most appropriate act to adopt. 
The selected Behavior then sends away the behavior 
codelets linked to it.  

EM: When CELTS’ BN starts a deliberation, for in- 
stance to build a plan, the plan is emotionally evaluated 

4The short route is a percept-reaction direct process, which takes place 
when the information received by the perceptual mechanism is strongly 
evaluated by the pseudo-amygdala. The short route is described else-
where see [3,4]. The long route is CELTS’ full cognitive cycle. 
5Let us note that in CELTS, a “pseudo-amygdala” is responsible for 
emotional reactions [2]. 
6The following steps, in bold characters, describe CELTS’ full cogni-
tive cycle. They are the same as in [2]. We restate them here; the dif-
ference is in what occurs during those steps from the causal learning 
perspective, which is in italics. 
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as it is built, the emotions playing a role in the selection 
of the steps. If the looping concerns the evaluation of a 
hypothesis, it gives it an emotional evaluation, perhaps 
from learned lessons from past experiences. 

CLM: The extraction of the rules in step 5, may invoke 
a stream of behaviors related to the current event, with 
activation passing through the links between them (Fig- 
ure 2(D)). At this point CLM waits for CELTS’ Behavior 
Network and CELTS’ Episodic Learning Mechanism 
solution for the ongoing situation) [23]. Then, CLM puts 
its proposition as a solution in CELTS’ WM, if the pro- 
positions from the decision making and the episodic 
learning mechanisms are not energetic enough to be 
chosen by CELTS’ Attention Mechanism. 

Step 8: Action execution: Motor codelets stimulate 
the appropriate muscles or internal processes.  

EM: Emotions influence the execution, for instance in 
the speed and the amplitude of the movements. 

CLM: The stream of behaviors activated in CELTS’ 
BN (Step 7) may receive inhibitory energies, from CLM, 
for some of their particular behaviors. This means that, 
according to CELTS’ experiences, CLM may use a 
shortcut (i.e. eliminate some intermediate nodes) be- 
tween two nodes in behavior Network (BN) to achieve a 
goal (e.g. in Figure (2D) two points v and z). In some 
cases, again according to CELTS’ experiences, CLM 
may prevent the execution of unnecessary behaviors in 
CELTS’ BN during the execution of a stream of behav- 
iors. 

4. The Causal Learning Process 

The following subsections explain in detail the three 
phases of the Causal Learning mechanism as it is imple- 
mented in CELTS’ architecture. 

4.1. The Memory Consolidation Process  

The Causal Memory consolidation process, which occurs 
in the step 2 of CELTS’ cognitive cycle, takes place 
during each CELTS’s cognitive cycle. CELTS’ Causal 
Learning mechanism (CLM) extracts frequently occur- 
ring events from its past experiences, as they were re- 
corded in its different memories [26]. In our context, 
CELTS extracts sequences of events during training ses- 
sions for Canadarm2 manipulation by astronauts inthe 
virtual world [27] (Figure 2(A)).To do so, a trace of 
what occurred in the system is recorded in CELTS’ dif- 
ferent memories during consciousness broadcasts [23]. 
For instance, each event X = (ti, Ai) in CELTS repre- 
sents what happened during a cognitive cycle. The time- 
stamp ti of an event indicates the cognitive cycle number. 
The set of items Ai of an event contains an item that 

represents the coalition of information codelets (see Step 
4 of CELTS’ cognitive cycle) that were broadcasted 
during the cognitive cycle.  

For example, one partial sequence recorded during our 
experimentations was (t = 1, c2), (t = 2, c4). This se- 
quence shows that during cognitive cycle 1 the coalition 
c2 (indicating that user forgot to adjust camera in the 
virtual world) was broadcasted, followed by the broad- 
cast of c4 (indicating that user brought about an immi- 
nent collision in the virtual world). If this subsequence 
appears several times during interactions of learners with 
CELTS, the following rule could be discovered: {Forget- 
camera adjustment (F), Bad joint (B)  {Collision 
risk(C)}. 

4.2. Learning by Extracting Rules from What is 
Broadcasted in CELTS  

The second phase of Causal learning, which occurs in 
Step 5 of CELTS’ cognitive cycle, deals with mining 
rules from the sequences of events recorded for all of 
CELTS’ executions. To do so, the algorithm presented in 
takes as input the sequence database which contains se- 
quences of coalitions that were broadcasted for each 
execution of CELTS, minsup, minconf and User Trace 
which are the traces of what occurs between the current 
user and CELTS. CELTS’ uses the first three parameters 
to discover the set of all causal rules (R1, R2, , Rn) con- 
tained in the database (Figure 3 Step 1). It then tries to 
inspect rules that match with the interactions between the 
current user and CELTS (User trace) in order to dis- 
cover probable causes that could explain the user’s be- 
havior (Step 2). When CELTS does, one cause is re- 
turned. 

The algorithm (Figure 3) performs as follows. 1) In 
STEP1, it saves in a sequence database the sequences of 
nodes (the coalitions) that are broadcasted by CELTS’ 
Behavior Network (BN) during interactions with users to 
solve a problem. Then, in STEP2, the algorithm uses the 
Apriori algorithm [23] for mining association rules be- 
tween nodes. This uncovers association rules of the form 
Ri: NODEi  NODEf, where NODEf and NODEi are 
potential causes and effects of the failure. The meaning 
of an association rule Ri is that if NODEf appears, we are 
likely to also find NODEi in the same sequence. But 
NODEi can appear before or after NODEf. For this rea- 
son, the algorithm reads the original sequence database 
one more time to eliminate rules that do not respect the 
temporal ordering of the events.  

To do this, we use two user-defined thresholds that a 
rule should meet in order to be kept. These thresholds are 
called minimal causal support and minimal causal confi- 
dence. Let s be the number of sequences in the sequence  
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Figure 3. Causal Learning algorithm. 

database. The causal support and confidence of a rule are 
defined respectively as sup(NODEi  NODEf)/s and sup 
(NODEi  NODEf)/sup(NODEi), where sup(X  Y) 
denotes the number of sequences such that NODEi ap- 
pears before () NODEf and sup(NODEi) represents the 
number of sequences containing NODEi (see [28] for 
more details). 

After eliminating the association rules that do not meet 
the minimum causal support and confidence thresholds, 
the set of rules that is kept is the set of all causal rules. A 

causal rule NODEi  NODEf is interpreted as: if NODEi 
occurs, then NODEf is likely to occur thereafter. In that 
case we will call NODEi the cause of the failure and 
NODEf the effect. Note that this definition can be ex- 
tended for rules where the left part and the right part can 
contain more than one node. We here only provide ex- 
amples with rules between two nodes. In Step 2 of the 
algorithm, CLM tries to select the more likely cause for a 
failure. To do so, this algorithm first sets a variable 
named MaxCE to zero. It then computes the causal esti- 
mation (CE) for each rule that matches with User Trace 
by multiplying its support and confidence.  

Causal estimation (CE) of Ri 
= (support of Ri × confidence of Ri) 

This calculation is done for each rule to determine 
which node is the most likely to be the cause (the left 
part of the rule having the highest CE). The CE of a rule 
represents the causal estimation of a rule according to all 
the information that broadcasts in the system. For each 
such rule r, if the CE is higher than MaxCE, MaxCEis 
set to that new value and a variable candidate coalition is 
set to the right part of r. If the CE is lower than MaxCE, 
MaxCE remains intact. Finally, when the algorithm fin- 
ishes iterating over the set of rules, the algorithm returns 
to CELTS’ working memory the node (coalition) Candi- 
dateCoalitions contained in the right part of the rule 
which has the highest CE value.  

Using this method for each node of the retrieved se- 
quence, CELTS’ CLM finds the most probable causes of 
the problem produced by the user while manipulating 
Canadarm2 in the virtual world. This node (coalition) 
will be broadcasted next by CELTS’ consciousness 
mechanism to the user for further confirmation (see the 
next subsection for detail). 

4.3. Construction of CELTS’ Causal Memory 

The creation of CELTS’ Causal Memory (CM) occurs in 
Steps 7 and 8 of the cognitive cycle. The main elements 
of Causal Memory are the rules of the form X  Y. Like 
CELTS’ Behavior Network (BN), the rules’ left and right 
parts are nodes which are the coalitions broadcasted dur- 
ing CELTS’ interactions with users. Each rule has a 
support and a confidence (used to calculate the CE, as 
described in the previous subsection).  

Each new node (such as NODEp) includes a context, 
an action, a result, and one or more causes. The context 
in this newly created node describes an ongoing event. 
The left part of the rule is filled by the node that caused 
the failure. The right part of the rule is considered as the 
effect. In what follows, we explain in detail how causal 
memory is formed. The algorithm is presented in Figure 
4. It takes as parameters the sequence database, the  
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Figure 4. Causal Memory Construction Algorithm. 

maximum causal estimated node (MaxCE) calculated in 
the previous section, and the NODEf which is brought 
about by the user’s error. Given the node NODEf that 
caused the error after execution by CELTS’ BN, CLM 
creates (see Figure 4. Step 1) an empty rule (R) in 
CELTS’ Casual Memory (CM) and copies the informa- 
tion in NODEf into the right part of the rule. During a 
user’s manipulation of Canadarm2, CLM finds, from the 
current sequence of executed nodes, the node NODEp 
executed prior to NODEf which caused the user’s error. 
It then attaches an expectation codelet to node NODEp, 
puts it into the WM to be executed by BN and waits for 
the user’s confirmation to find the cause of the problem. 
If the cause of the failure is NODEp, CLM copies the 
action of node NODEp into the cause of the node NODEf. 
CLM then copies the information of NODEp into the left 
part of the created rule R in CELTS’ Causal Memory and 
makes a direct link between NODEf and NODEp. 

If, however, it turns out that the node NODEp in the 
previous step is not the cause of the error, then CLM 
(Figure 4. Step 2) searches for the node NODEn with the 
next highest CE value (MaxCE, explained in the pre- 
vious subsection). It then, attaches an expectation codelet 
to it, puts it into the WM to be executed by BN and waits 
for the user confirmation. If the cause of the error is 
NODEn, CLM copies its action to the NODEf’s cause 
and all information into the left part of the created rule R 
in CELTS’ CM. Finally to save the traces of what was 
done to find the cause, 1) CLM creates a sequence of 
empty nodes similar to what is retrieved as the sequences 
of executed nodes from CELTS’ different memories, 2) 
assigns NODEn to its first node and NODEf to the last 
node and 3) copies to the sequence created in CM all 
intermediate nodes between NODEn and NODEf, and 
then creates links between them. The nodes NODEn and 
NODEf in this sequence are tagged as the cause and ef- 
fect of the problem that caused the error.  

However, if, in the execution of the node NODEn in 
the previous step, the resulting information brought back 
by the expectation codelet to WM does not meet the ex- 
pected results, CLM then (Figure 4. Step 3) repeatedly 
searches for the node of the sequence from NODEn-1 to 
NODE1 with the highest CE value but less than the 
NODEn’s CE value and pursues the same previous proc- 
esses as explained in steps one and two to find the cause 
of the error. This process will continue for the remaining 
nodes retrieved from CELTS’ LTM if each attempt fails. 
If CELTS cannot find any cause, the message “I cannot 
find the cause of the problem” is shown. 

4.4. Using Mined Patterns to Improve CELTS’ 
Behavior  

The third part of CELTS’ Causal Learning occurs in Step 
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7 and Step 8 of CELTS’ cognitive cycle. It consists of 
improving CELTS’ behavior by making it reuse found 
rules to predict why users are making mistakes, deter- 
mine how to best help them, and in some specific cases, 
to reconstruct the Causal Memory (CM). Finding causes 
will directly influence the actions that will be taken by 
CELTS’ Behavior Network (BN). CELTS’ behavior will 
improve due to the fact that the more it interacts with 
users and they confirm the correctness of the found 
causes for their mistakes or not, the more the estimated 
CE values for the nodes in the rules get reinforced or 
weakened. After some interactions between CELTS and 
the users, CLM may find for instance a chain of interre- 
lated nodes. For instance, in Figure 2(D), the node V is 
usually in relation with node Y and node Y is in relation 
with node Z, according to user confirmations and the 
minimum support and confidence defined by the domain 
expert. For instance, CLM learned after several interac- 
tions with users that 60 % of the time “user chose the 
wrong joints → user makes Canadarm2 pass too close to 
the ISS”. This means that after a while CELTS’ CLM is 
capable of jumping from a start point in the BN to a goal 
and eliminates unnecessary nodes between them.  

However, jumping from one point to a goal point in 
the BN is not always a good decision as CELTS is a tutor 
and some intermediate nodes are very important hints to 
users. To solve this problem, in the first step, we tagged 
the important nodes in the BN as not to be eliminated. 
Thus, some experiments go from one point to the other 
(for instance in Figure 2. Dnodes V → Z), CELTS’ 
CLM makes an obligatory passage through intermediate 
nodes such as node Y and eliminates only unnecessary 
nodes between them. In the second step, to automatically 
eliminate unnecessary nodes that have not been pre- 
tagged by a human expert, we used the aforementioned 
algorithms (previous subsection Figure 4. Step 2 and 
Step 3) for finding causes when the users make an error 
while interacting with CELTS. This means that to 
achieve a goal from a start point in the BN, according to 
CELTS’ experiences with users, CLM must decide to 
preserve important nodes and only eliminate those that 
are unnecessary in the BN (e.g. Figure 2(D) two points v 
and z).  

Finally, it is worth noting that CELTS’ BN is an 
acyclic graph. The Causal Markov Assumption (CMA) 
postulates that for any variable X, X is conditionally in- 
dependent of all other variables in an acyclic causal 
graph (except for its own direct and indirect effects) 
based on its own direct causes. Accordingly, the refined 
BN produced by CLM could be considered a primitive 
proposition for the construction of a causal Bayesian 
network. 

For instance, like the cars’ side and front mirrors ex- 

ample given above, after several interactions with users 
rules are extracted by the algorithms: 1) Forgetting cam- 
era adjustment (F) → Choosing Bad joint (B) → colli- 
sion risk (C); 2) Choosing bad joint (B) ← Forgetting 
camera adjustment (F) → collision risk (C). If we as-
sume that CMA holds, both structures in our example 
entail exactly the same conditional and unconditional 
inde- pendent relationships: In both, F, B and C are de-
pendent and F and C are independent conditional on B 
[18]. Moreover, an important difference between the BN 
and Bayesian Networks is that no node in the BN pos-
sesses a table of conditional probabilities like nodes of 
Bayesian networks do. Instead, the information about 
probabilities is stored in each causal rule as the causal 
confidence and causal support values which can be in-
terpreted as an estimate of the probability P(Y|X) 
[29-31]. 

5. Testing Causal Learning in the New 
CELTS 

To validate CELTS' Causal Learning mechanism (CLM), 
we integrated it into Canadarm2 simulator, our simulator 
designed to train astronauts to manipulate Canadarm2 
(Figure 2(A)). Users were invited to perform arm ma- 
nipulations using the simulator. In these experiments, 
users had to move Canadarm2 from one configuration to 
another in the virtual world while avoiding collisions 
between Canadarm2 and the space station. This is a com- 
plex task, as Canadarm2 has seven joints and the user 
must 1) choose the best three cameras (from a set of 
about twelve cameras on the space station) for viewing 
the environment (since no camera offers a global view of 
the environment), 2) not move Canadarm2 too close to 
the ISS, 3) choose the right joint for the arm movements, 
and 4) adjust parameters of cameras properly. These ex- 
periments sought to validate CELTS’ ability to find the 
causes of mistakes made by users. During these experi- 
ments, we observed that CELTS was able to find the 
causes and propose appropriate hints to help users. Some 
experiments are described next. 

Users’ Learning Situations 
A user learns by practicing Canadarm2 manipulations 
while receiving hints created initially by an expert and 
given to the user by CELTS. We performed more than 
300 CELTS executions of Canadarm2 in the virtual 
world including good moves and dangerous moves, such 
as collisions. During each execution, CELTS chose a 
tutoring scenario depending on the situation. Our ex- 
periments showed that CELTS is often capable of find- 
ing the right causes of problems created by users in dif- 
ferent situations. In what follows, two different experi- 
ments are detailed. 

Experiment 1: Approximate Problem 
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When manipulating Canadarm2, it is important for the 
users to know the exact distance between Canadarm2 
and ISS at all times. This prevents future collisions or 
collision risks on the ISS. Figure 2(D) shows the sce- 
nario created by an expert in the CELTS’ Behavior Net- 
work (BN). This scenario is an intervention by CELTS to 
help the user while manipulating Canadaram2 to avoid 
collisions between Canadaram2 and ISS. The user 
weakly estimated the distance between Canadaram2and 
ISS because 1) the user chose to move the wrong joint; 2) 
the user was tired; 3) the user did not remember his 
course; 4) the user has never passed through this zone. 

As we can see in the Figure 2(D), this is a long sce- 
nario and each time, to find the cause of mistakes made 
by the user, CELTS may be required to interact for a 
long period of time (e.g. asking questions, giving hints, 
and demonstrating some examples) to find the causes 
and provide appropriate feedback. The scenario starts 
when CELTS detects that a user has chosen the wrong 
joint and is moving Canadarm2 too close to the ISS. 
CELTS first prompts the following message: Have you 
ever passed through this zone? 1) If the answer given by 
the user is yes, CELTS asks the user to verify the name 
of the joint that she has selected. If the user fails to an- 
swer correctly, CELTS proposes a hint in the form of a 
demonstration or it stops Canaradm2 manipulation. In 
this case, the user needs to revise the course before start- 
ing Canaradm2 manipulation again; 2) if the user’s an- 
swer is no, CELTS asks her to estimate the distance be- 
tween Canadarm2 and ISS. If the user fails to answer 
correctly then the next hint from CELTS asks the user if 
she is tired or forgot the course about this zone or if he or 
she needs some help; if the user answers correctly, it 
means that the user is an expert user and that the situa- 
tion is not dangerous.  

Interacting with various users and according to the us- 
ers’ answers, CELTS found the following rule 1) 60 % of 
the time “user chose the wrong joints → user makes Ca- 
naradm2 pass too close to the ISS”; 2) in 35% of the time 
“user has never passed through this zone → user ma- 
nipulates near to the ISS”, Figure 2(D); 3) in 5% of the 
time “user is an expert → user makes Canaradm2 pass 
too close to the ISS”.  

It must be noted that the percentage value attributed to 
the extracted rules varies depending on the users’ an-
swers to CELTS’ questions. 

Experiment 2: Camera Adjustment Problem 
As explained above, forgetting to adjust the camera prior 
to moving Canadarm2 increases collision risk (as de- 
picted in Figure 2(A)). During our experiments, we 
noted that users frequently forgot this step, and moreover, 
users frequently did not realize that they had neglected 

this step. This increases the risk of collisions (as depicted 
in Figure 2(A)) in the virtual world. We thus decided to 
implement this situation as a medium-threat situation in 
CELTS’ BN (e.g. Figure 2(D)). 

When a user forgot to perform camera adjustments, 
CELTS had to make a decision; it could either 1) give a 
direct solution such as “You must stop the arm immedi- 
ately” or 2) give a brief hint such as “I think this move- 
ment may cause some problems. Am I wrong or right?” 
or 3) give a proposition such as “Stop moving Cana- 
darm2 and revise your lessons”. Through interactions 
with different users, CELTS recorded sequences of 
events, each of them carrying emotional valences (see  
[2] for more details). 

From the interactions that occurred between CELTS 
and users to solve camera adjustment, CLM drew the 
following conclusions: 1) 60% of the time, “the user is 
tired → the user performs a camera adjustment error”; 2) 
30% of the time, “the user has forgotten this lesson → 
the user performs a camera adjustment error” and 3) 10% 
of the time, “the user lacks motivation → the user is in- 
active”. 

After some trials, CELTS’ CLM is capable of induc- 
ing (by jumping from one point to another point in the 
BN, Figure 2(D)) the source of the users’ mistakes and 
proposing a solution for them in the virtual world. How- 
ever, given that CELTS is a tutor and must interact with 
the user, jumping from the start point to the end of the 
scenario (Figure 2(D), V → Z) causes the elimination of 
some important steps in the BN. To prevent this, as men- 
tioned before, we tagged the important nodes in the BN 
as not to be eliminated. Thus, after some experiments, to 
go from V → Z, CLM obligatorily passed through inter- 
mediate nodes such as node Y in Figure 2(D) We call 
this process as CELTS’ partial Procedural Learning (Step 
8 of CELTS’ cognitive cycle). 

Experiment 3: Complex Situation 
To evaluate the extent of CELTS’ capabilities when 
equipped with CLM, we decided to examine a very com- 
plex path in the virtual world. We considered an exercise 
between two ISS modules, JEMEF01 (labeled and is 
referred as A) and MPLM02 (labeled by red cube and is 
referred to as END) in the virtual world (as shown in 
Figure 5(A)) in which users’ mistakes while moving 
Canadarm2 from configuration A to END are very likely.  

As shown in Figure 5(A), Canadarm2 is very close to 
configuration A. Thus, the exercise starts near to the 
module A and finishes at module END. In the first step 
of this experiment, the user has handled the collision risk 
problem with the configuration A. In the second step, the 
user faces at least four paths, from configuration A to 
END (Figure 5(A)). Importantly, the expert system has  



Identifying Causes Helps a Tutoring System to Better Adapt to Learners during Training Sessions 

Copyright © 2011 SciRes.                                                                                JILSA 

150 

 

Figure 5. Simulation of the International Space Station 
(ISS). 

conceived only three scenarios in the BN regarding only 
three paths with their corresponding obstacles to be 
avoided: P1 (AECDH), P2 (AEBCDH) and P3 (AEFGHD) 
(Figure 5(A)). 

Whichever paths are chosen by the users, obstacles A, 
E, B, C, D, H, G, and F have to be avoided in the virtual 
world to prevent any collision. Therefore, the nodes in 
the BN corresponding to those obstacles in the virtual 
world are marked as “Not to be eliminated”, by the do- 
main expert. 

The domain expert marks Configurations A, C and D 
as very important for the paths P1 and P2. Thus, in con- 
figuration C, in order to go through them without causing 
any collision risk, the user must first rotate camera8 60 
degrees horizontally (Figure 5) and then choose the spe- 
cific joint EP and then joint SP (Figure 5). In configure- 
tion D, the user must first adjust camera6 in order to 
have a good view of obstacles G and H before perform- 
ing any movements. In path P3, the user must respect the 
following steps to prevent collision risk while manipu- 
lating Canarm2 from the configuration A to the END. 
First, in configuration E, camera2 must be turned 30 de- 
grees, and the manipulation must then be continued using 
joint SR. Then, in configuration F, the joint SY must be 
selected and rotated 90 degrees to prevent any collision 
with ISS. In configuration G, the obstacle H must be 

avoided by rotating Canadarm2 60 degrees.  
It must be noted that in “Part One” of this experiment, 

some specific nodes in CELTS’ BN (Figure 5) are 
marked as “not to be eliminated,” since our purpose here 
is to examine CELTS’ capacity to find the best scenario 
among different solutions given by the expert. And in 
“Part two” of this experiment, nodes in CELTS’ BN can 
be eliminated. Thus, CELTS must find: 1) the best Sce- 
nario; 2) the cause of users’ mistakes and eliminate un- 
necessary nodes between points L and T in the BN (Fig- 
ure 5). 

Thus, after a number of interactions with different us- 
ers, we expect CELTS to propose the most self-satisfying 
paths from configuration K to L and eliminate unneces- 
sary nodes between points L to T. The experiment is di- 
vided into two parts: 

Part One  
When the user (Figure 5(A)) begins a manipulation and 
makes a mistake, the precondition of BN nodes activates 
and waits for the relevant information to fire corre- 
sponding nodes and demonstrate a message to the user. 
For instance, the BN node K activates when Canadarm2 
approaches configuration A in the virtual world. To help 
users handle the collision risk problem with configura- 
tion A, the domain expert conceived two paths in 
CELTS’ BN (from points K to L in Figure 5(B)) that 
correspond to this situation in the virtual world. After 
interacting with users at point L, at the end of scenario1 
and scenario2, CELTS asks an evaluation question to be 
sure that the hints or questions given to the users were 
useful and that users are aware of the collision risk in the 
virtual world. 

It must be noted that due to the imminent collision risk, 
users’ incorrect answers to CELTS’ inquiries will acti- 
vate the short route and trigger direct emotional interven- 
tions as explained in CELTS’ cognitive cycles (see [2] 
for more details). 

As explained above, during the collision risk, CELTS 
has here two choices to help users handle the situation. It 
can give a direct solution to the users (scenario2, Figure 
5(B)) or start by providing hints to help them handle the 
situation by themselves (scenario1, Figure 5(B)). 

After many executions, CELTS extracted correspond- 
ing frequent event sequences for the first part of this ex- 
periment (Figure 5(B) from node K to L in the BN), with 
a minimum support (minsup) higher than 0.45. Using the 
information extracted from this experiment, CELTS 
proposed scenario1 to help users prevent collision risk in 
the virtual world (Figure 5(B)), because it contains a 
positive emotional valence as opposed to scenario2. 

Part Two 
In the second part of the experiment, after CELTS 
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learned to choose the best scenario to help users prevent 
collision risk with configuration A (Figure 5(A)), users 
were asked to continue their manipulation and move 
Canadarm2 to the configuration END. CLM learned how 
to help users when they choose paths P1, P2, P3 to move 
Canadarm2 from configuration A to END based on the 
domain experts’ hints and questions in the BN during the 
300 random executions mentioned at the onset of this 
section. 

Here are the details. The extracted information from 
the second part of our experiment is 1) 50% of the time, 
“the user is tired → the user forgot to adjust camera8”; 2) 
40% of the time, “the user is tired → the user performs a 
bad manipulation of Canadarm2”; 3) the remaineder10 % 
rules found by CLM are that “the user is tired → user 
must revise the course”, “the user is tired → user did not 
make a collision risk”, and “the user is tired → user 
wants to continue Canadarm2 manipulation”. Note, how- 
ever, that the third rule found by CLM is not always true. 

Other extracted information demonstrated that 1) 50% 
of the time, “the user forgot to adjust cameras → the user 
had a bad view of ISS’ configurations and Canadarm2; 2) 
20% of the time, the “the user had a bad view of ISS” 
configurations and Canadarm2 → the user caused a col- 
lision risk near obstacles C, D, E, and F; 3) 20% of the 
time “the user forgot to adjust the cameras → the user 
manipulates very near to obstacles G and H”; 4) the re- 
mainder 10% rules found by CLM are that “the user for- 
got to adjust cameras → the user must review the lesson”, 
“the user forgot to adjust cameras → the user adjusted 
camera8”, and “the user was not tired → the user forgot 
to answer questions”.  

The extracted rules in this experiment demonstrate that 
if a user forgets to adjust the cameras in the virtual world, 
he or she will have a bad view of the virtual world and 
this will increase collision risk.  

The extracted rules could be interpreted such that the 
probability of the user forgetting to adjust the cameras is 
independent of the probability of a collision with ISS’ 
configurations, provided that the user has poor visibility 
in the virtual world. The extracted rules could also be 
interpreted such that the probability of having a poor 
view of ISS’ configurations is independent of the prob- 
ability of causing collisions in the virtual world provided 
that the user has forgotten to adjust the camera.  

The percentage values CELTS attributed to the various 
possible causes are true most of the time, although they 
must be verified by a domain expert before use. These 
experiments demonstrated that CELTS is capable of 
choosing the best scenario for a given situation, selecting 
that which has received the highest positive emotional 
valence during its interactions with the users. It is fur- 
thermore capable of eliminating unnecessary nodes in the 

BN. 
The text has referred up to now to paths 1 through 3 in 

the explanation of how to go from configuration A to 
END procedures. However, there exists a path P4 which 
could be considered as a shortcut. 

The relevant obstacles to be avoided for this path are: 
A, E, and D. Ideally, CELTS would eventually ask users 
if they have some information about the obstacles they 
will encounter. However, CELTS cannot ask these ques- 
tions when users choose path P4 prior to starting Cana- 
darm2 manipulation, since the domain expert has not 
conceived relevant scenarios for this path (P4) in 
CELTS’ BN. In this case, CELTS’ CLM automatically 
connects to the CanadarmTutor database [27]. The data- 
base contains different paths that users such as experts 
and novices have previously performed to move Cana- 
darm2 on the ISS. Searching all the information about 
paths, CELTS’ CLM, has the capacity of giving primi-
tive hints to users when they encounter obstacles E, D 
and H in path P4.  

One of our future goals would be to equip CELTS 
with the capacity of asking users about obstacles they 
might encounter in this path, before the manipulation 
starts. 

6. CELTS’ Performance after the 
Implementation of Causal Learning 

The rule mining algorithm explained in this paper was 
tested in different projects. We first explain how the 
proposed algorithm improved CELTS performance. Sec- 
ond we briefly explain the use of the proposed algorithm 
in another e-learning project. Third, we discuss the per- 
formance of the proposed algorithm with real data such 
as biological database. 

1) We performed a second experiment with CELTS’ 
causal learning mechanism, but this time to observe how 
our rule algorithm behaves when the number of recorded 
sequences increases. The experiment was done on a 3.6 
GHz Pentium 4 computer running Windows XP, and 
consisted of performing more than 250 CELTS execu- 
tions for various situations (e.g., scenario 1 and scenario 
2 in Figure 5(B)). In this situation, CELTS conducts a 
dialogue with the user that includes from four to 20 
messages or questions depending on what the user an- 
swers and the choices CELTS makes. During each trial, 
we randomly answered the questions asked by CELTS, 
and took various measures during CELTS' learning 
phase. Each recorded sequence contained approximately 
30 broadcasts. Figure 6 presents the results of the ex- 
periment. For all graphs, the X axis represents the execu- 
tions from 1 to 250. The Y axis denotes execution times 
in graph A, and rule counts in graph B-D. The first graph  



Identifying Causes Helps a Tutoring System to Better Adapt to Learners during Training Sessions 

Copyright © 2011 SciRes.                                                                                JILSA 

152 

 

Figure 6. Data mining algorithms’ performance. 

(A) shows the time for mining rules which was generally 
short (less than 10 s) and after some executions remained 
low and stabilized at around 4 rules during the last exe- 
cutions. In our context, this performance was very satis- 
fying. However, the performance of the rule mining al- 
gorithm could still be improved as we have not yet fully 
optimized all of its processes and data structures. In par- 
ticular, in future works we will consider modifying the 
algorithm to perform incremental mining of rules. The 
second graph (B) shows the number of causal rules found 
after each CELTS execution. This would improve per- 
formance, as it would not be necessary to recalculate 
from scratch the set of patterns for each new added se- 
quence. The third graph (C) shows the average number 
of behaviors executed (nodes in the BN) for each CELTS 
execution without causal learning. It ranges from 4 to 8 
behavior broadcasts. The fourth graph (D) depicts, after 
the implementation of causal learning, the number of 
rules used by CELTS at each execution. Each executed 
rule means that CELTS skip some unnecessary interme-
diate steps in the BN. The average number of executed 
rules for each interaction ranged from 0 to 4 rules. This 
means that CELTS generally used fewer nodes to per-
form the same task after the implementation of causal 
learning. 

2) A second use of the causal rule mining algorithm 
explained in this paper is in an intelligent agent [32]. The 
project is aimed at discovering patterns while observing 
humans performing specific procedural tasks (see [32] 

for more details). Once, the agent learned to perform the 
task it can reuse rules and other kinds of patterns found 
to perform the task by itself or teach the task. The 
mechanism implemented in this agent is different from 
the causal learning mechanism in CELTS, in that it is 
designed to learn a task instead of finding causes, and it 
is not based on cognitive theories. 

3) At this point we discuss very briefly the contribu- 
tions of our algorithm to the field of data mining. The 
first issue is time complexity. Without going into techni- 
cal details, the most costly part of the rule mining algo- 
rithm used in this paper is the the Apriori algorithm. The 
Apriori algorithm time complexity was shown by Hegland 
[33] to be Ο(d2,n) where d is the number of different 
items and n is the number of transactions in the database. 
The elimination of association rules that do not respect 
the temporal ordering to obtain causal rules is performed 
in linear time with respects to the number of sequences 
that contain the antecedent of each rule, the size of each 
sequence, and the total number of rules [28]. However, it 
must be noted that, regarding performance, we have also 
recently designed an alternative algorithm that is faster 
for discovering causal rules and is not based on Apriori 
[32]. Integrating it into CELTS would further improve its 
performance. 

To test the performance of our algorithm for discover- 
ing causal rules from the data mining point of view, we 
have also performed several performance studies that 
have been published in a conference paper on data min- 
ing [28]. These studies were carried out on several large 
real-life datasets such as click-streams data from web- 
sites and biological sequences of proteins. In these stud- 
ies, the data mining procedure has shown good perform- 
ance for datasets having up to 70,000 sequences even 
under very low confidence and support thresholds (for 
example, the algorithm terminated in less than 250 sec- 
onds for minSup = 0.05 and minSeqConf = 0.3 with 
70,000 sequences on one dataset), which demonstrates its 
efficiency for much larger amounts of data than what is 
recorded in CELTS.  

7. Comparison between Different 
Architectures’ Learning Capabilities 

Now we compare CELTS’ learning capabilities with 
three popular architectures: LIDA [34], ACT-R [35] and 
CLARION [16] (Table 1). 

While LIDA is not equipped with Causal Learning, 
CLARION is equipped with supervised Causal Learning. 
However, at this point, there is no computational model 
for causal learning proposed in CLARION. CELTS’ 
Causal Learning Mechanism occurs in an unsupervised 
fashion and through a type of reinforcement learning, for 
it partially depends on the temporal occurrence of the  



Identifying Causes Helps a Tutoring System to Better Adapt to Learners during Training Sessions 

Copyright © 2011 SciRes.                                                                               JILSA 

153

Table 1. Comparison between LIDA, ACT-R, CLARION 
and CELTS ( = the architecture is not equipped with this 
specific learning; X = the learning mechanism is imple-
mented). 

 
LIDA 

(Franklin, 
2006) 

ACT-R  
(Anderson, 

2004) 

CLARION 
(Sun, 2006)

CELTS 
(2010)

Explicit Per-
ceptual 

Learning 
X  X  

Episodic 
Learning 

X X  X 

Explicit Pro-
cedural 

Learning 
X X X X 

Implicit 
Procedural 
Learning 

 X X X 

Emotional 
Learning 
help other 

types of 
learning 

   X 

Bottom-up 
Supervised 
Learning 

X  X X 

Supervised 
Causal 

Learning 
  X X 

Unsupervised 
Causal 

Learning 
 X  X 

 
events and the users’ confirmation. As is the case with 
LIDA’s architecture, CELTS’ bottom-up learning is im- 
plemented for all types of learning such as learning of 
Emotional, Episodic, Procedural and Causal learning. 
CELTS is not equipped with Attention Learning. One of 
our interests is to find a way to integrate it into the archi- 
tecture.  

8. Conclusions 

In this paper, using a combination of sequential pattern 
mining and association rule algorithms, we explained 
how to integrate causal learning in an Emotional Learn- 
ing Tutoring System (CELTS). In CELTS, procedural 
learning is dependent on the causal learning which is 
further dependent upon the episodic learning. All learn- 
ing is influenced by emotions. 

As in the case of humans, the episodic and causal 
memories in CELTS mutually influence each other dur- 
ing interactions with learners. For instance, if the causes 
found by CELTS turn out to be false, it influences the 
support of the causal rules which in turn influences epi- 
sodic memory―the increase or decrease of the events 
supports.  

To our knowledge, researchers in artificial intelligence 
have, up to now, used Bayesian methods to study causal 

reasoning and causal learning models for cognitive 
agents. However, the Bayesian approach is not applica- 
ble when the agent faces large amounts of data. Another 
important issue with Bayesian Networks is that they gen- 
erally require domain experts to specify conditional 
probabilities by hand, which is often a difficult and time- 
consuming task. For CELTS, we chose to use data min- 
ing algorithms instead of Bayesian Networks because we 
wanted to create a completely automatic approach that 
could learn causal knowledge incrementally. The com- 
bination of techniques used (sequential pattern mining 
and association rule mining) is original for proposing a 
causal learning model for cognitive agents.  

However, the causal learning algorithms used in this 
study are not incremental. Therefore, for each CELTS 
execution, the algorithms must read the whole database. 
Another limitation in our work is that given the observed 
data and the confidence and support calculated by 
CELTS’ CLM, the question remains as to how one could 
produce the probability distribution as it exists in Bayes- 
ian Networks. 
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