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ABSTRACT 

In this paper, we present a motion segmentation approach based on the subspace segmentation technique, the genera-
lized PCA. By incorporating the cues from the neighborhood of intensity edges of images, motion segmentation is 
solved under an algebra framework. Our main contribution is to propose a post-processing procedure, which can 
detect the boundaries of motion layers and further determine the layer ordering. Test results on real imagery have con-
firmed the validity of our method. 
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1. Introduction 

An important problem in computer vision is to segment 
moving objects of a scene from a video source, and part-
ly recover the structure or motion information, such as 
foreground and background. With widespread demands 
on video processing, motion segmentation has found 
many direct applications. Video surveillance systems 
seek to automatically identify people, objects, or activi-
ties of interest in a variety of environments with a set of 
stationary cameras. Motion segmentation can provide 
low level motion detection and region tracking cues. 
Another relatively new application is markerless motion 
capture for computer animation. It aims to estimate the 
human body configuration and pose in the real world 
from a video by locating the joint positions over time and 
extracting the articulated structure. 

Motion segmentation is expected to partly recover the 
structure and motion information of moving objects from 
a mutually occluded scene. This includes the following 
main tasks, (1) labeling the regions of a motion layer 
segmentation, i.e. pixels are assigned to several motion 
layers; (2) finding their motion, e.g. each layer has its 
own smooth flow field while discontinuities occur be-
tween layers; (3) determining the layer ordering, as the 
different layers might occlude each other. But motion 
segmentation is not equivalent to object tracking. 
Roughly speaking, object tracking is to track the seg-
mented objects over an image sequence, although the 
extension of the rigidity constraint to multiple frames is 
nontrivial. Motion segmentation aims at the motion lay-
ers of a scene rather than the moving objects. For exam- 

ple, if a moving object contains multiple motions at a 
moment, it may be divided into several motion layers. 
When these motion layers share the same motion, they 
could be merged into a single layer. Hence, motion seg-
mentation usually uses the information from a few suc-
cessive frames. In contrast, object tracking focuses on a 
moving object in a scene. It utilizes the information from 
an image sequence. Motion segmentation plays a role of 
fundamental module in motion analysis and tracking. [1] 
presented a subspace segmentation method to estimate 
the motion models of the motion layers based on two 
successive frames. Built on this subspace segmentation 
method, this paper will further aim at two other basic 
problems of motion segmentation, i.e. the detection of 
motion layer boundaries and depth ordering based on two 
successive frames. The basic idea is to refine a global 
segmentation to solve these two problems. We first ad-
dress this subspace segmentation approach for motion 
model estimation. We then incorporate it with the inten-
sity edge information into a post-processing procedure, 
which refines the layer boundaries and infers the layer 
order between two successive frames. These two proce-
dures form a complete algorithm for motion segmenta-
tion. Our specific contributions in this paper include 1) 
the Polysegment algorithm (a special case of the genera-
lized PCA [2]) is employed to detect the layer boundaries 
in our post-processing procedure, and 2) the cues from 
the intensity edges of images are utilized in the detection 
of the layer boundaries and depth ordering. 

Previous Works 

Although motion segmentation has long been an active 
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area of research, many issues remain open in computer 
vision, such as the layered motion descriptions [3,4], 
occlusion detection and depth ordering [5-7], and estima-
tion of multiple motion models [8,9]. 

Most popular approaches to motion segmentation re-
volve around parsing the optical flow field in an image 
sequence. Because of the well-known aperture problem, 
the motion vector from optical flow computation can 
only be determined in the direction of the local intensity 
gradient. For the sake of completeness of optical flow 
field, it is assumed that the motion is locally smooth. 
Obviously, depth discontinuities and multiple indepen-
dently moving objects usually result in discontinuities of 
the optical flow. The usual approaches are to parameter-
ize the optical flow field and fit a different model (e.g. 
2D affine model) to each moving object, such as the 
layered representation of the motion field [3]. The chal-
lenges of the optical flow-based techniques involve iden-
tifying motion layers (or pixel grouping), detecting layer 
boundaries, and depth ordering. Previous research can 
mostly be grouped into two categories. The first category 
is to determine all of the motion models simultaneously. 
This can be achieved by parameterising the motions and 
segmentation, and using sophisticated statistical tech-
niques to predict the most probable solution. For example, 
Smith et al. in [6] presented a layered motion segmenta-
tion approach under a Bayesian framework by tracking 
edges between frames. In the implementation of their 
proposed scheme, the region edge labels were not direct-
ly applied to the Bayesian model. They were implicitly 
determined by the foreground-background orders of the 
motion layers and the motion layer labels for each region. 
Kumar et al. in [10] presented the learning approach of a 
generative layered representation of a scene for motion 
segmentation. In order to get the initial estimates of 
model, they utilized the loopy belief propagation, and 
further refined the initial estimate by using αβ-swap and 
α-expansion algorithms. The large number of undeter-
mined parameters in their Bayesian models leads to the 
difficult tracking problem in a high dimensional parame-
ter space. The second category is the dominant motion 
approach [11-13]. A single motion is first fitted to all 
pixels, and then to test for pixels that agree with that mo-
tion. This process can be repeated recursively on the out-
lier pixels to provide a full set of layers [12]. The central 
problem faced by this kind of approaches is that it is ex-
tremely difficult to determine the occluded edges of the 
moving regions (or motion layers). Furthermore, this 
problem can result in the failure of depth ordering of 
motion layers. However, analytically reasoning such 
complex cases is impractical. The main reasons are three 
fold. First, the smoothing required by the optical flow 
algorithms makes it difficult to localize the layer boun-

daries. Second, the optical flow field is usually parame-
terized by some 2D motion models (e.g. 2D affine), 
which is the first order approximation of the perspective 
model. It is unreliable to apply a 2D model to the boun-
daries of moving regions. Third, pixels in a neighbor-
hood of the boundaries are in the areas of high intensity 
gradient. Slight errors or image noise can result in pixels 
of a very different intensity, even under the correct mo-
tion estimate [6]. In this paper, we will simplify the 
problem of motion segmentation based on an algebraic 
framework. We will first obtain a rough global segmen-
tation and then refine it afterwards. 

Our work is partially inspired by the subspace seg-
mentation approach to motion model estimation pro-
posed in [1]. This approach can provide a non-iterative 
and global estimation of motion layer segmentation. But 
it is incomplete, since the depth ordering and the detec-
tion of layer boundaries are ignored. In this paper we 
provide a complete solution by developing a novel post- 
processing procedure using the intensity structures of 
edges for the detection of (1) motion layer boundaries 
and (2) the layer order. 

In the remainder of this paper, we first briefly review 
the subspace segmentation approach to motion model 
estimation [1] in section 2. In section 3, a post-processing 
procedure is presented for the detection of the layer 
boundaries and depth ordering. The experimental results 
and analysis are given in section 4. Our conclusion and 
future work are given in section 5. 

2. Motion Segmentation by GPCA-PDA 

The core of our proposed motion segmentation approach 
is the scheme of segmenting hyperplanes in KR , which 
is called the generalized PCA (GPCA) in [2]. Applying 
the GPCA method to motion model estimation has been 
proposed in [1]. But the resulting motion model estima-
tion can only yield coarse motion segmentation, i.e. the 
boundary of the motion layers is very blurry. Our basic 
idea is to further refine the boundary of the resulting mo-
tion layers by a post-processing procedure. Before intro-
ducing our post-processing procedure, we firstly review 
the motion model estimation approach in [1] briefly. The 
two used algorithms, GPCA-PDA Alg. and Polysegment 
Alg., can be found in [2]. (We also briefly introduce 
these two algorithms in Appendix.) 

The first problem to motion segmentation is to obtain 
the layered motion models corresponding to indepen-
dently moving regions in a scene, (i.e. layer segmenta-
tion). We address an algebra approach in terms of a 
known optical flow field which has been presented in [1]. 
Its distinct advantage over the other approaches is that it 
can determine all motion layers simultaneously. 

Given N  measurements of the optical flow  
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In terms of the hyperplane representation in the Ap-
pendix, the solution to the multiple independent affine 
models can be rephrased as follows. Let 
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of the hyperplanes of dimension 3d   in 5R , which is 
expressed as, 
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The original equations of optical flow have finished 
the projection from 5x R  to two individual subspaces 
of 4R  in a natural way, i.e. each new hyperplane in 4R  
can be expressed as, 

   11 12 13 14 1 2 3 4, , , , , , 0a a a a x x x x  . 

Applying the scheme of Equations (A1)-(A4) in Ap-
pendix can yield the desired basis  ( )

1 2,i

i
B b b  for 

each hyperplane iS  in 3R . 
Up to now, one can obtain the initial estimation of all 

of the motion layers simultaneously. This is insufficient 
for motion segmentation, since we also need to determine 
the layer boundaries and the occlusion relationship. Be-
side that, it can be observed that each segmented layer 
contains some small and isolated spurious regions, and 
the resulting layer boundaries wander around the real 
ones. This makes the detection of the layer boundaries 
difficult. The occluded regions take place in the neigh-
borhood of the layer boundaries. If the occluding edges 
can be determined correctly, the occluded regions can be 
segmented correctly. Furthermore, the resulting motion 
layers can also be linked to the occluded regions in terms 
of the occluding edges for the depth ordering. Hence, it is 
a crucial step to determine the occluding edges. Our de-
velopment is based on the following observations (1) the 
intensity edges include the boundaries of motion layers; 
(2) the layer boundaries are not always the occluding 
edges; (3) determining the occluding edges and inferring 
the occlusion relationship can be fulfilled by testing the 
neighborhood of edges.  

We will introduce the intensity edges of images into 
the potential occlusion areas for the detection of occlud-
ing edges in the next section. 

3. Post-Processing Procedure 

Let us consider a single viewpoint. The central problem 

is to detect the occluding edges, because the erroneous 
edge labeling can cause incorrect depth ordering. Most of 
the techniques considered so far employed only the mo-
tion field information for motion segmentation. For each 
frame, all edges, including edges of motion layers and 
textured edges of objects, are presented in the image in-
tensity structure, which can provide the wealth of addi-
tional information to motion estimation. Due to their ex-
treme length, a number of measurements might be taken 
along (or around) them. This leads to a more accurate 
estimation of motion. 

Recent applications have motivated a renewal of mo-
tion segmentation by tracking edges [6,14]. Ogale et al. 
[7] classified the occlusions into three classes. In order to 
deduce the ordinal depth, they had to fill the occluded 
regions. This is to implicitly approximate the occluding 
edges by filling the neighborhood of the layer boundaries. 
[6] provides three fundamental assumptions of the rela-
tionship between regions and edges to identify the edges 
of moving regions. We add an extra assumption (i.e. the 
4th below) and emphasize these four assumptions as fol-
lows. 

1) As an object moves all of the edges associated with 
that object move, with a motion, which may be approx-
imately described by some motion model. 

2) The motions are layered, i.e. one motion takes place 
completely in front of another, and the layers are strictly 
ordered. Typically the layer farthest from the camera is 
referred to as the background, with nearer foreground 
layers in front of this.  

3)An arbitrary segmented image region only belongs 
to one motion model, and hence any occluding boundary 
is visible as a region edge in the image. 

4) For each frame, the intensity edges involve the 
edges of motion layers. 

An important conclusion from these four assumptions 
is that the layer ordering can be uniquely determined if 
the layer of each moving region is known and the oc-
cluding edges are known. [7] presented the relationship 
of motion layers and occluded regions, and further em-
phasized that the motion layer involving the occluded 
region must be behind another one. Even when the layers 
of motion regions are known, ambiguities may still be 
presented in the layer boundary labeling, as shown in 
Figure 1. In Figure 1(a), due to the occluded region C, 
we can infer the occlusion relationship between the mo-
tion regions A and B, while, in Figure 1(b), we cannot 
find out the layer order according to the distinct edges of 
the motion layers. The layer boundaries are not the same 
as the occluding edges. The layer boundaries involve the 
occluding edges, but the layer boundaries are not always 
the occluding edges. It is infeasible to infer the layer or-
der only by the layer boundaries. We can therefore con- 
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(a)                                                (b) 

Figure 1. Illustration of moving regions (A,B) and occluded region (C). (a) The probable layer boundaries are determined by 
extending the moving region to the occluded region; (b) there is no occlusion region between layers A and B. 
 
clude that the occlusion relationship hides behind the 
occluded regions, and identifying the occluding edges 
can reveal the occlusion relationship. The optical flow 
computation can usually identify the coarse occlusion 
regions as a by-product [15], which will be adopted in 
this paper. 

The subspace segmentation approach described in sec-
tion 2 is carried out on a given optical flow field instead 
of the image intensities. Due to the errors from the opti-
cal field (e.g. aperture problem etc.), each resulting mo-
tion layer contains two kinds of artifacts: (1) small iso-
lated regions with texture and (2) dark holes over the 
image plane. It can be observed that a single hole in the 
middle of a foreground layer runs through to the back-
ground layer. Similar problems also exist in the occluded 
regions. Moreover, the resulting boundaries of motion 
layers and their neighborhood are, in general, highly un-
reliable areas. Therefore, the segmentation by the sub-
space segmentation method and the occluded regions 
detected by the optical flow computation cannot offer a 
valid solution to the above two problems. 

Consider the neighborhood of the layer boundaries. It 
can be observed that the occluded regions are involved in 
the neighborhood of the layer boundaries as shown in 
Figure 1(a). The edges’ neighborhood contains the 
wealthy intensity structures of image. This can provide 
us sufficient cues to find the layer boundaries and oc-
cluding edges. We rephrase the problem of layer edge 
detection and depth ordering, and present our postpro-
cessing procedure as follows. 

The motion models of the layers are determined by the 
subspace segmentation approach described in section 2, 
while the layer boundaries and the layers of the occluded 
regions are undetermined. The problem we face here is 
how to determine the layer boundaries and infer the oc-
clusion relationships. In order to do that, we will consider 
the intensity structures of each frame, the relevant occlu-
sion region map (obtained by [15]) and the relevant 
boundary map of the initial motion layers (obtained by 
the subspace segmentation approach). Let us denote in-

tensity edge map as IM , occlusion region map as OM  
and layer edge map as LM  thereafter. The motion of 
intensity edges dominates that of their neighborhood. It is 
straightforward to utilize the intensity structures of the 
neighborhood of the edges for detecting the layer boun-
daries and inferring the occlusion relationship. The pro-
posed post-processing procedure given below is per-
formed over two successive frames, but evidence could 
be accumulated over an image sequence for a more ro-
bust segmentation. 

3.1. Construct Pending Areas 

For each frame, we first determine some pending areas, 
which should involve all potential layer boundaries. Then, 
the detection of layer boundaries is carried out on the 
resulting pending areas accordingly. To this end, we 
place a set of windows w of size .n n  along the edges 
of LM  These small windows might be overlapped to 
each other. Usually each window iw  is determined by 
the OM  and LM  without a fixed size, i.e. it is ex-
pected to be so large that the resulting set of windows 
can cover the occlusion regions OM  and layer edge 
map LM  on the current frame. In our experiments, the 
minimal size n of iw  is set to 10 pixels. 

3.2. Match Scores 

Consider the resulting pending areas ii
W w , which 

contains many intensity edges Il M . The potential 
layer boundaries are involved in .IM  in terms of the 
assumption (4). Thus, for each window iw , we can 
compute the profile of every point p, which is defined as 
a vector  pf p  by sampling the intensity derivative in 
the positive and negative directions of the intensity gra-
dient at p. This is illustrated in Figure 2. The point pro-
file is then normalized as, 

   
 jj

pf p
pf p

pf p



.          (1) 

According to the optical flow field, one can get a pair 
of corresponding points p  and p  respectively on two 

A 

A

B 

B 

C 
? 

Possible layer boundaries Layer boundary
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Figure 2. Illustration of point profiles and refining the 
matching point. Refining procedure is carried out as 1D 
search along the normal line on the frame 2. 
 
successive frames. The match score is taken as the resi-
dual error of their profiles as follows, 

 
     

2
1( )

0 2

iipf p pf p
e p Exp



    
 
 

, 

where   is a reference distance and is determined em-
pirically. When the point p  is far away from layer 
boundaries,  0e p  should approach one, i.e. the 
neighborhood of p obeys a single motion. Otherwise its 
neighborhood contains multiple motions. Furthermore, 
we can obtain other two match scores respectively along 
either side profile of the current point p , denoted as 
   1 2,e p e p . If point p belongs to a layer boundary, one 

of these two scores should approach one while the other 
should approach zero, otherwise both of them should 
approach one. 

3.3. Matching 

Because of the aperture problem, the motion of edges can 
only be determined in the direction normal to the edge. 
This means that the corresponding point p  of the next 
frame ( 1i  ) lies on the normal line, which is the normal 
at point p on the current frame (i). This is useful as it 
restricts matching isointensity contour on the frame ( 1i  ) 
along the edge normal. In order to enhance the intensity 
edge matching, we add a new match score that is the re-
sidual error  0e p  of the profiles of p  and p  
along the edge tangent line, which is shown in Figure 2. 
Refining the matching point p  on the next frame ( 1i  ) 
is thus implemented as a 1D search based on the match  

score of     0 0e p e p  along the direction of point 

 p’s gradient (i.e. the normal line) instead of point p ’s 
gradient, which is also illustrated in Figure 2. After that, 
one can re-compute the match scores 0 1 2, ,e e e  of the 
points p  and p  in terms of their individual intensity 
gradients rather than the normal line. 

3.4. Segmentation by Polysegment Alg. 

Based on the match scores 0 1 2, ,e e e  in the pending areas 
W , we apply the Polysegment algorithm as described in 
the Appendix respectively to the match scores of  

0 1 2, ,e e e  for the layer edge detection. There are two 
groups here, one is the group of layer edge points and the 
other is that of non-layer edge points. For each match 
score, we can thus get two cluster centers  

 ( ) ( ) ( )
1 2, , 0,1, 2i i i i    . Moreover, to the points  

p W , there are eight cluster centers. The layer edge 
points should cluster around the two centers of 

 (0) (1) (2)
1 min ,min ,maxcent     

and 

 (0) (1) (2)
2 min ,max ,mincent    . 

The segmentation of W  is obtained as follows, 

  2

1, ,8
arg min j

j
i e p cent


 


,          (2) 

where     0 1 2, ,e p e e e p . On this basis, the points of 
W  can be classified into two groups, layer edge points 
and non-layer edge points. 

3.5. Region Merging 

For the group of non-layer edge points, one can merge 
most of small spurious regions in a big motion layer, i.e. 
merging small regions with a motion layer by comparing 
their areas with their individual neighbors’. This can lead 
to the connected layer. But it can be observed that the 
detected layer boundaries usually have discontinuities 
with the group of layer edge points, i.e. a set of layer 
edge segments. This is due to the fact that some layer 
edge points are incorrectly classified into the group of 
non-layer edge points. Based on the areas of the seg-
mented layer regions, it is impossible to make a correct 
decision of region merging when these small regions 
may contain layer edge segments. This is because the 
layer edge segments indicate that the both sides should 
respectively occupy different motion layers and could not 
be merged into a single layer at anytime. These regions 
are thus left as the undetermined regions temporarily. 

On the other hand, a connected layer has a continuous 
boundary LM . These layer edge segments only prune 
the region of the layer, but do not form new closed re-
gions within the layer. In our experiments, we simply 
replace some parts of LM  with the new layer edge 
segments according to the nearest neighbor criterion. 
Then, the area comparison strategy is employed to those 
undetermined regions nearby the layer boundary for re-
gion merging. A layer edge segment separates one region 
into two motion layers. When merging two or more un-
determined regions which share a layer edge segment, 
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the merging procedure should be terminated. 

3.6. Depth Ordering 

After region merging, one can obtain the desired bounda-
ries of motion layers LM . If the occluded regions be-
long to a motion layer, this layer must be behind another 
one. Our problem can now be rephrased as HOW to as-
sign the occluded regions to the known motion layers. 

With the occlusion region map OM , one can first de-
termine which points of the layer boundaries belong to 
the occluding edges, since the layer boundaries involve 
the occluding edges. The worst case is that the points of 
the occluding edges are not within OM . But both side 
profiles of these points should overlap with OM  at that 
moment. On this basis, one can determine the points of 
the occluding edges by checking if they are within OM  
or their profiles overlap with OM . Since some points of 
layer boundaries may not belong to the occluding edges, 
such as in Figure 1(b), the depth ordering can only carry 
out on the detected occluding edges. Then, for the points 
of the occluding edges, one can extend their profiles in 
the direction of the intensity gradient to the known mo-
tion layers for their profile labeling, i.e. inferring which 
layers both sides of the occluding edges respectively be-
long to. 

Furthermore, inferring the occlusion relationship can 
be fulfilled by comparing the match scores  
   1 2,e p e p  of each point p of the occluding edges. 

This is because an occluded region only shares the same 
motion layer with one of the profiles of an occluding 
edge. The smaller match score corresponds to the real 
occlusion region. This implies that one side of an oc-
cluding edge with the smaller match score is behind the 
other side, since it involves the occlusion region. In terms 
of the profile labeling of the occluding edge points, we 
can therefore find ordinal depth. 

The Post-processing procedure is summarized as 
follows: 

1) Extracting the pending areas W  on each frame; 
2) Refining the corresponding points p  on the next 

frame ( 1i  ), and then re-compute the match scores 
     0 1 2, ,e p e p e p ; 
3) Applying the polysegment algorithm to the match 

scores of W for detecting the points of layer boundaries; 
4) Merging the spurious regions for the continuous 

boundaries of the motion layers; 
5) Determining the occluding edges in terms of OM ; 
6) Extending the profiles of the occluding edge points 

to the known motion layers for the profile labeling; 
7) Comparing the match scores    1 2,e p e p  of the 

occluding edge points p for depth ordering, i.e. 
    1 2min ,e p e p  corresponds to the occluded region. 

This post-processing procedure and the subspace seg-

mentation approach described in section 2 constitute a 
complete algorithm of motion segmentation. Note that in 
our algorithm, the estimation of all the motion models in 
a scene is undertaken at the first procedure (i.e. subspace 
segmentation method), and the detection of the layer 
boundaries and depth ordering are carried out at the 
second procedure (i.e. post-processing procedure). This 
is different from the previous approaches. Usually the 
motion model estimation was mixed with the later 
processing. This makes the algorithms complicated and 
the implementation difficult. 

4. Experiments and Analysis 

Our algorithm was tested on several image sequences. In 
this section, the two results of the “flower garden” and 
“Susie calling” are presented. All programs have been 
implemented on the MatLab platform using a publicly 
available package—GPCA-PDA [16] and the optical 
flow code in [15]. All the image sequences used in our 
experiments are available at [17]. 

4.1. Flower Garden 

In this experiment, we applied our motion segmentation 
approach to the flower garden sequence of resolution 
175×120 pixels. The tree trunk in front of a garden is 
taken by a camera undergoing translation from the left to 
the right. Our goal is to determine the boundaries of the 
motion layers, and find the layer order over two succes-
sive frames. Our approach found out two motion layers, 
the tree trunk and garden background. 

Figure 3 gives the segmentation of the affine model 
using the subspace segmentation approach described in 
section 2. It can be noted that the occlusion regions from 
the optical flow fields are crude, and contain many spu-
rious small regions. The red arrows illustrate the possible 
occlusion regions in the successive frame 1 and 2. We 
show the results of motion segmentation of frame 1 in 
Figure 3(1)-(3). Note that the occlusion regions in Fig-
ure 3(2) and (3), which are not the layer boundaries, are 
the interim areas between the foreground and background. 
It is impossible to determine the depth ordering using the 
obtained motion layers before determining the layers of 
the occluded regions. In addition, the resulting layer 
boundaries are also unreliable. Similar to the occluded 
regions, there are many small and isolated spurious re-
gions on the obtained layers. We need to refine the layer 
boundaries and find out the layer order. 

Figure 4 gives the segmentation results of the sub-
space segmentation approach followed by the post- 
processing procedure described in section 3. The boun-
daries of motion layers can go across the occluded re-
gions and converge to the desired locations. But we can 
also note that a patch of ground is classified as the fore- 
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frame 1                                      frame 2 

   
(1). Occlusion regions                (2).                              (3). 

Figure 3. Motion segmentation results by the subspace segmentation approach only. (1) The occlusion regions from the opti-
cal flow field between frame 1 and 2; (2) and (3) are the segmentation results only using the subspace segmentation approach 
described in section 2. 
 

  
(1). Foreground                   (2). Background 

  
(3). Intensity edge map             (4). Occluding edges (red) 

Figure 4. Refined and layered motion segmentation. (1) and (2) are the segmentation results; (3) the intensity edges of the 
image; (4) occluded region and occluding edges. 
 
ground as shown in Figure 4(1). This is due to the fact 
that the motion variance of this patch between the suc-
cessive frames 1 and 2 is close to that of the “tree”, away 
from the background. If going through over multiple 
frames, the motion of this patch should be distinguished 
from the “tree”, since the motion of the ground is prone 
to be modeled by a single affine model. The intensity 
edge map of frame 1 is obtained by the Canny edge de-
tector, and also shown in Figure 4(3). It can be observed 
that the boundaries of motion layers are involved in the 
intensity edge map, e.g. the red arrows illustrate the cor-
responding edges between the layer boundaries and the 
intensity edges of the image. Moreover, we also show the 

occlusion edges (red) in Figure 4(4). Partial occluding 
edges are not involved in the initial occlusion regions. 
But, the profiles of these edge points overlap with the 
occlusion regions. These points can thus be joined with 
the occluding edges. Additionally, it can be noted that the 
layer boundaries involve the occluding edges, but the 
layer boundaries are not always the occluding edges. 
Locating the occluding edges can help us find the depth 
ordering. 

4.2. Susie Calling 

This sequence presents a hand holding a phone while the 
head is rising slightly. The image resolution is 170120  
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frame 1                 frame 2                   (1). Background           (2). Phone regions 

    
(3). Head region            (4). Background           (5). Phone regions         (6). Head region 

 
(7). Occluded region 

Figure 5. The segmentation of the Susie calling. (1)-(3) are the results of the subspace segmentation method; (4)-(6) are the 
results of the post-processing procedure; (7) the layer boundary goes through the occluded regions. 
 
pixels. It can be observed that the region of the phone is 
enwrapped by the head region. Our segmentation appro- 
ach aims at separating the phone region from the head 
region. The segmentation results are shown in Figure 5. 
The region of phone is in front of the regions of head and 
background. The background region is behind the head 
region. 

Due to the rich texture of the hair, the segmented head 
region contains many small holes, particularly in the hair 
area. It is difficult to determine the boundaries of the hair. 
For example, in Figure 5(2), a patch of hair image is 
incorrectly classified into the group of the phone region. 
The post-processing could not merge this patch into the 
head region either, as shown in Figure 5(4)-(6). This is 
because the detected layer edge segments goes through 
the occluded regions as shown in Figure 5(7). Moreover, 
it has been judged that the regions of the phone and the 
hair patch are in front of the head region. This seems to 
be a bit strange. In general, the hair patch belongs to the 
head region. All the hair should be regarded as a whole 
body on the head and there is no occlusion to each other 
(unless the hairlines are considered). But it can be ob-
served that the occluded regions overlying on the layer 
boundary appear at the bottom right of the image, i.e. 
around the boundaries between the shoulder and the hair. 
The motion of the hair is independent of that of the 
shoulder. The shoulder region is classified into the head 
region. Thus, it is acceptable to preserve this patch as an 
independent layer as shown in Figure 5(5). 

5. Conclusions 

In this paper, we proposed a novel approach for motion 

segmentation based on the subspace segmentation tech-
niques. The novelty is that by incorporating the intensity 
structures of images, our proposed approach can effec-
tively detect the motion layer boundaries and the depth 
ordering. Different from the previous motion segmenta-
tion approaches, our approach provides a non-iterative 
and global solution to motion segmentation under a uni-
fied algebra framework, i.e. the generalized PCA [2,18]. 

However, it can be noted that our algorithm relies on a 
given optical flow field. In our experiments, many avail-
able optical flow algorithms do not seem suitable for the 
scenarios with a salient rotation element. This will re-
strict the applications of our algorithm. It is crucial to 
further develop a robust optical flow algorithm. Our fu-
ture work will aim to tackle this challenge. 

REFERENCES 

[1] R. Vidal and Y. Ma, “A Unified Algebraic Approach to 
2-D and 3-D Motion Segmentation,” Journal of Mathe-
matical Imaging and Vision, Vol. 25, No. 3, 2006, pp. 
403-421. doi:10.1007/s10851-006-8286-z 

[2] R. Vidal, Y. Ma and S. Sastry, “Generalized Principal 
Component Analysis (GPCA),” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 27, No. 
12, 2005, pp. 1-15. doi:10.1109/TPAMI.2005.244 

[3] J. Y. A. Wang and E. H. Adelson, “Layered Representa-
tion for Motion Analysis,” IEEE Conference on Comput-
er Vision and Pattern Recognition, New York, 15-17 
June 1993, pp. 361-366. doi:10.1109/CVPR.1993.341105 

[4] R. Szeliski, S. Avidan and P. Anandan, “Layer Extraction 
from Multiple Images Containing Reflections and Trans-



Apply GPCA to Motion Segmentation 

Copyright © 2011 SciRes.                                                                                JILSA 

53

parency,” IEEE Conference on Computer Vision and 
Pattern Recognition, Hilton Head, 13-15 June 2000, pp. 
246-253. 

[5] M. J. Black and D. J. Fleet, “Probabilistic Detection and 
Tracking of Motion Boundaries,” International Journal of 
Computer Vision, Vol. 38, No. 3, 2000, pp. 231-245. 
doi:10.1023/A:1008195307933 

[6] P. Smith, T. Drummond and R. Cipolla, “Layered Motion 
Segmentation and Depth Ordering by Tracking Edges,” 
IEEE Transactions on Pattern Analysis and Machine In-
telligence, Vol. 26, No. 4, 2004, pp. 479-494. 
doi:10.1109/TPAMI.2004.1265863 

[7] A. S. Ogale, C. Fermuller and Y. Aloimonos, “Motion 
Segmentation Using Occlusions,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 27, No. 
6, 2005, pp. 988-992. doi:10.1109/TPAMI.2005.123 

[8] D. J. Fleet, M. J. Black, Y. Yacoob and A. D. Jepson, 
“Design and Use of Linear Models for Image Motion 
Analysis,” International Journal Computer Vision, Vol. 
36, No. 3, 2000, pp. 171-193. doi:10.1023/A:100815620 
2475 

[9] W. Yu, G. Sommer and K. Daniilidis, “Multiple Motion 
Analysis: In Spatial or in Spectral Domain,” Computer 
Vision and Image Understanding, Vol. 90, No. 2, 2003, 
pp. 129-152. doi:10.1016/S1077-3142(03)00011-0 

[10] M. P. Kumar, P. H. S. Torr and A. Zisserma, “Learning 
Layered Motion Segmentation of Video,” Proceedings of 
the 10th IEEE International Conference on Computer Vi-
sion, Beijing, 17-20 October 2005, pp. 33-40. doi:10.110 
9/ICCV.2005.138 

[11] M. Irani, P. Anandan, J. Bergen, R. Kumar and S. Hsu, 
“Efficient Representations of Video Sequences and Their 

Representations,” Signal Processing: Image Communica-
tion, Vol. 8, No. 4, 1996, pp. 327-351. doi:10.1016/0923- 
5965(95)00055-0 

[12] M. Irani, B. Rousso and S. Peleg, “Computing Occluding 
and Transparent Motions,” International Journal of 
Computer Vision, Vol. 2, No. 1, 1994, pp. 5-16. doi:10. 
1007/BF01420982 

[13] G. Csurka and P. Bouthemy, “Direct Identification of 
Moving Objects and Background from 2D Motion Mod-
els,” Proceedings of IEEE International Conference of 
Computer Vision, Kerkyra, 20-27 September 1999, pp. 
566-571. doi:10.1109/ICCV.1999.791274 

[14] T. Papadimitriou and K. I. Diamantaras, et al., “Video 
Scene Segmentation Using Spatial Contours and 3D Ro-
bust Motion Estimation,” IEEE Transactions on Circuits 
and Systems for Video Technology, Vol. 14, No. 4, 2004, 
pp. 485-497. doi:10.1109/TCSVT.2004.825562 

[15] A. S. Ogale and Y. Aloimonos, “A Roadmap to the Inte-
gration of Early Visual Modules,” International Journal 
of Computer Vision, Vol. 72, No. 1, 2007, pp. 9-25. doi: 
10.1007/s11263-006-8890-9 

[16] Generalized Principal Components Analysis matlab 
codes available at http://perception.csl.uiuc.edu/gpca/ 

[17] Video sequences available at http://www.cipr.rpi.edu/ 
resource/sequences/ 

[18] R. Vidal, “Generalized Principal Component Analysis 
(GPCA): An Algebraic Geometric Approach to Subspace 
Clustering and Motion Segmentation,” Ph.D. Thesis, 
Electrical Engineering and Computer Sciences, Universi-
ty of California at Berkeley, 2003. 

 

 

 

Appendix 

Segmenting Hyperplanes of Dimension K–1 in 
KR  

Given a set of points  ( )
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where, N m
nL R  . When the number of hyperplanes n  

is known, nc  can be obtained from the null space of 

nL . In practice, n  is always determined in terms of nL . 
For a unique solution of the coefficient vector nc , it is 
expected that    , 1nrank L m n K  , which is a func-
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tion of variable n. In the presence of noise, let  

 irank L r  when n i  and 1
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r j
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  
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 , where  

iL  is the data matrix with rank r , j  is the jth sin-
gular value of iL  and  is a given threshold. 

For any x , we have    T
n np x c y x . Each normal 

vector ( )ib  can be obtained from the derivatives of np . 
Consider the derivative of  np x  as follows 
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In order to get a set of points lying on each hyperplane 
respectively, so as to determine the corresponding nor-
mal vectors ( )ib , we can choose a point in the given X 
close to one of the hyperplanes as follows, 
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After given the normal vectors  ( )ib , we can classify 

the whole point set X into n hyperplanes in KR  as fol-
lows, 

 ( )arg min , 1T j

j
label x b j n         (A4) 

This algorithm is called GPCA-PDA Alg. in [2,18]. 

Polynomial Segmentation Algorithm 

Consider a special case of piecewise constant data. Given 
N data points x R , we hope to segment them into an 
unknown number of groups n. This implies that there 
exist n unknown cluster centers 1 n   , so that, 

   1 nx x   , 

which can be described in a polynomial form as follows, 
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To N data points, we have, 
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where ( 1)N n
nL R    and 1nc R  . Usually, the group 

number is estimated as, 

 1min : i in i               (A7) 

where i  is the ith singular value of iL , which is the 
collection of the first 1i   columns of nL , and  is a 
given threshold that depends on the noise level. 

After solving the coefficient vector c of Equation (A6), 
we can compute the n roots of  np x , which corres-
pond to the n cluster centers 1{ }n

i i  . Finally, the seg-
mentation of the date is obtained by, 
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The scheme of Equations (A5)-(A8) is called as the 
Polysegment algorithm in [18]. 

 

 

 

 

 


