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Abstract 
Using simple box quantization, we demonstrate explicitly that a spatial tran-
sition will release or absorb energy, and that compactification releases latent 
heat with an attendant change in volume and entropy. Increasing spatial di-
mension for a given number of particles costs energy while decreasing di-
mensions supplies energy, which can be quantified, using a generalized ver-
sion of the Clausius-Clapyeron relation. We show this explicitly for massive 
particles trapped in a box. Compactification from N-dimensional space to 
( )1N −  spatial dimensions is also simply demonstrated and the correct limit 
to achieve a lower energy result is to take the limit, 0wL → , where wL  is 
the compactification length parameter. Higher dimensional space has more 
energy and more entropy, all other things being equal, for a given cutoff in 
energy. 
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1. Introduction 

Compactification is an old idea [1] [2] where one reduces the dimension of 
space to account for observed symmetries and conservation laws. In the very 
earliest versions, this was seen as a mechanism to unify electromagnetism with 
gravity. The concept has since been extended [3] [4] [5] [6] in the modern era to 
include supergravity and superstring theory, which seeks to accommodate the 
known particle spectrum of elementary particles and known conservation laws 
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under one grand unification scheme. These Kaluza-Klein theories entertain di-
mensions as high as 10 and even 26-dimensional space, and often predict par-
ticles which are yet to be observed, such as supersymmetric partners. The un-
derlying symmetries are also new, and reduce in a low energy limit, to the 
known weak-electromotive forces, gravity and QCD.  

Temperature must play a key role in such theories. Compactification is 
thought to occur at very high temperatures, i.e. very short distance scales. It 
seems to us that a thermodynamic treatment is therefore necessary. Pressure is 
also of fundamental importance, as we are dealing with massive particles and 
mediating fields in the very early universe. Recently [7], we generalized the 
Clausius-Clapyeron (CC) relation to allow for a phase transition involving a 
change in spatial dimension at a given temperature and pressure. Using black-body 
radiative photons as our substance, this generalization allowed us to quantify the 
latent heat given off in transitioning from N-spatial dimensions to ( )1N −  di-
mensions, and the latent heat absorbed in going from ( )1N −  spatial dimen-
sions to N dimensions. Moreover, expressions for the changes in entropy and 
volume were derived when undergoing this type of first order discontinuous 
phase transition. 

To illustrate the generalized CC relation, we also gave a specific numerical 
example, considering a temperature applied to the very early universe. It was 
conjectured that, based on the explosive release of heat energy, and the attendant 
changes in entropy and volume, the 4N =  to ( )1 3N − =  transition may have 
a connection to inflation. The universe may have underwent a phase transition 
from 4-space to 3-space within the earliest times [8]. We argued [7] that this 
would bypass the need for the inflaton field, as well as doing away with a-causal 
expansion. If it is the spatial dimension itself, which is changing, i.e. undergoing 
a phase transition, a-causality within a given fixed space becomes a secondary 
issue. Finally, quantum mechanical fluctuations about a mean temperature were 
also discussed when transitioning between spatial dimensions. It was shown that 
if the phase transition involves the same thermodynamic process on both sides 
of the co-existence curve, such as from adiabatic expansion to adiabatic expan-
sion, then the temperature fluctuations, T Tδ , carry through unperturbed from 
one space to the neighboring space. If, on the other hand, the phase transition 
involves a difference in thermodynamic process on either side of the coexistence 
curve, such as from isothermal expansion to adiabatic expansion, then it was 
discovered that the thermal fluctuations can be created within the transition it-
self. 

In this short note, we pursue this analysis further and prove that space is 
equivalent to energy another way. We focus on box quantization and specialize 
to massive particles, such as electrons. We consider what happens in the simplest 
case of a 3N =  to ( )1 2N − =  transition. The goal is to highlight some basic 
principles by means of a very simple, almost pedestrian, example. The concept 
can be easily illustrated and explained to a broader audience without advanced 
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mathematics using the methods discussed in this short note. 
We start by considering the energy levels of a massive particle trapped in a 

box or lattice in 3N =  versus ( )1 2N − =  dimensional space. As is well known 
[9], in 3-d space the energy levels are given by 

( ) ( )3 2 2 2 2 2 2 28 x x y y z zE h m n L n L n L= + +                 (1) 

In Equation (1), ( ), ,x y zn n n  are quantum numbers, ( ), ,x y zL L L  are the di-
mensions of the box in the ( ), ,x y z  direction, respectively, “h” is Planck’s con-
stant and “m” refers to the mass of the particle trapped in the box. In 2-d, this 
reduces to 

( ) ( )2 2 2 2 2 28 x x y yE h m n L n L= +                    (2) 

In order to keep the discussion simple, we consider a cubic 3-d box where 

x y zL L L L= = = , and correspondingly, x yL L L= =  in 2-d space. The super-
script on a variable such as the energy, E, refers to the space over which the 
physical quantity is defined. 

The lowest energy level in 3-space is ( ) ( ), , 1,1,1x y zn n n =  and thus,  
( )3 2 2
111 3 8E h mL= ; for the same particle in 2-d space, we have ( ) ( ), 1,1x yn n =  

and therefore ( )2 2 2
11 2 8E h mL= . The next energy level in three dimensional space 

has a three-fold degeneracy as ( ), ,x y zn n n  can take on the values, ( ) ( )1,1,2 , 1,2,1  
or ( )2,1,1  and this leads to the same energy, ( ) ( ) ( )3 3 3 2 2

112 121 211 6 8E E E h mL= = = . In 
two dimensional space, ( ),x yn n  can take on the values (1,2) or (2,1); this leads 
to ( ) ( )2 2 2 2

12 21  5 8E E h mL= = , a two-fold degeneracy. We continue in this vein and 
present our results in table form, Table 1. In this table, 0E , is defined by the 
equation 2 2

0 8E h mL= , and we consider energies up to, and including 027 8 E , 
an arbitrary but sufficient cut-off in energy for our purpose. The degeneracy for 
a particular energy level is abbreviated as “deg”. 

As stated, our cut-off in energy was artificially set at 027 8E ; higher energy 
states are not considered. Specific wave functions can be specified for each of 
these eigenstates and, in general, the higher the energy level, the more compli-
cated (involved) is the wave function. We now highlight some simple findings. 
For 3N = , the total number of energy levels is 27; for 2N =  spatial dimen-
sions, the corresponding number is only 15. Furthermore, for 3N = , we have a 
greater degeneracy in energy levels, whereas for 2N =  there is a lessor level of 
degeneracy, both in terms of number and magnitude. The highest degeneracy 
for 3N =  is 6-fold while for 2N = , that corresponding number is 3-fold. The 
maximum degeneracy for spatial dimension N is given by the equation,  

( )max.deg. !N N=  . 
The entropy will be considered next. According to Boltzmann, the entropy is 

given by the expression, lnBS k= Ω , where Bk  is Boltzmann’s constant and 
Ω  refers to the number of microstate permutations for which an ensemble can 
be organized to give the same measurable macroscopic result. Consider, for ex-
ample, 017 8E E= . According to Table 1, for 3N = , we have a three-fold de-
generacy for this energy and thus, ( )ln 3 1.099B BS k k= = . In contrast, for 2N = ,  
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Table 1. N = 3 versus N= 2 quantized energy states. 

3N =  Spatial Dimensions             versus             ( )1 2N − =  Spatial Dimensions 

( ) ( ), , 1,1,1x y zn n n =                                       ( ) ( ), 1,1x yn n =   
( )3 2 2

111 03 8 3 8E h mL E⇒ = =                                 ( )2
11 02 8E E⇒ =  

 

( ) ( ) ( ) ( ), , 1,1, 2 1,2,1 2,1,1x y zn n n = = =                         ( ) ( ) ( ), 1, 2 2,1x yn n = =     
( ) ( ) ( )3 3 3
112 121 211 06 8E E E E⇒ = = =                                 ( ) ( )2 2

12 21 05 8E E E⇒ = =   

( ). 3deg =                                               ( ). 2deg =  
 

( ) ( ) ( ) ( ), , 1, 2, 2 2,1,2 2,2,1x y zn n n = = =                        ( ) ( ), 2, 2x yn n =  
( ) ( ) ( )3 3 3
122 212 221 09 8E E E E⇒ = = =                                 ( )2

22 08 8E E⇒ =  

( ). 3deg =   
 

( ) ( ), , 2, 2, 2x y zn n n =                                       ( ) ( ) ( ), 1,3 3,1x yn n = =  
( )3
222 012 8E E⇒ =                                          ( ) ( )2 2

13 31 010 8E E E⇒ = =  

( ). 2deg =                                               ( ). 2deg =  
 

( ) ( ) ( ) ( ), , 1,1,3 1,3,1 3,1,1x y zn n n = = =                          ( ) ( ) ( ), 2,3 3,2x yn n = =     
( ) ( ) ( )3 3 3
113 131 311 011 8E E E E⇒ = = =                                 ( ) ( )2 2

23 32 013 8E E E⇒ = =   

( ). 3deg =                                                ( ). 2deg =  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1, 2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1x y zn n n = = = = = =   ( ) ( ), 3,3x yn n =
 

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3
123 132 213 231 312 321 014 8E E E E E E E⇒ = == = = =                  ( )2

33 018 8E E⇒ =  

( ). 6deg =  
 

( ) ( ) ( ) ( ), , 2, 2,3 2,3, 2 3, 2, 2x y zn n n = = =                        ( ) ( ) ( ), 1, 4 4,1x yn n = =     
( ) ( ) ( )3 3 3

232 322 0223 17 8E E E E⇒ = = =                                 ( ) ( )2 2
14 41 017 8E E E⇒ = =   

( ). 3deg =                                                ( ). 2deg =  
 

( ) ( ) ( ) ( ), , 1,3,3 3,1,3 3,3,1x y zn n n = = =                          ( ) ( ) ( ), 2, 4 4,2x yn n = =     
( ) ( ) ( )3 3 3

313 331 0133 19 8E E E E⇒ = = =                                 ( ) ( )2 2
24 42 020 8E E E⇒ = =   

( ). 3deg =                                                ( ). 2deg =  
 

( ) ( ) ( ) ( ), , 2,3,3 3,2,3 3,3,2x y zn n n = = =                         ( ) ( ) ( ), 3, 4 4,3x yn n = =  
( ) ( ) ( )3 3 3

323 332 0233 22 8E E E E⇒ = = =                                 ( ) ( )2 2
34 43 025 8E E E⇒ = =  

( ). 3deg =                                                 ( ). 2deg =  
 

( ) ( ), , 3,3,3x y zn n n =                                         ( ) ( ), 4, 4x yn n =  
( )3
333 027 8E E⇒ =                                            ( )2

44 032 8E E⇒ =  

 
the entropy becomes ( )ln 2 0.693B BS k k= = . We have less entropy because 
there is only a 2-fold degeneracy for that same energy level. 

Further insights can be deduced from Table 1. We present these in para-
graph/ bullet form. 

1) From our simple example, we first notice that space is equivalent to energy 
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and vice versa. This is so because we clearly see that a higher dimensional (larger 
N) space can accommodate, i.e. hold more energy. It simply has more degenera-
cy, and a higher spectrum of energy levels, than a lower dimensional space for a 
given cut-off in energy. If we have a finite amount of energy at our disposal, such 
as 027 8E , we see that we have 27 energy levels for 3N = , versus only 15 
energy levels for ( )1 2N − = . Furthermore the total energy accommodated in 

3N =  space can be summed up, up to and including, 027 8E . The result is  
( ) [

]

3

0

0

1 3 3 6 3 9 1 12 3 11 6 14

3 17 3 19 3 22 1 27 8
378 8

TOTALE

E
E

= × + × + × + × + × + ×

+ × + × + × + ×

=

          (3) 

where 0E  was defined as 2 2
0E h mL= . For ( )1 2N − = , the corresponding 

total energy accommodated, for that same cut-off in energy, is  
( ) [

]

2

0

0

1 2 2 5 1 8 2 10 2 13 1 18

2 17 2 20 2 25 8
208 8

TOTALE

E
E

= × + × + × + × + × + ×

+ × + × + ×

=

          (4) 

The difference in energy between the two spaces is ( ) ( )3 2
0170 8TOTAL TOTALE E E− = , 

if each space were populated up to the same cut-off energy, 027 8E .  
2) This equivalency between space and energy is a quantum mechanical effect 

due to the presence of “h” in Equation (1) and Equation (2). In the classical limit 
where 0h → , there is no connection between energy given by the left hand side 
of Equation (1) and Equation (2), and the spatial dimensions of the box, which is 
specified by the right hand side. The same holds for photons (radiation) as 
shown in reference [7]. Because the particles are trapped in a box, we have quan-
tized energy levels. As is well known, all bound states have a discrete, versus a 
continuous, spectrum of energy levels. 

3) The higher the spatial dimension, the higher the associated entropy, all 
other things being equal. S cannot be defined for 0N =  using the formula, 

lnBS k= Ω , because 0Ω = . Also, 0S =  for 1N =  because there is no dege-
neracy possible in 1-d space1 [10]. Here, 1Ω = . We count up the total entropy 
in 3N =  space, versus ( )1 2N − =  space, for the same cut-off in energy, 

027 8E . For 3N = , we obtain  
( ) ( ) ( )3 ln 6 6 ln 3 8.383TOTAL B BS k k= + ∗ =                  (5) 

 

 

1We have a similar state of affairs for radiation. The energy density for radiation in N dimensional 
space is given by the expression: 

( ) ( ) ( ) ( ) ( ) ( ) ( )12, 2 1 π 1 1 2N NN
Bu u N T n k T N N hc Nζ+  = = − + Γ + Γ  . 

In this equation, T is the temperature in Kelvin, Bk  is Boltzmann’s constant, c equals the speed of 
light, h is Planck’s constant, ( )xζ  is the zeta function, and ( )xΓ  is the gamma function. See ref-
erences [12] [13] [14] [15]. The entropy density can be expressed in term of the energy density, 

( ),u u N T= ; in N-dimensional space, we have ( )1s N N u T= + . From these two formulae we no-
tice that for 0N = , there is no entropy as we are then dividing by ( )0Γ , which is in the denomi-
nator and is zero. If 1N =  is substituted in the above equation, then the denominator is well de-
fined, but we obtain a zero value in the numerator. Radiation energy cannot exist in a 1-dimensional 
space, and, as a consequence, the entropy likewise equals zero for one spatial dimension. This mir-
rors what was said for a massive particle. 
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To ascertain Equation (5) we have referred to Table 1. For ( )1 2N − = , the 
total entropy amounts to  

( ) ( )2 6 ln 2 4.159TOTAL B BS k k= ∗ =                      (6) 

This is for the same selected cut-off in energy. We have made use of Table 1 
and the relation, lnBS k= Ω . It is clearly seen that the difference in entropy 
between the two spaces is ( ) ( )3 2 4.224TOTAL TOTAL BS S k− = , where we assume that each 
space is populated to the same cut-off energy, namely, 027 8E E= . 

4) For a massive particle, following the steps in reference [7], but now for a 
massive particle, we claim that 

( ) ( ) ( ) ( ) ( )3 3 2 2 2
TOTAL TOTAL TOTAL TOTALE S T E S T Q+ = + + ∆               (7) 

Here, T is the temperature in Kelvin, and Q∆  is any latent heat given off in 
2-space as a result of the transition from 3N =  to ( )1 2N − = . At this stage, 

Q∆  can be positive, zero or negative. This is our extension of the CC relation 
for massive particles in a box. Unlike radiation, there is no pressure component. 
However, utilizing our above example with the specified cut-off in energy, we 
obtain from Equation (3), the following result. 

( )2
0 0378 8 8.383 208 8 4.159B BE k T E k T Q+ = + + ∆  

Therefore, 
( )2

0170 8 4.224 BQ E k T∆ = +                     (8) 

It is to be noticed that the right hand side is definitely greater than zero for 
any temperature, T, and ground state energy, 0E . Equation (8) assumes that 
both spaces are populated to the same specific cut-off energy. Therefore, latent 
heat must be released in the 2-dimensional space when transitioning from 3N =  
to ( )1 2N − = . If we were to increase the spatial dimension from ( )1 2N − =  to 

3N = , then latent heat would have to be supplied in this amount in order to 
make the reverse transition. Equation (8) also tells us that the amount of latent 
heat given off depends specifically on temperature, cut-off energy, and ground 
state energy.  

A simple example might involve electrons trapped in a box of dimensions, (10−10 
m) by (10−10 m) by (10−10 m), and having total energy 15

0378 8 1.024 10 JE −= × . 
All energy levels are filled, and thus 27 electrons are accommodated. We ignore 
spin and Pauli statistics in order to keep the discussion simple. Upon transition-
ing to a 2-d box of dimensions (10−10 m) by (10−10 m), 12 electrons are expelled, 
i.e. left in the originating 3N =  space, due to the fact that only 15 energy states 
are available in this reduced ( )1 2N − =  space for the specified cutoff energy. 
Assuming a transition temperature of 293 K (room temperature), the heat re-
leased would be given by Equation (7). We obtain before the spatial transition 
from 3-d to 2-d, 

( ) ( ) ( ) ( )3 3 2 2
0378 8, 8.383 , 0, 0TOTAL TOTAL B TOTAL TOTALE E S k E S= = = =         (9) 

After the spatial transition from 3-d to 2-d, due to the 12 electrons left behind 
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in 3-d space, we find that  
( ) ( )

( ) ( )

3 3
0

2 2
0

107 8, 3.296 ,

208 8, 4.159
TOTAL TOTAL B

TOTAL TOTAL B

E E S k

E E S k

= =

= =

′ ′

′ ′
                 (10) 

Primed variables refer to the situation after. The difference gives us ( )2Q∆ . By 
Equation (7), Equation (9) and Equation (10), we see that 

( ) ( ) ( )2
0

16 21

16

378 107 208 8 8.383 3.296 4.159

1.707 10 3.752 10

1.707 10 Joules 1.067 keV

BQ E k T
− −

−

∆ = − − + − −

= × + ×

= × =

      (11) 

This is the release in energy, in 2-d space, for the transition of the 15 electrons 
from 3-d to 2-d space, and we can definitely see that this is a positive release of 
energy. The 12 electrons that cannot be accommodated in 2-d space occupy the 
lowest states in 3-d space. Particles trapped in a two dimensional box or lattice 
have less degrees of freedom, than corresponding particles trapped in a 3-box or 
lattice for the same cutoff energy. This manifests itself in the release of latent 
heat through Equation (7) and Equation (11).   

5) Two limits can take us from the N-dimensional space to the ( )1N −
-dimensional space. The first limit involves taking the length parameter, zL  in 
Equation (1), and have this length approach infinity2 [11]. The second limit is to 
let zL  approach zero. From an energy standpoint, the 2nd limit makes more 
sense. 

We consider the transition 3N =  to ( )1 2N − = , where Equation (1) reduc-
es to Equation (2). In both limits, the “z” space is weighed differently, versus x 
and y coordinates. In the first limit, the “z” space is stretched out, whereas in the 
second limit, the “z” space is shortened, i.e. compactified. If the box in the “z” 
direction is stretched out, then there can be little quantization in the z sense, as 
we will have close to zero energy levels in this direction in space. In one dimen-
sion, the energy is quantized, 2 2n nE p m=  where np  is the momentum of the 
particle. Because of the de Broglie relation, we know that n np h λ= , where nλ  
is the wavelength. When confined to a box of width L, this gives for the quan-
tized energy levels, ( )2 2 28nE n h mL= . From this expression it is seen that in the 
limit where L approaches infinity, nE  must approach zero. Moreover, as the 
temperature decreases, we might expect a spatial transition. If this occurs, then 
the z-space has lower energy levels in this limit, where zL →∞ . However, even 
though the quantized energy levels in z-space go down relative to the x-y-space, 
the expanse of z-space goes up. In fact, it approaches infinity. We therefore ex-
pect an overall increase in total energy when 3-d space transitions to 2-d space 
when taking this limit. But based on our arguments above, and the entries given 
in Table 1, this is clearly not so. Energy has been given off as latent heat upon 
transitioning from a higher dimension to a lower one, and this is only possible if 
we had more energy to begin with than after. Thus the x-y-z-space must have 
more energy versus the x-y space + z-space, separately, after the transition.   

 

 

2This would correspond to the de Sitter radius  R→∞  and the rotation group, ( ) ( )1,4 1,3SO SO→ . 
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A better limit to take is to let zL  approach zero. The 𝑧𝑧-space is now confined 
to a narrower width, and, as a consequence, there is more quantization in the 
z-sense, i.e. the energy levels get bumped up to where they, perhaps, are no 
longer readily observable. However, the physical realm length-wise, over which 
they act, is much less. The x-y space is now occupied by lower energy levels than 
the z-space energy levels, since the z space width is much narrower. When plot-
ting quantized energy levels as a function of dimension, each dimension of space 
has a specific width or weight. This is the realm over which the quantized energy 
levels can be found. Associated with a spatial dimension is quantized energy, and 
each has a corresponding height. If the width associated with one particular spa-
tial direction freezes upon transitioning, then the associated energy levels must 
stay fixed. Therefore, the energy levels in that particular spatial direction, the 
compactified direction, can no longer decrease.  

Another way of arguing the same thing is as follows. Before the transition, all 
x-y-z components are weighed equally. And all have the same fixed energy levels. 
As the temperature decreases, the quantized energy levels decrease in x-y-z di-
rections until, at some critical temperature, a transition from 3-d space to 2-d 
space occurs. The x-y space continues to decrease in terms of weight, but the 
z-space width has frozen since positive energy is released in the form of latent 
heat. We saw that to be the case by our model example. If, on the other hand, the 
z-space weight were to increase and the width gets larger, then there would be 
more energy after, versus before, within the space itself. This is not compatible 
for a positive release of latent heat as demonstrated above. 

A specific example might be the early universe, where a hypothetical 4N =  
to ( )1 3N − =  transition may have occurred [8]. Assuming such a model, as the 
universe cools upon expansion, the energy levels must decrease due to box 
quantization. Early on, each of the 4-dimensions must have been occupied with 
rather higher energy levels, having been confined to a relatively small volume. At 
some critical temperature, which we denote by 43T , a transition occurs from 
4-space to 3-space. Latent heat is given off and the weight of the 4th dimension, 
the w-space, has compactified, i.e. frozen its width. The quantized energy levels 
continue to decrease for the remaining x-y-z spatial dimensions, and we only 
observe 3-d expansion upon decoupling. An estimate of the compactification 
length was given in a previous work [7]. The reason we may not see the energy 
levels associated with the 4th dimension in this transition, and the reason we do 
not appreciate the lowering of such energy levels due to expansion, is because 
our modern day accelerators have not yet reached, and perhaps will never reach, 
such small compactification scales. 

6) The ( )1N −  volume is a subset of the N volume when compactification 
occurs. Again, consider our particle in the box example, and again let us focus on 
the 3N =  to ( )1 2N − =  transition. It is obvious that ( ) ( )3 2

x y z zV L L L V L= = . In 
the first limit, ( )3V  approaches infinity in cubic meters, whereas, in the second 
limit, ( )3V  approaches zero, also in cubic meters. ( )2V , on the other hand, is 
measured in square meters, and being a different dimensional quantity, ( )2V  
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cannot be compared to ( )3V  directly. The ratio, ( ) ( )3 2V V , is a measure for the 
weight of the space allocated to zL . 

In a previous paper [7], we argued that the universe may have once had 4 spa-
tial dimensions in a very early epoch and the 3-d world we see now may be a 
special case limit. The 4th dimension has curled up on itself a long time ago, and 
will only be visible once higher accelerator energies are built. Within the greater 
universe itself at present, such pockets of 4-d space may still exist, and be only 
visible from the outside, such as in a black hole. The temperature plays a key role 
in any first order phase transition, and here it would be no different. If, for ex-
ample, ( )4V  equals 10−80 m4, but ( )3V  equals 10−54 m3, then the compactified 
length, ( ) ( )4 3 2610 mwL V V −≡ = . This would be an unobservable world for 
which we have little direct knowledge or appreciation. 

7) Energy must be conserved when transitioning between different dimen-
sions of space. We next consider a transition from 4N =  to ( )1 3N − = , and 
rewrite our generalized CC equation, Equation (7), as 

( ) ( ) ( ) ( ) ( )4 4 3 3 3  TOTAL TOTAL TOTAL TOTALE S T E S T Q+ = + + ∆               (12) 

where ( )3Q∆  is the latent heat released in 3-d space. We know that ( )3Q∆  
must be positive. Dividing Equation (12) by the 3-Volume, ( )3V , the equation 
takes the form 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )4 4 4 3 3 3 3
TOTAL TOTAL TOTAL TOTALu s T V V u s T q+ = + + ∆          (13) 

In Equation (13), ( )4V  is the 4-Volume, ( )4u  and ( )3u  are the internal 
energy densities in 4-d and 3-d space, respectively, and ( )4s  and ( )3s  are the 
entropy densities in 4-d and 3-d space, respectively. Finally we have the latent 
heat density, ( )3q∆ , as well. However, ( ) ( )4 3

wL V V≡  where “w” signifies the 
4th dimension. Hence, Equation (13) assumes the form 

( ) ( )( ) ( ) ( ) ( )4 4 3 3 3
TOTAL TOTAL w TOTAL TOTALu s T L u s T q+ = + + ∆             (14) 

This equation is dimensionally consistent even though, in terms of units, 
( )4 4J mdim u  =  , which is unequal to ( )3 3J mdim u  =  . Moreover,  
( ) ( )4 4J m Kdim s  = ⋅  is unequal to ( ) ( )3 3J K mdim s  = ⋅  . Equation (14) al-

lows us to solve for wL  if we can determine the other quantities. wL  is ob-
viously dependent on ( )3q∆ , as can be seen by Equation (14). 

In all likelihood, Equation (14) will not be that useful for massive particles as 
it is difficult to imagine how one can determine energy densities for massive 
particles in 4-d space. However, for massless particles, i.e. radiation, it is ex-
tremely useful. For radiation the internal energy densities, the pressure, and the 
entropy densities are readily determined as functions of spatial dimension, and 
temperature [8] [12] [13] [14] [15]. We have to include pressure contributions 
on both left and right hand sides for black-body photons, but these are also rea-
dily known. In fact, entropy density and pressure are multiples of internal ener-
gy density where the numerical factor depends strictly on the spatial dimension 
considered. As a consequence, the compactification parameter wL  is thus 
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strictly determined by the amount of latent heat given off as shown in a previous 
work [7], where we used a modified, i.e. extended version of Equation (14), 
which applies for radiation. The wL  versus ( )3q∆  dependency for radiation is 
a linear relationship. This is also true for Equation (14), which holds for massive 
particles. 

In conclusion, by means of a simple, almost elementary example, we have 
shown that space has energy content. In transitioning from a higher dimensional 
space to a lower one, latent heat is invariably released and a generalized CC rela-
tion holds. We focused on massive particles in a box, in N dimensions, and then 
again, in ( )1N −  dimensions. The identity of the particle, given by its mass, 
remained constant and the only thing that changed was the dimension of the 
box itself. A higher dimensional space can accommodate more particles, and at a 
higher energy, than a lower dimensional space. In transitioning between spatial 
dimensions, energy therefore must be released. Moreover, two limits are possi-
ble, but only the compactified limit, 0wL → , seems to make sense from a con-
servation of energy viewpoint. We saw that as a spatial dimension freezes or 
compactifies, quantized energy levels in the compactified space dimension stay 
large and, mostly likely, beyond view. However, the weight or width of remain-
ing non-compactified space increases even though a dimension of space has 
curled up.   
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