
J. Intelligent Learning Systems & Applications, 2010, 2: 80-85 
doi:10.4236/jilsa.2010.22011 Published Online May 2010 (http://www.SciRP.org/journal/jilsa) 

Copyright © 2010 SciRes.                                                                               JILSA 

An Experience Based Learning Controller 

Debadutt Goswami, Ping Jiang* 
 

Department of Computing, University of Bradford, Bradford, UK. 
Email: p.jiang@bradford.ac.uk 
 
Received November 10th, 2009; revised April 10th, 2010; accepted April 20th, 2010. 

 
ABSTRACT 

The autonomous mobile robots must be flexible to learn the new complex control behaviours in order to adapt effec-
tively to a dynamic and varying environment. The proposed approach of this paper is to create a controller that learns 
the complex behaviours incorporating the learning from demonstration to reduce the search space and to improve the 
demonstrated task geometry by trial and corrections. The task faced by the robot has uncertainty that must be learned. 
Simulation results indicate that after the handful of trials, robot has learned the right policies and avoided the obstacles 
and reached the goal. 
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1. Introduction 

Most of the autonomous mobile robots or the human 
controlled mobile robots working in the industrial, do-
mestic and entertainment environment lack the flexibility 
to learn and perform the new complex tasks. In this paper 
we consider the problem of motion control of an auto-
nomous mobile robot using the control field generated by 
a neural controller. The proposed system enables the 
autonomous mobile robot to learn, modify and adapt its 
skills efficiently in order to react adequately in complex 
and unstructured environment. To incorporate the preci-
sion and flexibility in robots, we incorporated three very 
common natural approaches that, human uses to learn and 
execute any task, 1) Learning from demonstration 2) 
Generalization of the learned task 3) Reinforcement of 
the task by trial and error [1,2]. The designing of a mo-
tion controller depends on the kinematics constraint of a 
mobile robot and the complexity and structure of a task, 
and is very difficult to design whereas the proposed con-
troller can easily and quickly learn the complex controls 
with some simple demonstrations and few trials. The 
major advantage of our technique is that any mobile robot 
can be taught to move in an unknown environment using 
the generated control field as the general control law. The 
control law is independent of both physical and virtual 
sensors. The use of domain knowledge has a great sig-
nificance in reducing the learning time and the use of trial 
and error learning method improves the learning con-
tinuously [3]. The learning from demonstration has re-
duced the robot programming and made it very simple to 
use [4,5]. The reinforcement learning has already been 

used in many navigational and reactive problems [6,7,8]. 
The ability of reinforcement learning to interact with the 
environment and the domain knowledge from demonstra-
tions has made it easier to tackle uncertainty. Due to the 
simplicity to operate and flexibility to learn uncertainty, 
the proposed controller can be operated by the non-pro-
fessionals who are not skilled enough to control and pro-
gram the sophisticated mobile robots in the complex in-
dustrial environment [3,9].  

The paper is presented in following manner. Section II 
presents the previous works related to the field. Section 
III presents the controller architecture and the proposed 
algorithm. Section IV presents the simulation results. 
Section V presents conclusions and discusses the work 
further. 

2. Related Works 

We have incorporated two different research areas: 
Learning from demonstration and Reinforcement Learn-
ing, which bears some relation to a number of previous 
works. The importance of human robot interaction and 
the need of modern artificial intelligence are described in 
[10] that focus on creating new possibilities for the flexi-
ble and interacting robot from the engineering point of 
view and from the humanistic point of view. The paper 
incorporates these ideas and focuses on flexible learning 
controller of a robot which can learn and adapt the 
changes in the environment very easily. The proposed 
methodology differs from [3,11,12] and [5] in two fun-
damental aspects. Firstly our approach learns from dem-
onstration, which acts as initial policy to perform the de- 
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sired task and builds a model of partially observable en-
vironment. Secondly, the methodology is offline and 
online computations are done on the basis of generated 
control field and the previous experience. The proposed 
controller initializes the weights of the controller from 
the demonstrated points of the task whereas in [11] the 
learner is initially empty. The proposed controller utilizes 
Q-values to avoid uncertainty where as [3] and [11] used 
fuzzy behaviour as a reflex to act into a new situation. 
The aim is to generate an abstract description of the task 
reflecting user’s intention and modelling the problem 
solution offline. In this context we also discuss the issues 
of evaluation, tuning, suitable generalization and execu-
tion of the elementary skills [9,13-15]. Instead of using 
radial basis as a function approximation [3,12], we used 
inverse distance interpolation. It works like local ap-
proximators. We also used learning through feedback, 
which improves the learning and generalization continu-
ously. 

3. Controller Architecture 

The proposed learning controller can be represented as 
recurrent neural network architecture. The controller has 
basically 3 layers, input layer, hidden layer and output 
layer and a reinforcement controller which is connected 

to the output layer and the hidden layer. NS R  and 
NA R  are the sensor input and output. The weight is 

updated when the sensor and the controller try to learn an 
unknown model from sensors to actuators, i.e. 

( )A f S                 (1)  

Input Layer—Input layer consists of several neural in-
put nodes that represent some state in the state space i.e. 
S. The sensor input is propagated through the hidden 
layer from the input layer to the output layer. Each neural 
node in the input layer is connected to all the neural 
nodes in the hidden layer. 

Hidden Layer—Hidden layer is composed of several 
computational neurons. The output of the hidden neurons 
is the distance between the input layer neuron and the 
weight similar to a prototype fuzzy law. The weight  

in the hidden layer neuron represents the centre i.e. the 
demonstrated data points. Each neural node of the input 
layer is connected to all the neural nodes of the hidden 
layer. The output of the hidden layer codes the distance 
of the input neurons from the hidden layer neurons.  
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Output layer—The output layer neuron computes the 
inverse weighted sum of the output  of the hidden 
layer neurons i.e. 

iv

1

N

oi i
i

A W v


                  (2) 

The output layer neuron uses inverse distance interpo-
lation to update the weights of the output layer.  
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Figure 1. Neural network control architecture 
 
The advantage of using this technique is that, the esti-
mated data point has the influence of all the neighbouring 
data points depending on the distance from each proto-
type rule. This is the simplest generalized technique and 
mathematically expressed as 
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where,  is the estimated control action in term of a 

sensor state ;  is a prototyped action of the hidden 

layer neuron at state ; 

'v
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S pd  is the distance between S 
and S’; p is the power; N(v’) is the number of data points 
in the effective window of v’. Generally the distance can 
be calculated by simple Euclidean distance formula. The 
above generalization technique only acts as a function 
approximation that reproduces the generalized control 
field based on the distance from the existing prototype 
rule. But to tackle uncertainty and to produce an im-
proved control field, the robot needs to incorporate a 
weight that represents the significance of the previous 
learning history and incorporates continuous learning 
experiences. The idea is to improve the learning by trial 
and error. So Q-learning [16] is incorporated, which pro-
duces Q-matrix based on the scalar reward R. The 
Q-value determines the new policy to achieve the goal. 
Therefore in the neural network architecture, the output 
layer is connected to the reinforcement controller which 
in turn is connected to the hidden layer. Depending on the 
achievement of the desired goal, the reinforcement re-
ward R is given to the robot by the reinforcement con-
troller. The reward R updates the Q-matrix and the new 
Q-value is used to generate a new control field. The rein-
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forcement controller follows the online exploration and 
offline learning policy [17]. So the Q-value is updated in 
following two cases: 

Case 1: Online exploration—During online exploration 
the robot uses Q-matrix to avoid uncertainty like un-
known obstacles. Therefore, whenever the robot finds 
uncertainty in its next course of action, the control 
switches from the generalized control field to Q-matrix 
and selects an action with other maximum Q-value from 
its effective window that corresponds to a policy with 
next higher probability to reach the goal and avoids the 
uncertainty. This earns an online reward R and updates 
the Q-value online in that time step. The change in the 
action in that time step is used as a prototype rule i.e. 
center in the hidden layer. 

Case 2: Offline learning policy—In the end of the trial 
during offline learning policy, the reinforcement reward 
R is given offline to the robot. The reward R updates the 
corresponding Q-values of the trajectory based on the 
final payoff. After updating Q-value, the change is ap-
plied to the neurons in the hidden layer of the network 
architecture. So another factor that influences the output 
of the hidden layer is the Q-value. 

The Q-value is then used as a measure to calculate the 
relevance of the data points in terms of usefulness of that 
particular task geometry in achieving the goal. The change 
in the Q-matrix influences all the neighbouring data 
points in the control field. This is called the generaliza-
tion. After that the control field is transferred back to the 
robot. In every trial Q-matrix is updated and reflects the 
continuous learning. The steps are repeated until we get 
the desired control field. This technique of learning is 
known as online exploration and offline policy learning. 
The reward scheme for online exploration and offline 
policy learning is as follows: 

1 If the goal is achieved or obstacle is aovided

0 If no obstacle or no goal

1 If failed to achieve goal or unable to aovid obstacle

R


 


 

                                          (4) 

The reward function can represented as: 

uncertainty goalR R R              (5) 

In online exploration goalR  is set to zero and  

is awarded online to avoid obstacles on its path whereas 
in offline learning policy 

uncertaintyR

goalR  is awarded offline and 

 is set to zero. uncertaintyR

The Q update rule can be described in two steps. 
Step 1: Give Reward R using (4) and (5) and update 

the weight  using the weight update Equation.  wQ
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Here  ,wQ s a  is the weight matrix to be updated; (s, 

a) is the current state and action;  is the reward 

matrix; 

 ,R s a

 ' ',wQ s a  is the future state with the highest  

value; 
wQ

  is the learning rate;   is the discount factor in 
the range [0, 1]. The weight update Equation (6) is inher-
ited from the traditional Q-learning algorithm [16].  

Step 2: Estimate the data points  based on the  

calculated in step 1. The new estimate updates the previ-
ously generated control field and generates a new gener-
alized control field. To implement our idea we modify (3) 
by introducing . 
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Here w
p

Q

d
 is the weight. A small  value repre-

sents the small contribution of the point in accomplishing 
the goal where as a large  value signifies large con-

tribution of the point in accomplishing the goal.  is 

inversely related to the distance, which signifies that the 
 will have higher value when the estimated data point 

is closer to the good trajectories. The trajectories with 
lower  value have less contribution in the overall 

generalization.  
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In the proposed context behaviour is improved based 
on scalar rewards from a critic. It does not require a per-
son to program the desired actions in different situations. 
However several difficulties stand in the way. Firstly a 
robot using the basic reinforcement-learning framework 
might require an extremely long time to converge to the 
right track and to acquire the right action. In our frame-
work learning from demonstration is used that reduces 
the search space to achieve an adequate control and it 
does not need any programming of the desired behaviour. 
The demonstration provides the domain knowledge, that 
gives hint to perform the desired task and reduces 
knowledge base significantly. Through trial and error the 
knowledge base can be improved further [18,19]. Sec-
ondly reinforcement learning is basically applied on the 
task where the state of the environment is completely 
observable, but in the real world tasks most of the 
knowledge is incomplete and inaccurate. The online ex-
ploration and offline learning policy explores the un-
known environment with the help of generalized control 
field and tackles the uncertainty by selecting the appro-
priate control action which signifies maximum experi-
ence i.e. maximum Q-value in the effective window in 
achieving the desired goal. The trajectory generated by it 
changes the control field and tackles the uncertainty in 
the environment.  
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Ideally for a real robot any learning algorithm should 
be feasible and efficient to perform the complex compu-
tations, keeping in mind the robots internal configuration 
under consideration. A robot has limited memory and 
limited computational ability. Almost all the cases of 
practical interest consist of far more state observation 
pairs than could possibly entered into the memory. The 
robot is even typically unable to perform enough compu-
tation per time step to fully use it. Especially in the real 
world experiences, which consist of large number of ac-
tion and observation pairs and at each step the robot 
needs to memorize and learn the action-observation pairs. 
Thus a good approach is to compute and store a limited 
number of data online which are relevant and learning the 
policy offline. In the proposed algorithm the old data can 
be used and new experiences can be collected, which are 
somewhat characteristic for the task. The best thing is the 
experience replay and the assessment of the performance 
of the previous experiences. Another important step is the 
generalization of the learned policy. The policy learned in 
this way keeps the learning continuous. This kind of 
learning is generally called as learning from experience. 
For a robot controller, it is also important to reduce the 
real time computation. The robot takes action on the gen-
erated control field only. Hence learning is made con-
tinuous and the computational overhead is also reduced. 
On the other hand the exploration is done online. The 
robot decides between exploration and exploitation based 
on the number of times an action has been chosen. The 
robot generally chooses action with the highest state ac-
tion value with high probability, which is known as ex-
ploitation. If the robot oscillates in a particular region 
then exploitation is stopped and control switches to ex-
ploration to avoid oscillation and finds a new path. Dur-
ing exploration the selection of next state is made random. 
This approach has a major advantage of not being influ-
enced by the limited knowledge only i.e. to avoid local 
optima. During exploration the robot can take the control 
actions which were never taken before and hence explor-
ing more of the unobserved environment. The balance 
between exploration and exploitation is necessary, be-
cause exploitation is helping the robot to avoid uncer-
tainty and to reach the goal where as exploration is 
avoiding all the oscillation and unnecessary iterations. So 
this methodology has a very positive approach to learn 
any new skill quickly. The robot can be restrained easily 
to adapt to environment changes and trained and learned 
improving the performance all the time. 

The proposed algorithm can be summarized as below: 
1) Build the control field by demonstrating the task, i.e. 

initializing the weights in the hidden layer with the dem-
onstrated data points and imitating the relevant knowl-
edge required to achieve the task.  

2) Based on the demonstrated control field, using in-
verse distance weight interpolation, generalize the field 

using (7). 
3) Transfer the generalized control field to the robot 

and do some trials to achieve the goal. Do some explora-
tion also. If all the trials are successful in achieving the 
goal then the demonstrated control field is perfect and 
does not need any changes. If in trials, at some point the 
robot hits or senses any obstacle then give reward 

 to the point using (4) and (5) and move to-

wards the point that has next highest Q-value, without 
any obstacle. The next higher Q-value represents the next 
most experienced and favorable point heading towards 
the goal. Then update the Q-values using (6). This will 
generate a new path to reach the goal. After the goal has 
been reached, generalize the control field offline using 
(7). The control field will have influence from the points 
updated. This will reproduce an updated control field.  

uncertaintyR

4) After reaching the goal, assign final reward goalR  

to the robot using (4) and (5). This reward represents the 
successful completion of the desired task avoiding all the 
obstacles and is made offline. Update all the Q-values of 
the updated control trajectory generated in step 3 using 
(6). 

5) Generalize the control field with the new updates 
using (7). The updated field represents the new control 
field. Repeat from Step 3 to 5 until the robot learns the 
desired task. 

4. Simulation Results 

In simulation we build a discrete workspace with a di-
mension of 20 × 20. The workspace contains a goal and 
obstacles, represented by the ‘G’ and the rectangles. Ro-
bot has a sensor of 3 × 3 neighbourhoods which means it 
can sense obstacles around its 8 neighbouring cells. The 
arrows represent the direction of each point in the field. 
The simulation is done based on the proposed algorithm 
in section 3. The robot was initially demonstrated to reach 
the goal. Based on the demonstration initial control field 
was built (Figure 2). The simulation considered two dif-
ferent tasks with different uncertain complexities with 
same initial control field.  

Task 1: The robot had to avoid an obstacle and reach 
the goal. 

Task 2: The robot had to avoid obstacles and pass 
through the door and reach the goal. 

In both the cases robot completed the tasks in few tri-
als avoiding all the uncertainties. The final control fields 
for task 1 and task 2 are shown in Figures 3 and 4.  

The learning history of the controller for both the cases 
is described in Figures 5-7. The broken line curve and 
the solid line curve represents first and second task.  

In Figure 6 it can be observed that number of hidden 
neurons increases with the number of trials. Increase in 
hidden layer neurons indicates the increase in number  
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Figure 2. Demonstrated control field 
 
 

G 

 

Figure 3. Final control field of task 1 
 

 

G

 

Figure 4. Final control field of task 2 
 
centers or prototype rules in the network. It clearly indi-
cates the learning in each trial. Figure 7 displays the plot-
ting of the total number reinforcements used in each trial. 
The total reinforcement can be defined as the sum of im-
mediate reinforcement the learner receives till the robot 
reaches the goal and the offline reinforcement the learner 
receives after reaching the goal. It is clear in Figure 7 that 
after trial 3 the controller did not use any reinforcements 
to complete the tasks. The controller needed only three 
trials 1-3 to learn a new control law to avoid uncertainty 
in both tasks. To see the reliability of the control field we 
chose different starting points. The robot was successful 
in completing the tasks from all the points.  

Another observation is that the number of reinforce- 
ment received (Figure 7) and the number of steps taken 

 

Figure 5. Number of steps taken to reach goal in each trial 
 

 

Figure 6. Number of hidden layer neurons used in each trial 
 

 

Figure 7. Number of reinforcements given in each trial 
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(Figure 5) in trial 1 in task 2 (solid line curve) is very 
high. It indicates that, in task 2 the maximum exploration 
was done in trial 1 where as in task 1 exploration was 
increasing with trials. Therefore with increase in explora-
tion reinforcement is also increasing. Furthermore, it was 
during first three trials the robot attained reinforcements 
(Figure 7) and a sharp growth in network (Figure 6). 

5. Conclusions 

This paper presented a learning strategy to generate a 
control field for a mobile robot in an unknown and un-
certain environment, which integrates learning, generali-
zation, exploration and offline computation into a unified 
architecture. After the learning, a robot can approach the 
goal by following the control field. The important lessons 
learned from the implementation included 1) imitation of 
very accurate and exact action sequence is not necessary 
[15]; 2) a prior knowledge is required to plan a model of 
the task to support rapid learning; 3) generalization is 
improved by improving the learning policies; 4) simple 
method like inverse distance is adequate to generalize the 
task; 5) offline learning is an important method for real 
time applications to avoid the large online computations; 
6) online exploration is required to explore other possi-
bilities to perform a task and to improve the quality of 
learning; 7) balance between exploration and exploitation 
improves the learning policies, which reduces the learn-
ing time significantly; 8) the robot can learn from few 
demonstrations but it effects the learning speed. The ma-
jor disadvantage of this method is the use of position in-
formation which is not always accurate in real robots due 
to inaccurate sensor information due to rotational or 
translational error caused by the slippage between robot’s 
wheel and the floor. 
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