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ABSTRACT 

Traditional geostatistical estimation techniques have been used predominantly by the mining industry for ore reserve 
estimation. Determination of mineral reserve has posed considerable challenge to mining engineers due to the geo-
logical complexities of ore body formation. Extensive research over the years has resulted in the development of several 
state-of-the-art methods for predictive spatial mapping, which could be used for ore reserve estimation; and recent ad-
vances in the use of machine learning algorithms (MLA) have provided a new approach for solving the problem of ore 
reserve estimation. The focus of the present study was on the use of two MLA for estimating ore reserve: namely, neural 
networks (NN) and support vector machines (SVM). Application of MLA and the various issues involved with using 
them for reserve estimation have been elaborated with the help of a complex drill-hole dataset that exhibits the typical 
properties of sparseness and impreciseness that might be associated with a mining dataset. To investigate the accuracy 
and applicability of MLA for ore reserve estimation, the generalization ability of NN and SVM was compared with the 
geostatistical ordinary kriging (OK) method. 
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1. Introduction 

Estimation of ore reserve is essentially one of the most 
important platforms upon which a successful mining op-
eration is planned and designed. Reserve estimation is a 
statistical problem and involves determination of the 
value (or quantity) of the ore in unsampled areas from a 
set of sample data (usually drill-hole samples) X1, X2, 
X3, …. Xn collected at specific locations within a deposit. 
During this process, it is assumed that the samples used 
to infer the unknown population or underlying function 
responsible for the data are random and independent of 
each other. Since the accuracy of grade estimation is one 
of the key factors for effective mine planning, design, 
and grade control, estimation methodologies have un-
dergone a great deal of improvement, keeping pace with 
the advancement of technology. There are a number of 
methodologies [1-6] that can be used for ore reserve estima-
tion. The merits and demerits associated with these 
methodologies determine their application for a particu-

lar scenario. The most common and widely used methods 
are the traditional geostatistical estimation techniques of 
kriging. Typically, the previously mentioned criteria of 
randomness and independence among the samples are 
rarely observed. The samples are correlated spatially, and 
this spatial relationship is incorporated in the traditional 
geostatistical estimation procedure. The resulting infor-
mation is contained in a tool known as the “variogram 
function,” which describes both graphically and numeri-
cally the continuity of mineralization within a deposit. 
The information can also be used to study the anisot-
ropies, zones of influence, and variability of ore grade 
values in the deposit. Although kriging estimators find a 
wide range of application in several fields, their estima-
tion ability depends largely on the quality of usable data. 
Usable data applies to the presence of good and sufficient 
data to map the spatial correlation structure. Their per-
formance is also appreciably better when a linear rela-
tionship exists between the input and output patterns. In 
real life, however, this is extremely unlikely. Even though 
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there are a number of kriging versions, such as log-nor-
mal kriging and indicator kriging that apply certain spe-
cific transformations to capture nonlinear relationships, 
they may not be efficient enough to capture the broad 
nature of spatial nonlinearity. 

Modernization and recent developments in computing 
technologies have produced several machine learning 
algorithms (MLA), for example, neural networks (NN) 
and support vector machines (SVM), that operate non- 
linearly. These artificial MLA learn the underlying func-
tional relationship inherently present in the data from the 
samples that are made available to them. The attractive-
ness of these nonlinear estimators lies in their ability to 
work in a black-box manner. Given sufficient data and 
appropriate training, they can learn the relationship be-
tween input patterns (such as coordinates) and output 
patterns (such as ore grades) in order to generalize and 
interpolate ore grades for areas between drill holes. With 
this approach, no assumptions must be made about fac-
tors or relationships of ore grade spatial variations, such 
as linearity, between boreholes. 

This study investigated ore-reserve estimation capa-
bilities of NN and SVM in the Nome gold deposit under 
data-sparse conditions. The performance of these MLA is 
validated by comparing results with the traditional ordi-
nary kriging (OK) technique. Several issues pertaining 
to model development are also addressed. Various es-
timation errors, namely, root mean square error (RMSE), 
mean absolute error (MAE), bias or mean error (ME), 
and Pearson’s correlation coefficient, were used as 
mea-sures to assess the relative performance of all the 
models. 

2. Nome Gold Deposit and Data Sparseness 

The Nome district is located on the south shore of the 
Seward Peninsula roughly at latitude 64°30’N and lon-
gitude 165°30’W. It is 840 km west of Fairbanks and 
860 km northwest of Anchorage (Figure 1). Placer gold 
at Nome was discovered in 1898. Gold and antimony 
have been produced from lode deposits in this district, 
and tungsten concentrates have been produced from re-
sidual material above the scheelite-bearing lodes near 
Nome. Other valuable metals, including iron, copper, 
bismuth, molybdenum, lead, and zinc, are also reported 
in the Nome district. 

[7] and [8] studied the Nome ore deposit and presented 
an excellent summary regarding its origins by chroni-
cling their exploration and speculating on the chronology 
of events in the complex regional glacial history that al-
lowed the formation and preservation of the deposit. 
Apart from the research just mentioned, several inde-
pendent agencies have carried out exploration work in 
this area over the last few decades. Figure 2 shows the 

composition of the offshore placer gold deposit. Alto-
gether, around 3500 exploration drill holes have been 
made available by the various sampling explorations in 
the 22,000-acre Nome district. The lease boundary is 
arbitrarily divided into nine blocks named Coho, Halibut, 
Herring, Humpy, King, Pink, Red, Silver, and Tomcod. 
These blocks represent a significant gold resource in the 
Nome area that could be mined economically.  

The present study was conducted in the Red block of 
the Nome deposit. Four hundred ninety-seven drill-hole 
samples form the data used for the investigation. Al-
though the length of each segment of core sample col-
lected from bottom sediment of the sea floor varied con-
siderably, the cores were sampled at roughly 1 m inter-
vals. On average, each hole was drilled to a depth of 30 m 
underneath the sea floor. Even though a database com-
piled from the core samples of each drill hole was made 
available, an earlier study by [9] revealed that most of the 
gold is concentrated within the top 5 m of bottom sedi-
ment of the sea floor. As a result, raw drill-hole samples 
were composited of the first 5 m of sea floor bottom 
sediment. These drill-hole composites were eventually 
used for ore grade modeling using NN, SVM, and Geo-
statistics.  

Preliminary statistical analysis conducted on drill-hole 
composites from the Red block displayed a significantly 
large grade variation, with a mean and standard deviation 
of 440.17 mg/m3 and 650.58 mg/m3, respectively. The 
coefficient of variation is greater than one, which indi-
cates the presence of extreme values in the dataset. Spa-
tial variability of the dataset was studied and character-
ized through a variography study. Figure 3 presents a 
spatial plot showing an omni-directional variogram for 
gold concentration in the data set. From the variogram 
plot, it can be observed that there is a small amount of 
the regional component. Large proportions of spatial 
variability occur from the nugget effect, indicating the 
presence of a poor spatial correlation structure in the de-
posit over the study area. Poor spatial correlation, in 
general, tends to suggest that prediction accuracy for this 
deposit might not be reliable. Hence, borehole data are 
sparse for reserve estimation, considering the high spatial 
variation of ore grade that is commonly associated with 
placer gold deposit. A histogram plot of the gold data is 
presented in Figure 4. The histogram plot illustrates that 
the gold values are positively skewed. A log-normal dis-
tribution may be a suitable fit to the data. Visual por-
trayal of the histogram plot also reveals that the gold 
datasets are composed of a large proportion of low values 
and a small proportion of extremely high values. Closer 
inspection of the spatial distribution of high and low 
gold-grade values portrays a distinct spatial characteristic 
of the deposit. For example, the high values do not ex-

ibit any regular trend. Instead, one or two extremely  h 
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Figure 1. Location plot of the studied area 
 
high values occasionally occur in a mix of low values. 
This may pose a particular difficulty in ore grade model-
ing, since the pattern of occurrence of extremely high 
values is somewhat unpredictable.  

As it is discernable that the available gold data are 
sparse and exhibit a low level of spatial correlation, spa-
tial modeling of these datasets is complex. Prediction 

accuracy may be further reduced if the problem of sparse 
data is not addressed. Prediction accuracy not only de-
pends on the type of estimation method chosen but also, 
largely, on the model data subsets on which the model is 
built. Since learning models are built by exploring and 
capturing similar properties of the various data subsets, 
these data subsets should be statistically similar to each   
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Figure 2. Offshore placer gold deposit 
 

 

Figure 3. Omni-directional variogram plot 
 
other and should reflect the statistical properties of the 
entire dataset. Statistical similarity ensures that the com-
parisons made for the model built on the training dataset 
and tested on the prediction dataset are logical [10,11]. 
Traditionally used practices of random division of data 
might fail to achieve the desired statistical properties 
when data are sparse and heterogeneous. Due to sparse-
ness, limited data points categorized into data subsets by 
random division might result in dissimilarity of the data  

 

Figure 4. Histogram plot Red block 
 
subsets [12].Consequently, overall model performance 
will be decreased. In order to demonstrate the severity of 
data sparseness in random data division, a simulation 
study was conducted using the Nome datasets. One hun-
dred random data divisions were generated, in which 
sample members for training, calibration, and validation 
subsets were chosen randomly. The reason for the choice 
of three data subsets is presented in Section 3.0.1. Statis-
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tical similarity tests of the three data subsets, using 
analysis of variance (ANOVA) and Wald tests were 
conducted. Data division was based on a consideration of 
all the attributes associated with the deposit, namely, the 
x-coordinate, y-coordinate, water-table depth, and gold 
concentration. The results of the simulation study made 
obvious the fact that almost one-quarter of the data divi-
sions are bad during random division of data due to the 
existing sparseness. This figure can be regarded as quite 
significant. The unreliability of random data division is 
further explored through inspection of a bad data division. 
A statistical summary for one of the arbitrarily selected 
random data divisions for the dataset is presented in Ta-
ble 1. From the table, it is seen that both the mean and 
standard deviation values are significantly different. 
Therefore, careful subdivision of data during model de-
velopment is essential. Various methodologies were in-
vestigated in this regard for proper data subdivision un-
der such a modeling framework, including the applica-
tion of genetic algorithms (GA) [3,5,13,14] and Koho-
nen networks [11,14]. A detailed description of the the-
ory and working principle of these methodologies can be 
found in any NN literature [15,16].  

3. Nome Gold Reserve Estimation 

When estimating ore grade, northing, easting, and wa-
ter-table depth were considered as input variables, and 
gold grade associated with drill-hole composites up to a 
depth of 5 m of sea floor was considered an output vari-
able. The next few sections describe the application of 
NN and SVM to ore reserve estimation, along with vari-
ous issues that arose while using NN and SVM for ore 
reserve modeling. 

3.1 NN for Grade Estimation 

Neural networks form a computational structure inspired 
by the study of biological neural processing. This struc- 
ture exhibits certain brain-like capabilities, including per- 
ception, pattern recognition, and pattern prediction in a 
variety of situations. As with the brain, information pro- 
cessing is done in parallel using a network of “neurons.” 
As a result, NN have capabilities that go beyond algo-
rithmic programming and work exceptionally well for 
nonlinear input-output mapping. It is this property of 
nonlinear mapping that makes NN appealing for ore 
grade estimation.  

There is a fundamental difference in the principles of 
OK and NN. While OK utilizes information from local 
samples only, NN utilize information from all of the 
samples. Ordinary Kriging is regarded as a local estima-
tion technique, whereas NN are global estimation tech-
niques. If any nonlinear spatial trend is present in a de-
posit, it is expected that the NN will capture it reasonably 

well. The basic mechanisms of NN have been discussed 
at length in the literature [15,17]. A brief discussion of 
NN theory is presented below to provide an overview of 
the topic. 

In NN, information is processed through several in- 
terconnected layers, where each layer is simply repre- 
sented by a group of elements designated as neurons. 
Basic NN architecture is made of an input layer consist- 
ing of inputs, one or more hidden layers consisting of a 
number of neurons, and the output layer consisting of 
outputs. Typical network architecture, having three lay- 
ers, is presented in Figure 5. Note that while the input 
layer and the output layer have a fixed number of ele- 
ments for a given problem, the number of elements in the 
hidden layer is arbitrary. The basic functioning of NN 
involves a manipulation of the elements in the input layer 
and the hidden layer by a weighing function to generate 
network output. The goodness of the resulting output 
(how realistic it is) depends upon how each element in 
the layers is weighted to capture the underlying phe-  
nomenon. As it is apparent that the weights associated 
with the interconnections largely decide output accuracy, 
they must be determined in such a way as to result in 
minimal error. The process of determination of weights is 
called learning or training during which, depending upon 
the output, NN adjust weights iteratively based on their 
contribution to the error. This process of propagating the 
effect of the error onto all the weights is called back-
propagation. It is during the process of learning that NN 
map the patterns pre-existing in the data by reflecting the 
changes in data fluctuations in a spatial coordinate. The 
sample dataset for a given deposit is used for this pur- 
pose. Therefore, given the spatial coordinates and other 
relevant attributes as input and the grade attribute as 
output, NN will be able to generate a mapping function 
through a set of connection weights between the input 
and output. Hence, output, O, of a neural network can be 
regarded as a function of inputs, X, and connection 
weights, W: O =  (X), where  is a mapping function. 
Training of NN involves finding a good mapping func-
tion that maps the input-output patterns correctly. This is 
done, as previously described, by adjusting connection 
weights between the neurons of a network, using a suit- 
able learning algorithm while simultaneously fixing the 
network architecture and activation function.  

An additional criterion for optimization of the NN ar-
chitecture is to choose the network with minimal gener-
alization error. The main goal of NN modeling is not to 
generate an exact fit to the training data, but to generalize 
a model that will represent the underlying characteristics 
of a process. A simple model may result in poor gener-
alization, since it can not take into account all the intrica-
ies present in the data. On the other hand, a too-complex c 
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Table 1. Statistical summary of one of the random divisions for the Red dataset 

Mean Standard Deviation 
Attribute 

Overall Training Calibration Validation Overall Training Calibration Validation 

X 3941.8 3947.7 3838.2 4032.6 456.54 436.89 505.50 425.5 

Y 10198 10174 10350 10097 469.75 483.19 487.22 384.06 

Gold 440.17 297.75 781.77 385.00 650.58 353.31 10340 475.12 

WTD 8.4845 8.94 6.6242 9.414 5.2063 5.1679 5.3559 4.69 

 

 

Figure 5. A typical neural network architecture 
 
model is flexible enough to fit data with anomalies or 
noise. Therefore, complexity of a model should be well 
matched to improve generalization properties of the data. 
Past research has been devoted to improving the gener-
alization of NN models, including techniques such as 
regularization, quick-stop training, and smoothing, and 
combining several learning models using various ensem-
ble techniques like bragging and boosting [1,18]. In the 
present study, a quick-stop training method is employed 
to improve the NN model generalization. Quick-stop 
training is based on the notion that generalization per-
formance varies over time as the network adapts during 
training [15]. Using this method, the dataset is split into 
three subsets: training, calibration, and validation. The 
network actually undergoes training on the training set. 
However, the decision to stop the training is made on the 
network’s performance in the calibration set. The error 
for the training set decreases monotonically with an in-
creasing number of iterations; however, the error for the 
calibration set decreases monotonically to a minimum, 
and then starts to increase as the training continues. A 
typical profile of the training error and the calibration 
error of a NN model is presented in Figure 6. This ob-
served behavior occurs because, unlike the training data, 
the calibration data are not used to train the network. The 
calibration data are simply used as an independent meas-
ure of model performance. Thus, it is possible to stop 
over-training or under-training by monitoring the per-

formance of the network on the calibration subset, and 
then stop the training when the calibration error starts 
increasing. In order to make a valid model-performance 
measurement, the training, calibration, and validation sub-
sets should have similar statistical properties. Thus, the 
members of the data in the training, calibration, and vali-
dation subsets should be selected in such a way that the 
three data subsets acquire similar statistical properties. 
Once the data subsets are obtained, a NN model is de-
veloped based on the NN architecture and learning rule 
to generate model outputs. 

3.2 NN Grade Estimation Results 

The Levenberg-Marquardt backpropagation (LMBP) 
learning algorithm was used in conjunction with slab 
architecture, as shown in Figure 7, for NN modeling. 
The hidden layer consisted of 12 neurons. The number of 
hidden neurons chosen was based on the minimum gen-
eralization errors of NN models while experimenting 
with a different number of hidden nodes in the hidden 
slabs. A MATLAB code was developed for conducting 
all the studies associated with NN modeling. The model 
datasets were obtained by following an integrated ap-
proach using data segmentation and GA. Data segmenta-
tion involved the division of data into three prime seg-
ments of high-, medium-, and low-grade gold concentra-
tions. This division was based on a visual inspection of 
the histogram plot. Figure 8 presents a schematic dia-
gram of data segmentation and the GA approach. After 
data segmentation, GA was applied in each of the seg-
ments: segment 1, segment 2, and segment 3. The mem-
bers of the training, calibration, and the validation data-
sets were selected using GA from each of the segments. 
Once the members for the training, calibration, and vali-
dation data were chosen, the selected members from the 
segments were appended together to form respective 
subsets. Table 2 presents the summary statistics of the 
mean and standard deviation values for all variables of 
the three data subsets and the entire dataset. Observe that 
the mean and standard deviation values are similar for all 
the data subsets. The histogram plots of the three subsets  
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Figure 6. A typical profile of training and calibration error 
of a NN model [16] 
 

 

Figure 7. Slab architecture for NN modeling 
 

 

Figure 8. Data segmentation and genetic algorithms for 
data divisions 
 
and the entirety of the nine datasets are presented in 
Figure 9. From the figure, it can be seen that all the data 
subsets assume an almost identical shape to that of the 
overall dataset, and that the skewness of the data in the 
three subsets is preserved. Table 3 presents summary 
statistics of the generalization performance of the NN 
model for the Red dataset, while Figure 10 presents a 
scatterplot of the actual values versus predicted values of 
the validation data subset for the Red block. 

3.3 SVM for Ore Grade Estimation 

The SVM method is based on statistical learning theory 
(SLT) and performing structural risk minimization (SRM). 
Popularly known as support vector regression (SVR) for 
its regression abilities, the SVR not only has a solid 
mathematical background but also is robust to noise in 
measurements [19-21]. Support vector regression ac-
quires knowledge from the training data by building a 
model, during which the expected risk, R, is approxi-
mated and minimized by the empirical risk, Remp. This 
process always involves a generalization error bound and 
is given by 

R(h) ≤ Remp (h) + Ω (h)        (1) 

where R is the bound on the testing error, Remp is the em-
pirical risk on the training data, and Ω is the confidence 
term that depends on the complexity of the modeling 
function. Though a brief explanation of how the SVR 
approach works is described below, interested readers are 
referred to [20-22]. Given the training dataset {(xi, yi), i = 
1, 2,….L}, where xi is the input variable and yi is the 
output variable, the idea of SVR is to develop a linear 
regression hyperplane expressed in Equation (2), which 
allows, at most, ε deviation for the true values, yi, in the 
training data (see Figure 11) and at the same time 
searches for a solution that is as flat as possible [21]. 

( ) ( )T
Of x W x b               (2) 

where Wo is the optimum weight vector, b is the bias, and 
φ(x) is a mapping function used to transform the input 
variable in the input space to a higher dimensional fea-
ture space. This transformation allows the handling of 
any nonlinearity that might exist in the data. The desired 
flatness is obtained by seeking a small w [21]. In reality, 
however, a function that approximates all the (xi, yi) pairs 
with ε precision may not be feasible. Slack variables εi, 
εi

* [23] are introduced in such cases that allow the incor-
poration of some amount of error (see Figure 11). The 
problem of obtaining a small w and at the same time re-
stricting the errors to, at most, ε deviation after introduc-
ing the slack variables can be obtained by solving the 
following convex quadratic optimization problem: 
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In Equation (3), both the empirical risk, realized by the 
training error Σ (εi + εi

*), as well as the confidence term,  
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Table 2. Statistical summary of data division using GA (Red) 

Mean Standard Deviation 
Attribute 

Overall Training Calibration Validation Overall Training Calibration Validation 

X 3941.8 3950 3935.6 3931.6 456.54 456.6 457.6 458.6 

Y 10198 10194 10218 10186 469.75 471.2 467.2 472.4 

Gold 440.17 461.99 418.46 418.59 650.58 673.97 627.89 628.8 

WTD 8.4845 8.38 8.63 8.54 5.2063 5.23 5.19 5.19 

 

 

 

Figure 11. The soft margin loss settings for linear SVM [21] 
 
realized by the ||w||2 term (expressed by Equation (1)) are 
minimized. An optimum hyperplane is obtained by solv-
ing the above minimization problem employing the Kha-
rush-Kuhn-Tucker (KKT) conditions [24] which results 
in minimum generalization error. The final formulation 
to obtain the SVR model predictions is given by 

Figure 9. Histogram plot of Red dataset 
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Table 3. Generalization performance of the models for the 
Red block 

Statistics SVM NN OK 

Mean Error -8.1 -1.30 33.54 

Mean Absolute 
Error 

341.2 351.50 353.02 

Root Mean 
Squared Error 563.13 564.34 565.23 

R2 0.234 0.191 0.193 

where i, i
* are the weights corresponding to individual 

input patterns, K(xi, x) is a user-defined kernel function, 
and b is the bias parameter. Figure 12 presents a list of 
commonly used kernels. The most commonly used ker-
nel function is an isotropic Gaussian RBF defined by 

2

22( , )
ix x

iK x x e 

 

                (5) 

 where σ is the kernel bandwidth. The solution of this 
optimization problem might result in zero weight for 
some input patterns and non-zero weight for the rest. The 
patterns with zero weight are redundant and are insig-
nificant to the model structure. On the other hand, input 
patterns with non-zero weights are termed support vec-
tors (SV), and they are vital to obtaining model predic-
tions. As the number of support vectors increases, so 
does model complexity. The main parameters that influ-
ence SVR model performance are the C, σ, and ε. Pa-
rameter C is a trade-off between empirical risk and the 
weight vector norm ||w||. It decreases empirical risk but, 
at the same time, increases model complexity, which  

 

Figure 10. Actual vs. predicted for the validation data of 
Red block 
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Figure 12. Commonly used kemels in SVM 
 
deteriorates model generalization. Parameter ε defines 
the width of the insensitivity zone, and controls the 
number of SV. The effect of increase in ε is a decrease in 
the number of SV, which results in smoothing of the final 
solution during modeling of noisy data. Similarly, note 
from Equation (5) that a higher value of kernel width, σ, 
has a smoothing effect on the solution. Optimal values of 
these parameters can be obtained by a grid-search pro-
cedure. 

3.4 SVM Grade Estimation Results 

Out of the numerous options available for the choice of 
kernel function, a RBF kernel was selected, and the 
recommendations of [20] and [25] were considered care-
fully in the development of the SVM-based model. As 
per recommendations, the input data were first scaled 
assuming a uniform distribution. In other words, the 
scaled value of an attribute was calculated using the 
maximum and minimum values of the attribute. The drill 
holes were used to estimate SVM parameters, the cost 
function (C), the radial basis kernel parameter (σ), and 
the error margin (ε). Optimal SVM parameters were de-
termined based on a K-fold cross-validation technique 
applied to the training dataset. The K-fold cross-valida-
tion approach splits the available data into more or less K 
equal parts. Of the K parts of the data, only K-1 parts of 
the data were used to find the SVM estimate and calcu-
late the error of the fitted model, and for predicting the 
kth part of the data as part of the validation process. The 
procedure was then repeated for k = 1, 2, . . ., K, and the 
selection of parameters was based on the minimum pre-
diction error estimates over all K parts. The value of K is 
based on the shape of a “learning curve” [26], which is a 
plot of the training error versus the training size. For 
given SVM parameters, the training errors are calculated 
by progressively estimating the SVM model for in-
creased training data size, thereby constituting the learn-
ing curve. From the learning curve, an optimum training 
size (or in other words, the number of folds, K) can be 
obtained where the error is minimal. In this study, the 

optimum value of K was found to be 10. Once the value 
of K is obtained, the SVM model is trained using K-fold 
cross validation. Training and testing involves a thorough 
grid search for optimal C and σ values. Thus, unlike NN, 
where training involves passing a dataset through hidden 
layers to optimize the weights, optimal training of SVM 
involves estimation of parameters C and σ through a grid 
search such that the error is minimized. The optimum 
values for C and σ for the Red block was found to be 
0.53 and 9.5. These values are depicted by the troughs 
and flat regions of the error surface in Figure 13. Once 
the optimal values for the SVM model parameters were 
determined, the model was tested for its generalization 
ability on validation datasets for the Red block. Figure 
14 shows the performance of the SVM model in predict-
ing gold grade for the Red block, while performance sta-
tistics are presented in Table 3.  

4. Summary and Conclusions 

Nome gold reserve estimation is challenging because of 
the geologic complexity associated with placer gold de-
posits and because of sparse drill holes. Each drill hole 
contains information on northing (Y-coordinate), easting 
(X-coordinate), water-table depth, and gold grade in 
mg/m3, as well as other relevant information. For grade 
estimation, northing, easting, and water-table depth were 
considered input variables, and gold grade was consid-
ered an output variable. Gold grade up to a 5 m sea floor 
depth, were considered. The gold grade associated with 
the Nome deposit Red block was estimated using two 
MLA—the NN method and the SVM method—and their 
performance were compared using the traditional geosta-
tistical OK technique. Various issues involved in the use 
of these techniques for grade estimation were discussed. 
Based on the results from this study, the SVM-based 
model produced better estimates as compared with the 
other two methods. However, the improvement was only 
marginal, which may be due to the presence of extreme 
data values. The various criteria used to compare model 
performance were the mean error (ME), the mean abso-
lute error (MAE), the root mean squared error (RMSE), 
and the coefficient of determination (R2). Generally, a 
model with less error and high R2 is considered a better 
fit. Since the improvements were only marginal, a sum-
mary statistic was developed to compare the three mod-
els. This summary statistic, termed the skill value, is an 
entirely subjective measurement, expressed by Equation 
(6) [14,27-29]. Numerous skill measures can be devised; 
however, the one proposed in this study considers the 
ME, MAE, and RMSE equally, and applies scaling to the 
R2 so that it is of the same order of magnitude as the oth-
ers. Note that the lower the skill value, the better the 
method is. In this way, various methods can be ranked  
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Figure 13. Effect of cost and kernel width variation on error (Red) 
 

 

Figure 14. Scatterplot for actual vs. predicted grade (Red) 
 

Table 4. Model performances based on skill values 

Statistics SVM NN OK 

Skill Value 989.03 998.03 1032.49 

Rank 01 02 03 

 
based on their skill values, that is, their overall perform-
ance on the prediction dataset. 

‘skill value’ = abs (ME) + MAE + RMSE + 100 × (1 – R2) 
(6) 

Table 4 presents skill values and ranks for the various 
methods that were used on the prediction dataset. It can 
be seen from the table that the MLA performed signifi-
cantly better than the traditional kriging method. The 
difference in the skill values is mainly due to the high 
variation in the R2 (Table 3). 
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