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Abstract 
Using a space filled with black-body radiation, we derive a generalization for 
the Clausius-Clapeyron relation to account for a phase transition, which in-
volves a change in spatial dimension. We consider phase transitions from 
dimension of space, n, to dimension of space, ( )1n − , and vice versa, from 

( )1n −  to n-dimensional space. For the former we can calculate a specific 
release of latent heat, a decrease in entropy, and a change in volume. For the 
latter, we derive an expression for the absorption of heat, the increase in en-
tropy, and the difference in volume. Total energy is conserved in this trans-
formation process. We apply this model to black-body radiation in the early 
universe and find that for a transition from 4n =  to ( )1 3n − = , there is an 
immense decrease in entropy accompanied by a tremendous change in volume, 
much like condensation. However, unlike condensation, the volume change is 
not three-dimensional. The volume changes from 4V , a four-dimensional con-
struct, to 3V , a three-dimensional entity, which can be considered a subspace 
of 4V . As a specific example of how the equation works, we consider a transi-
tion temperature of 3 × 1027 Kelvin, and assume, furthermore, that the latent 
heat release in three-dimensional space is 1.8 × 1094 Joules. We find that for this 
transition, the internal energy densities, the entropy densities, and the volumes 
assume the following values (photons only). In four-dimensional space, we ob-
tain, 125 4

4 1.15 10 J mu −= × ⋅ , 97 4 1
4 4.81 10 J m Ks − −= × ⋅ ⋅ , and  

31 4
4 2.14 10 mV −= × . In three-dimensional space, we have 

94 3
3 6.13 10 J mu −= × ⋅ , 67 3 1

3 2.72 10 J m Ks − −= × ⋅ ⋅ , and 3
3 0.267 mV = . The 

subscripts 3 and 4 refer to three-dimensional and four-dimensional quanti-
ties, respectively. We speculate, based on the tremendous change in volume, 
the explosive release of latent heat, and the magnitudes of the other quantities 
calculated, that this type of transition might have a connection to inflation. 
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With this work, we prove that space, in and of itself, has an inherent energy 
content. This is so because giving up space releases latent heat, and buying 
space costs latent heat, which we can quantify. This is in addition to the 
energy contained within that space due to radiation. We can determine the 
specific amount of heat exchanged in transitioning between different spatial 
dimensions with our generalized Clausius-Clapeyron equation. 
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1. Introduction 

As is well known, the Clausius-Clapeyron relation [1] [2] [3] [4] is useful in pre-
dicting the latent heat given off when a substance undergoes a first order phase 
transition at a particular temperature and pressure. A first order phase transition 
is a discontinuous phase transition for which there is an abrupt change in phase, 
and latent heat is released or absorbed by a fixed amount. The discontinuity is 
characterized by a co-existence curve, typically plotted as pressure versus tem-
perature, and on this curve, both phases can co-exist at specific temperatures 
and pressures. We assume a closed system where temperature and pressure are 
clearly defined on either side of this curve, and are held constant at a particular 
point on the curve when transitioning.  

The Clausius-Clapeyron relation, as presently formulated, assumes that space 
is smooth, continuous, and three-dimensional, both before and after a transition. 
We relax the assumption of dimensionality. We will show that it is possible to 
generalize this important thermodynamic relation to include phase transitions, 
which are changing spatial dimension itself, while all the while conserving total 
energy. Furthermore, this kind of analysis may prove consequential in under-
standing the inflation phase of the early universe. 

Our motivation for studying this problem is three-fold. First, it is of general 
theoretical interest for compactification and Kaluza-Klein theories [5]-[10]. 
When symmetries are broken, whether spontaneously or otherwise, the dimen-
sionality of space often remains fixed, but not in compactification. What does 
it mean if spontaneous symmetry breaking occurs thermodynamically with an 
attendant change in spatial dimension? While we will not attempt to address 
this question in detail, we will show how it can be done. The key is the Clau-
sius-Clapeyron equation. 

Second, there may be possible applications to the very early universe, and spe-
cifically to inflation itself, as alluded to previously. In inflation, the universe ex-
pands exponentially and dramatically, within a very short time period, and with 
a rapid reduction in temperature. A discontinuous phase transition seems to of-
fer those same characteristics except that the temperature remains fixed. A spa-
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tially changing phase transition from n = 4 dimensions to n = 3 dimensions, may 
offer the order of magnitude scales required for early cosmic evolution, and for 
inflation in particular. In addition, because it happened at an instant, then and 
there so to speak, with a tremendous release of latent heat, thermal equilibrium 
was guaranteed shortly thereafter. Moreover, the problem with a-causal expo-
nential expansion may not be an issue if it is the space itself, which is expanding 
upon changing dimensions when transitioning. Finally, in regards to inflation, 
we will also show that relative fluctuations in temperature, T Tδ , can be carried 
over, or even created in certain circumstances, when transitioning from one 
space to another neighboring space. This appears to be a unique feature for this 
kind of transformation as will be demonstrated. 

Third, we recently presented a paper [11] where we advanced the notion that 
the universe may be modeled as a thermodynamic heat engine. There, we as-
sumed a closed universe, i.e. one with a slight positive curvature, which will al-
low for a big bounce scenario. To explain inflation, and expansion in general, we 
proposed a Carnot cycle for the cosmos consisting of isothermal expansion 
(from points, a b→ ), adiabatic expansion (from points, b c→ ), isothermal 
contraction (form points, c d→ ) and isothermal contraction (from points, 
d a→ ). The universe finds itself currently in the adiabatic expansion mode. 
This four step process brings the universe back to its initial configuration, point 
a , where we have a finite temperature, a finite pressure, a finite energy, a finite 
volume, etc. The universe, being cyclic, has no real beginning, nor does it have 
an end. Spatially, there are no “edges” as the universe has no boundaries. The in-
flation phase is identified as the initial isothermal expansion phase, from points, 
a b→ . This very short phase did not last long, of the order of only, 10−35 s. 

Time evolved very differently in the isothermal expansion mode, as was 
shown explicitly in reference [11]. Time evolution was not temperature depen-
dent, but, interestingly, volume dependent. The volume expanded by a factor of 
only 5.65, as did total entropy, and this expansion was fueled by thermal quan-
tum fluctuations and heat transfer from surroundings to system. We identified 
the “surroundings” as those parts of the observable universe, which spatially in 
the WMAP and Planck maps are now slightly cooler. Those are the pockets of 
space where matter later aggregated. The “system” consisted of voids, i.e. those 
parts of space that do the actual expanding currently. These regions were slightly 
hotter in the very early universe. The adiabatic expansion phase, which follows 
isothermal expansion, is driven by a different mechanism, a decrease in internal 
energy. The specifics are given in reference [11]. 

The connection between this model and a spatially changing phase transition 
from 4n =  to ( )1 3n − =  space dimensions is as follows. This phase transition 
may have provided the impetus, quite literally, the spark, for the start of the 
cycle as described above. The amount of heat required for the initial isothermal 
expansion process, which lasted only about 10−35 s, was calculated to be very high, 
roughly 1.8 × 1094 J. We considered only photons, and so, this estimate is, more 
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than likely, on the low side1 [12] [13] [14]. We also made use of the present ra-
dius of the observable universe, about 4.4 × 1026 m, which is in itself, a very 
crude approximation. The temperature for the isothermal process was ascer-
tained to be about 3 × 1027 K. This number was derived using Heisenberg’s un-
certainty principle, and the slight spatial temperature variations found in the 
WMAP and Planck missions, namely, 5 5 10T Tδ −≈ ± ×  between the hot and 
cold spots found within the photon blackbody radiation. Perhaps the source for 
the heat required for the isothermal phase was not the transfer of heat from sur-
roundings to system as originally proposed in reference [11]. Perhaps it is due to 
a spatially changing phase transition from n = 4 to ( )1 3n − =  at 273 10 KT ≈ × . 
Irrespective of whether our heat engine model is valid, we consider the generali-
zation of the Clausius-Clapeyron relation to be of paramount importance for 
both thermodynamics, and an understanding of compactification theory in gen-
eral. 

Recently, researchers [15] have suggested that a 4n =  to ( )1 3n − =  transi-
tion might actually have occurred in the very early universe. At a temperature of 
0.93 × Planck Temperature they found that the Helmholtz free energy density 
function reaches a maximum value when plotted as a function of spatial dimen-
sion, 1,2,3,4,n =  . That maximum was reached for 3n ≈ . This was the first 
of several important thermodynamic variables to do so, and they interpreted this 
extremum as the transition point where nature decided on three spatial dimen-
sions. While we agree with their overall premise that compactification may have 
occurred, we disagree with their estimate for the temperature of this transition. 
The Planck temperature is 1.42 × 1032 K, and 93% of this is still +1032 K. We be-
lieve in a lower temperature for the 4n =  to ( )1 3n − =  transition, which we 
call 43 34T T= . We believe it is closer to 3 × 1027 K based on our heat engine 

 

 

1At a temperature of 273 10 K∗ , it is well known that there are many species of radiation present, not just 
photons. There are the neutrinos ( ), ,e e µ µ τ τν ν ν ν ν ν , and the , ,e e µ µ τ τ+ − + − + −  pairs which contribute to 

radiation. We also have quark, antiquark and gluon radiations. Then there are 0, ,W W Z+ −  radiative 
contributions, etc. If we take just the particles in the standard model into consideration, then we have as 
the energy density ( ) ( ) ( )2 * 430u T g T Tπ=  where ( ) ( ) ( )* 7 8b fg T g T g T= + , and b ig g=∑  is 

the sum over relativistic bosonic species. The f ig g=∑  is the corresponding sum over relativistic 

fermions. The ( )*g T  counts up the effective number of relativistic degrees of freedom (photons 
count as two degrees of freedom), which is temperature dependent for massive particles. All particles 
in the standard model are already relativistic at temperatures of 1610 K 1TeV≈ . When we carry out 
the sum for the known particle species, we obtain 28bg = , 90fg = , and, therefore, * 106.75g = . 
We would also have to add those particles which are not yet observed, but which could exist in the 
form of radiation at 273 10 K∗  such as supersymmetric particles, dark matter particles, etc. To 
make a long story short, the input heat needed to bring these types of radiations into thermal equili-
brium with the photons is therefore higher, than if we just consider photons by themselves. There-
fore, our original rough estimate of 941.8 10 JL = ∗  is, most probably, too low in value and we 
should multiply this number by a scale factor such as ( )*g T  in order to take into account other 
species of radiations. We focus only on the photon contribution to keep the discussion simple, but 
also because we cannot be sure as to what contributes at this extremely high temperature. In addi-
tion, we have to remember that our estimate for latent heat is, in itself, a very rough approximation 
to begin with. Two good references on relativistic degrees of freedom and their contribution to radi-
ation, are references [13] and [14], which follow. 
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model, as well as other considerations. Regardless of what the actual transition 
temperature turns out to be, assuming it exists, we approach the problem of a 
spatial phase transition from an entirely different perspective. We focus on the 
Clausius-Clapeyron (abbreviated CC) relation and generalize the relation to ap-
ply for a spatial change in phase; in other words, the dimension of space changes. 

The outline of this paper is as follows. In Section II, we generalize the CC rela-
tion using radiation as the substance filling space. We believe that radiation in all 
its forms (photons, neutrinos, e+e− pairs, etc.) is the primordial substance found 
in the very early universe when temperatures were very high. Radiation will de-
fine space according to Mach’s principle (matter/energy content defines space) 
and spatial transitions are assumed possible. To keep the discussion simple we 
will focus exclusively on photons. In very general terms we derive the generaliza-
tion of the CC equation for an arbitrary n-dimensional to ( )1n − -dimensional 
spatial change of phase, and vice versa. We also consider the conservation of 
energy and changes in hypervolume in general terms. In Section III we focus on 
the transition from 4n =  to ( )1 3n − = . We will assume specific values for 
temperature of transition, as well as amount of latent heat release, in order to 
show how the equation works. The specific values chosen are motivated by pre-
vious work [11]. Quantities in three-dimensional and four-dimensional spaces 
are then calculated, such as entropy and volume, both before and after. In Sec-
tion IV, we discuss inflation in general, and consider our ( )4 1 3n n= → − =  
model in particular. The WMAP and Planck satellite missions show a remarka-
ble uniformity in photon blackbody temperature. Nevertheless, there is a slight 
inhomogeneity in temperature, which explains the present structure of the un-
iverse. That inhomogeneity is of the order, 55 10T Tδ −= ± × . How does this 
non-uniformity in temperature behave when undergoing a spatially changing 
phase transition? How, specifically, are the other thermodynamic quantities af-
fected? We will answer both questions in Section IV. Finally, in Section V, we 
present our summary and conclusions. 

2. Generalization of the Clausius-Clapeyron Relation 

In this section, we generalize the CC relation to allow for a phase transition from 
n-dimensional space to ( )1n − -dimensional space and vice versa. We start with 
the internal internal radiation energy density (photons only). As is known [16] 
[17] [18] [19], the internal energy density in n-dimensional space is given by the 
following function, which depends only on temperature and the dimensionality of 
space, n: 

( ) ( ) ( ) ( ) ( ) ( ) ( )12, 2 1 π 1 1 2n nn
Bu u n T n k T n n hc nζ+  = = − + Γ + Γ    (2-1) 

In this equation, Bk  is Boltzmann’s constant, c equals the speed of light, h is 
Planck’s constant, ( )xζ  is the zeta function, and ( )xΓ  is the gamma func-
tion. From this function, we can furthermore show that 

( ), , 1f u n p u n s n nu T= − = = +                 (2-2) 
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Here, “f” is the Helmholtz free energy density, “p” is the pressure, and “s” is 
the entropy density. The Helmholtz function is defined as –F U TS≡ , and 
therefore, f u Ts= − .  

In n-dimensional space, a hypervolume can be defined for a n-dimensional 
ball. The expression [20] [21] is  

( ) ( )2π 1
2

n
n

n n n n
nV V R R  = = Γ + 

 
                  (2-3) 

The subscript “n” on a physical quantity will always refer to the spatial dimen-
sion in which the quantity is defined. ( )xΓ  is again the gamma function. 

If we specialize to three spatial dimensions, 3n = , then we obtain familiar 
formulas using the equations above: 

( ) ( )4 35 3
3 3 3 3 3 3 38 15π , 3, 4 3 , 4 3πBu k T hc p u s u T V R= = = =    (2-4) 

The internal energy density is often written as 4 4
3 4u T Ac Tσ= = , where σ is 

the Stefan-Boltzmann constant, and A has the numerical value equal to  
16 3 47.566 10 J m K− − −⋅ ⋅× . For = 4, 4V  equals ( )( )42

4π 2 R , and in two dimen-
sions, ( )2

2 2πV R= . When not specified explicitly, we use MKS units throughout 
this paper. 

Next, we consider the entropy in n-dimensional space. We find that 

( ) ( )1n n n n nS s V n n u T V= = +                    (2-5) 

For ( )1n − -dimensional space, we obtain 

( )( )1 1 1 1 11n n n n nS s V n n u T V− − − − −= = −                 (2-6) 

We can also calculate, using Equation (2-2) and Equation (2-1), ( )d dn np T V . 
The result is 

( ) ( ) ( )d d 1n n n np T V n n u T V= +                   (2-7) 

Similarly,  

( ) ( )( )1 1 1 1d d 1n n n np T V n n u T V− − − −= −                 (2-8) 

Comparing right hand sides of Equation (2-5) and Equation (2-7), it is clear 
that 

( )d dn n nS p T V=                          (2-9) 

Similarly, comparing right hand sides of (2-6) and (2-8), we see that 

( )1 1 1d dn n nS p T V− − −=                       (2-10) 

Therefore, if we take the difference between Equation (2-9) and Equation 
(2-10), we find that 

( ) ( )1 1 1d d d dn n n n n nS S p T V p T V− − −− = −               (2-11) 

This is our generalization of the CC relation. The difference in entropy mul-
tiplied by the temperature is the latent heat, Q∆ . Therefore, Equation (2-11) 
can also be written as 
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( ) ( )1 1 1d d d d 1 2n n n n n nS S p T V p T V Q T− − −− = − = ∆        (2-12) 

The factor of 1/2 on the right hand side of Equation (2-12) will be explained 
shortly. Equation (2-12) is dimensionally consistent, as we shall also soon see, 
even though the densities and pressure are defined in different dimensions, and 
thus have different units. 

The general expression for ( ) –f iS S S∆ =  is d
f

i
S Q T∆ = ∫ . The nS  and 

1nS −  in Equation (2-12) can be thought of as entropy states, iS  and fS . 
However, if the temperature is held fixed, as in a first order phase transition, this 
reduces to S Q T∆ = ∆ . When written out, ( ) ( )– –f i f iS S Q Q T= . The sign 
of S∆  determines the sign of Q∆ . It will soon become apparent that n iS S=  
is always greater than 1n fS S− = . Therefore, Q∆  in (2-12) is positive which 
means that heat is being given off in the final state. If we reverse the transition 
from ( )1n − -space to n-space, we simply multiply Equation (2-12) by a minus 
sign. In this instance, n fS S=  and 1n iS S− =  and Q∆  is negative. This means 
that latent heat has to be supplied for this transition to occur. The Q∆  is often 
written as L, which stands for latent heat. Barring exotic scenarios where we 
have parallel universes or multi-universes, etc., we will assume that the latent 
heat, which is released in the first type of transition where we decrease the num-
ber of dimensions, will be released in ( )1n − -space. For the second type of 
transition, where we increase the dimensionality of space, the heat which needs 
to be supplied in order for this transition to happen, needs to come from the 
originating ( )1n − -space. 

Equation (2-12) reduces to the conventional CC relation (up to a factor of 1/2) 
in the limit where n equals ( )1n − , if we can imagine such a limit allowing for 

1n nS S −≠  and 1n nV V −≠ . Both temperature and dimension of space are similar 
in this limit, and thus, there is no difference between np  and 1np − . We retrieve 
the standard CC equation in Equation (2-12), except for the factor of 1/2. 
Therefore, in an intriguing way, the familiar CC relation is obtained as a special 
case when neighboring spaces converge. Since a first order phase transition is a 
discontinuous phase transition, we can easily imagine that 1n nS S −≠  and 

1n nV V −≠ , even though the dimensions of space are now the same in this special 
limit. 

Let us next prove that Equation (2-12) is dimensionally consistent. We note 
that, in terms of units, the [ ] [ ] [ ]1n ndim T dim T dim T−= = . However, Equation 
(2-1) shows us that 

[ ] [ ] ( )1
1J m J m nn

n ndim u dim u − −−
−= ⋅ ≠ = ⋅              (2-13) 

We are working within the MKS system where “J” stands for Joules and “m” 
for meters. From relations (2-13) and (2-2b), we also notice that 

[ ] [ ] ( ) [ ] ( )
( )1 2

1 1N m N mn n
n n n ndim p dim u dim p dim u− − − −

− −
 = = ⋅ ≠ = = ⋅   (2-14) 

Here “N” refers to 1Newtons J m−= ⋅ . Furthermore, upon using Equation 
(2-2c), we find 
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[ ] [ ] ( )11 1
1J m K J m Knn

n ndim s dim s − −− − −
−= ⋅ ⋅ ≠ = ⋅ ⋅           (2-15) 

The “K” refers to degrees Kelvin. Moreover, from Equation (2-3) we see that  

[ ] ( )
( )1

1
nn

n ndim V m dim V m −
−

 = ≠ =                  (2-16) 

From these relations, it is easy to prove that 

[ ] [ ] [ ] [ ] [ ] [ ]1 1 1Jn n n n n ndim U dim u dim V dim U dim u dim V− − −= ∗ = = = ∗   (2-17) 

[ ] [ ] [ ] [ ] [ ] [ ]1 1 1J Kn n n n n ndim S dim s dim V dim S dim s dim V− − −= ∗ = = = ∗  (2-18) 

The quantities, nU  and nS , refer to the internal energy and entropy in 
n-spatial dimensions, and we notice that these quantities do not depend on the 
value of “n” as far as dimensional units are concerned. We can substitute the 
dimensionalities specified above into Equation (2-12) to show that the Equation 
(2-12) is, indeed, dimensionally correct. 

We now explain the factor of 1/2 in Equation (2-12). Conservation of energy, 
in all its forms, between spatial dimensions demands that 

1 1 1 1  n n n n n n n nU p V S T U p V S T L− − − −+ + = + + +             (2-19) 

In this equation, L is the latent heat released in ( )1n − -dimensional space, 
which may or may not equal zero, at this stage (It will turn out that L is unequal 
to zero and positive later). The various terms on the left hand side of (2-19) 
represent the internal energy, the stored work, and the heat content of photons, 
respectively, in 𝑛𝑛-dimensional space. We have the same on the right hand side 
but in ( )1n − -dimensional space, plus any latent heat, which may, or may not, 
be released in ( )1n −  space. We can simplify Equation (2-19), utilizing Equa-
tion (2-2b). Upon substitution of the latter expression, we now write (2-19) as 

( ) ( ) 1 11 1n n n nn n U S T n n U S T L− −+ + = − + +                (2-20) 

We can simplify (2-19) further using (2-2c) to eliminate nS  and 1nS − . Here 
we obtain 

( ) ( ) 12 1 2 1n nn n U n n U L−+ = − +                     (2-21) 

Alternatively, we use Equation (2-2c) to eliminate nU  and 1nU −  in Equa-
tion (2-20) and find that 

12 2n nS T S T L−= +                        (2-22) 

However, from the paragraph following Equation (2-12), we saw that 

( ) ( )1 1– – – –f i n n f i n nS S S S Q Q T Q Q T L T− −= = = = −      (2-23) 

The subscripts, i and f, stand for initial and final states, and L refers to the la-
tent heat, which will be a positive quantity. Upon comparison of the two expres-
sions, Equation (2-22) and Equation (2-23), we notice that Equation (2-23) is re-
ally missing a factor of 1/2. When transitioning between different dimensions, 
photons need to maintain their identity in each spatial dimension, the initial di-
mension and the final dimension. This leads to additional terms involving in-
ternal energy and stored work in Equation (2-19), on both left and right hand 
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sides. As it turns out, the sum of internal energy and stored work is numerically 
equal, in each dimension, to the stored heat in that dimension. Therefore, we 
have the extra factor of two in both Equation (2-21) and Equation (2-22). Whe-
rever we see Q or L in Equation (2-23), we should substitute 1/2Q, and 1/2L. 
Another way of saying the same thing is that twice the entropy change is needed 
to release a fixed amount of latent heat, L, due to the requirement of maintaining 
internal energy and stored work, in both spaces. See Equation (2-22). Equation 
(2-22) is another way to write our generalized CC equation, Equation (2-12). 
One cannot just transfer internal energy for photons, and leave the associated 
pressure and entropy behind. It’s all or nothing if a transition occurs. 

We close this section by deriving an expression for the hypervolume ratio, 
( )1n nV V − , as this will be needed later on. We start with Equation (2-21), which 
we rewrite as 

( ) ( ) 1 1 12 1 2 1n n n n nn n u V n n u V L− − −+ = − +               (2-24) 

On the right hand side of (2-24), we have made explicit the fact that L is de-
fined in ( )1n − -space. We next define latent heat density as n n nl L V≡ . This 
allows us to reformulate Equation (2-24) as follows: 

( ) ( )2 2
1 1 1–1 2 1n n n n n nV V n n u u n n l u− − −

 = + +           (2-25) 

Therefore, 

( ) ( )2 2
1 1 1 1–1 2 1n n n n n nV V u u n n n n l u− − − −= + + 

          (2-26) 

or, alternatively, 

( ) ( )2 2
1 1 1 1–1 2 1n n n n n nV V u u n n n n L U− − − −

 = + +         (2-27) 

The latent heat is released in ( )1n −  space for a transition from spatial di-
mension, n, to spatial dimension, ( )1n − . As mentioned previously, we will not 
consider exotic situations where the heat can be released in any other kind of 
space, such as in a parallel universe, multi-universes, etc. 

Both Equation (2-26) and Equation (2-27), are linear equations where the de-
pendent variable can be considered ( )1n nV V −  and the independent variable is 
either 1nl −  for Equation (2-26), or 1nL −  for Equation (2-27). We will be look-
ing at a transition from 4n =  to ( )1 3n − =  in the next section, and it is more 
likely that we can give an estimation of either 1nl −  or 1nL − , versus ( )1n nV V − . 
Hence, we treat the latter as the dependent variable. Given a specific transition 
temperature, all other quantities can be determined or estimated on the right 
hand sides of Equation (2-26) and Equation (2-27). We can make use of the 
general expression, Equation (2-1), to determine nu  and 1nu −  for a specific 
transition temperature. For 3U  we need to give the size of the observable un-
iverse, 3V . However, we can estimate this volume for a particular transition 
temperature. The present size [22] [23] of the observable universe is approx-
imately 4.4 × 1026 m in radius, and this radius is scaled down by the cosmic scale 
factor, 0a T T= , for any other temperature T. We will ignore slight kinks due to 
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e+e− radiation annihilation and heating up of photons. For T we substitute 43T , 
the transition temperature, and for 0T , we insert the present temperature of the 
photon blackbody radiation, which is 0 2.7255 KT = . Therefore, we estimate 
that ( ) ( )( )33 3 3 26

3 0present observable volume 4π 3 4.4 10 mV a a V a= × = = × . For 
a specific transition temperature of 3 × 1027 K, we obtain 3

3 0.267 mV = . 
We can easily read off the slope and y-intercept, in both Equation (2-26) and 

Equation (2-27). Both slope and y intercept are transition temperature depen-
dent, and only transition temperature dependent for a given “n” to ( )1n −  
transition. For any latent heat release in ( )1n −  space, we can calculate the vo-
lume in n-space using either Equation (2-26) or Equation (2-27). 

3. The n = 4, to (n − 1) = 3, Transition 

In this section, we consider the 4n =  to ( )1 3n − =  transition. We start with 
the generalized CC equation, Equation (2-12). We specialize to 4n = , and ob-
tain 

( ) ( ) ( )4 3 4 4 3 3d d d d 1 2S S p T V p T V Q T− = − = ∆            (3-1) 

Written more elegantly, we use Equation (2-22), which is the equivalent. We 
focus on this second version, and write 

( )4 3 1 2S S L T− =                        (3-2) 

Our task is to find the hypervolume, 4V , using this equation, as well as other 
thermodynamic quantities of interest in 3-space and 4-space for a specific tran-
sition temperature. We start with Equation (2-1), where we first evaluate 3u  
and 4u . We will assume a transition temperature of 3 × 1027 K. Upon evaluating 
the constants and inserting this temperature, we find: 

( ) ( ) ( ) ( ) ( ) ( )

4 16 4 94 3
3

4 3 3

125 4
3

7.566 10 6.128 10 J m
and

5 4 3 2 1.437

627.6 1.154 10 J m
B B

u AT T

u u k T ћc u k T ћc

u T

ζ ζ

−= = × × = ×

= × × × = × ×

= × × = ×

   (3-3) 

MKS units will be used exclusively in this paper (even though, sometimes, we 
will not always write them out). We next evaluate the radiation pressure in both 
spaces. Using (2-2b) and Equation (3-3), we obtain 

94 2
3 3 2.043 10 N3 mp u= = ×  and 124 3

4 4 4 2.884 10 N mp u= = ×  (3-4) 

For the entropy density we utilize (2-2c) and Equation (3-3), and discover that 

( )67 3
3 4 4 3 2.724 10 J m Ks u T= = × ⋅  and ( )97 4

4 45 4 4.807 10 J m Ks u T= = ⋅×  (3-5) 

Furthermore, we know the value of 3V . This was evaluated in the last section, 
in the paragraph following Equation (2-27). The result for a transition tempera-
ture of 3 × 1027 K was 3

3 0.267 mV = . With this result, we can evaluate both 3U  
and 3S  explicitly. The results are 

94
3 3 3 1.639 10 JU u V= = ×  and 66

3 3 3 7.283 10 J KS s V= = ×       (3-6) 

We have made use of Equation (3-3a) and Equation (3-5a). 
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We next calculate 4S . For this, we have to assume a value for the latent heat. 
We adopt as a value, 941.8 10 JL = × , a number which was motivated to some 
extent in the introduction. Using this value in Equation (3-2) renders 

66
4 3– 3.000 10 J KS S = ×                    (3-7) 

In addition, from Equation (3-6), we have a value for 3 S . Inserting this into 
Equation (3-7), we find that 4S  equals 1.028 × 1067 J/K. Finally, we have a value 
for 4s , as this was numerically evaluated in Equation (3-5b). We can therefore 
obtain the hypervolume, 4V , by taking 4S  and dividing out by 4s . The result is 

67 97 31 4
4 4 4 1.028 10 4.807 10 2.139 10 mV S s −= = × × = ×        (3-8) 

This is a fantastically small volume. To obtain a 3-d volume, 3
3 0.267 mV = , 

from a volume such as this, a dimension of space must have curled up on itself 
to compactify to 3V . If we call that dimension, which has compactified, the 
w-dimension, then we notice that  

31 31
4 3 2.139 10 0.267 7.999 10 mw V V − −= = × = × . 

Now that we have 4V , we can find the internal energy, 4U . 4U  is obtained 
by multiplying the internal energy density in 4-d space, 4u , by the hypervolume, 

4V . Using the results of Equation (3-3b) and Equation (3-8), we find 
94

4 4 4 2.468 10 JU u V= = ×                     (3-9) 

We check our results by verifying our energy balance equation, Equation 
(2-19). Equation (2-19) reads for 4n = : 

4 4 4 4 3 3 3 3U p V S T U p V S T L+ + = + + +  

Upon substitution of Equations (3-9), (3-4b), (3-8), (3-7) with (3-6b), (3-6a), 
(3-4a) with 3

3 0.267 mV = , (3-6b) and 941.8 10 JL = × , we have, term for term, 
94 94 94

94 94 94 94

2.468 10 0.617 10 3.085 10

1.639 10 0.546 10 2.185 10 1.8 10

× + × + ×

= × + × + × + ×
 

94 946.17 10 J 6.17 10 J× = ×                   (3-10) 

Our energy equation balances, and it is clear that L is a positive quantity as 
claimed previously. Furthermore, we notice that in 4-d space, as well as in 3-d 
space, the sum, ( )n n nU p V+ , always equals nS T . This is apparent in Equation 
(3-10), on both left and right hand sides, when evaluating a sum of the first two 
terms and comparing with the third term. 

We could have obtained the hypervolume, 4V , more directly using Equation 
(2-27). However, then, we would not have had the opportunity to specify the 
other thermodynamic variables. Specializing Equation (2-17) for a 4n =  to 
( )1 3n − =  transition, we obtain   

[ ]4 3 3 4 3 16 15 2 5V V u u L U= + ×               (3-11) 

The ratio, 4 3u u  equals (627.6 × T) from Equation (3-3b). Assuming a tran-
sition temperature of 3 × 1027 K, this gives 30

4 3 1.883 10u u = × . 3U  is specified 
in Equation (3-6a). Moreover, L is assumed to equal 1.8 × 1094 J. The volume, 
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3V , was determined from the transition temperature and has a value of 0.267 m3. 
Substituting all this into Equation (3-11) gives the result obtained earlier, namely 
that 31 4

4 2.139 10 mV −= × , which is Equation (3-8). 
If we do not assume a particular value for the latent heat, then Equation (3-11) 

is a linear equation where we treat 4 3 V V  as the dependent variable, and L is 
the independent variable. The y-intercept is ( )( )3 416 15 u u , which is a con-
stant at a specified transition temperature. The slope equals  

( )( ) ( ) ( )3 4 3 4 32 5 2 5u u U u V= . 

This is also a constant for a specified transition temperature because of Equation 
(2-1) and since ( )( )33 3 26

3 0 4π 3 4.4 10 mV a V a= = ×  where 0 43a T T= . To be 
specific, we will assume a transition temperature of 27

43 34 3 10 KT T= = × . We 
evaluate the quantities on the right hand side of Equation (3-11), but keep the 
latent heat value, L, open. Our specific expression for this transition temperature 
becomes 

125 31
4 3 1.296 10 5.666 10V V L− −= × × + ×                (3-12) 

A plot of 4 3 V V  versus L is illustrated in Figure 1, for various L values. The li-
nearity is apparent. For 0L = , we obtain 31

4 3 5.666 10 mV V −= × . Moreover, if L 
assumes a very large value, such as 1 × 10100 Joules, then we find correspondingly, 
that 25

4 3 1.297 10 mV V −= × . Utilizing Equation (3-12), we can assume any val-
ue for latent heat and find the corresponding ratio of volumes. 

4. Inflation as a n = 4 to n = 3 Phase Transition 

Inflation is needed in order to explain the relative homogeneity in temperature 
found in the very early universe, as well as the slight inhomogeneity. The un-
iverse underwent a phase transition where there was rapid a-causal exponential 
expansion of the universe. The theory invokes a scalar field, the inflaton field, 
which drives this expansion. In the introduction, we discussed a heat engine 
model for the universe, where inflation is treated somewhat differently. It was 
identified with an initial isothermal expansion phase, where the expansion was  
 

 
Figure 1. V4/V3 vs. Latent Heat L. 

https://doi.org/10.4236/jhepgc.2019.52016


C. Pilot 
 

 

DOI: 10.4236/jhepgc.2019.52016 303 Journal of High Energy Physics, Gravitation and Cosmology 
 

not as drastic, where there was no inflaton field, and where heat input from sur-
roundings to system drove the process. In this model for inflation, the 3-d vo-
lume increased by a factor of only 5.65. In this paper, we entertain the notion 
that the heat input needed is produced by a spatially changing phase transition. 
This is an alternative model, or perhaps complementary model, to heat input 
flowing from surroundings to system. We speculate that inflation is still an iso-
thermal transition, but what provides the impetus for initiation of the heat cycle 
is a 4n =  to ( )1 3n − =  change in space dimension. There is a substantial 
amount of heat released in such a transition as was demonstrated in the previous 
section. The energy densities and entropy were also significant. This may be an 
alternative or complementary source of heat to drive the inflation process, in our 
view. 

The inhomogeneity in temperature found in the WMAP and Planck satellite 
data, of the order of 55 10T Tδ −= ± × , is thought to have produced during this 
inflationary period. These thermal fluctuations were due to quantum mechanical 
effects, radiative corrections induced by virtual particle creation and annihila-
tion. The point is that they were heat driven, and since our thermodynamic va-
riables depend critically on temperature, a natural question to ask is how do the 
thermodynamic quantities, introduced previously, depend on these thermal per-
turbations? Moreover, what happens to these fluctuations if a spatially changing 
phase transition takes place? These are the questions, which we will address in 
this section.  

Quite generally, given the fact that the thermodynamic variables for radiation 
depend strictly on temperature and dimension of space, we can vary each ther-
modynamic quantity with respect to temperature. We start with the internal 
energy density, Equation (2-1). Varying this with respect to temperature, we find 
that  

( )1n nu u n T Tδ δ= +                      (4-1) 

Similarly, using Equation (2-2), we can further claim that 

( ) ( )1 , 1 ,n n n n n nf f n T T p p n T T s s n T Tδ δ δ δ δ δ= + = + =    (4-2) 

From these relations, we see that the dimensionality of space plays a role in 
determining how the thermodynamic entity responds to a relative fluctuation in 
temperature. In addition, quite generally, we will assert that, if the process is 
adiabatic in n-space, then 

n nV V n T Tδ δ= −                       (4-3) 

We will be assuming that a change in cosmic scale parameter in any dimen-
sion “n” is inversely proportional to temperature. Just as 0 0 a R R T T= =  
holds in 3-d space, we are claiming that in n-dimensional space, 

0 0n n na R R T T= =                      (4-4) 

provided we have adiabatic expansion in that n-space. In Equation (4-4), nR  is 
the radius of the hypervolume in n-dimensional space and 0nR  is some base-
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line radius in that same space. 0nR  corresponds to 0T  whereas nR  corres-
ponds to T. The “ na ” is chosen such that, at temperature 0T T= , we have 

0 1na = . 
To prove Equation (4-3), we notice that Equation (2-3) allows us to express 

the hypervolume as n
n nV CR=  where C is some constant of order unity. There-

fore, 1n
n n nV nCR Rδ δ−=  and n n n nV V n R Rδ δ= . Next, we utilize Equation (4-4), 

which holds only for adiabatic expansion, and write n nR R T Tδ δ= − . Substi-
tuting this into our expression for n nV Vδ  gives n nV V n T Tδ δ= − , which is 
our Equation (4-3). 

With Equation (4-3), we can demonstrate that 

( )
 

1
 

n n n n n

n n n n

n

U u V u V
n u V T T nu V T T

U T T

δ δ δ
δ δ

δ

= +

= + −

=

              (4-5) 

Therefore, n nU U T Tδ δ= . Similarly, we find for any value of “n”, 

( ) ( ) , 0n n n n n np V p V T T S Sδ δ δ= =               (4-6) 

We also recognize from Equation (2-22), and Equation (4-6b), that ( )L Tδ  
must equal zero. Therefore, it follows that 

L L T Tδ δ=                         (4-7) 

This equation tells us that temperature fluctuations produce proportional la-
tent heat fluctuations within a specified region of space. The relations, Equations 
(4-5)-(4-7), do not depend explicitly on spatial dimension. They do assume 
adiabatic expansion on both sides of the transition curve. 

The conservation of energy, Equation (2-19), can be written in the simplified 
form, Equation (2-21). Employing Equation (4-5) and Equation (4-7), it is ob-
vious that from Equation (2-21), 

( ) ( ) 12 1 2 1n nn n U n n U Lδ δ δ−+ = − +        

( ) ( ){ }12 1 2 1n nn n U T T n n U L T Tδ δ−+ = − +               (4-8) 

This equation shows that for adiabatic expansion or contraction between two 
neighboring spaces, any spatial temperature fluctuations carry through undimi-
nished from one space to the next. Therefore, if we consider a 4n =  to 
( )1 3n − =  transition, a spatial fluctuation in temperature in ( )1 3n − =  space 
transfers over into 4n =  space. Equation (4-3) was critical in establishing Equ-
ation (4-8). Moreover, Equation (4-3) depended in turn on relation (4-4). 

What happens, however, if, in n-dimensional space and in its neighboring 
( )1n −  space, we do not have adiabatic expansion or contraction? For example, 
in the heat engine model described in the introduction, isothermal expansion 
preceded adiabatic expansion. At point “ a ” in the Carnot cycle, isothermal ex-
pansion started. At point “b”, isothermal expansion changed to adiabatic expan-
sion. Between points “ a ” and “b”, the expansion is strictly isothermal, and be-
tween points “b” and “c”, it is strictly adiabatic. If a spatial transition occurred 
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anywhere within that time, then we cannot assume that Equation (4-4) holds. In 
this instance, we claim that thermal fluctuations could have been created or 
produced within the transition itself. 

To demonstrate this, let us assume a 4n =  to ( )1 3n − =  transition. We 
specialize Equation (2-21) to this situation, and vary that equation. We find that 

4 310 4 8 3U U Lδ δ δ= +                     (4-9) 

We divide the left hand side of this equation by the left hand side of Equation 
(2-21) and we do the same on the right hand side. In this way we obtain after 
some algebraic manipulation 

( ) ( )
( ) ( )

4 4 3 3

3 3 3 3

8 3 8 3

3 8 1 3 8

U U U L U L

U U L U L U

δ δ δ

δ δ

= + +

= + +
          (4-10) 

For 3 3U Uδ , we substitute T Tδ  because of Equation (4-5). We are assum-
ing that in 3-d space, after point “b” in the cycle, we do have adiabatic expansion. 
This gives 

( ) ( )4 4 3 3 3 33 8 1 3 8U U U U L U L Uδ δ δ= + +           (4-11) 

Furthermore, let us assume that 4 4 0U Uδ = . This would mean a perfectly 
smooth spatial internal energy distribution, as well as total energy distribution in 
the originating 4-space, with absolutely no temperature perturbations. With this 
assumption, both the left and the right hand sides of Equation (4-11) equal zero, 
and we’re left with 

33 8T T L Uδ δ= −                       (4-12) 

Finally, we substitute some numerical values for the quantities in Equation 
(4-12). For T Tδ , we take ±5 × 10−5, and for 3U  let us use the value indicated 
by (3-6a). In Equation (4-12), these values give 

90/ 2.185 10 JoulesLδ = − + ×                     (4-13) 

The Lδ  is defined in 3-d space and it is a small thermal perturbation when 
compared with 941.8 10 JL = × . See Equation (3-10). From Equation (4-12), it is 
clear that an increase in temperature for the photons in a spatial pocket leads to 
a decrease in latent heat in that region. The converse holds, i.e. a decrease in 
temperature for photons spatially will produce an increase in latent heat in that 
particular region of space. This is opposite to what we had previously, for 
neighboring spaces where adiabatic expansion/contraction holds in each space 
on either side of the transition curve. 

By means of this simple example, we have shown that spatial temperature 
fluctuations can be literally produced or created in a neighboring space even 
though none existed in the originating space. We cannot assume adiabatic ex-
pansion or contraction in both spaces though. At least one space has to be dif-
ferent in this regard. This result can be extended to any n-space. It would appear 
that this is a necessary condition for creation of temperature inhomogeneity 
when transitioning between different spaces. 

https://doi.org/10.4236/jhepgc.2019.52016


C. Pilot 
 

 

DOI: 10.4236/jhepgc.2019.52016 306 Journal of High Energy Physics, Gravitation and Cosmology 
 

5. Summary and Conclusions 

We have generalized the Clausius-Clapeyron (CC) relation to take into account 
a type of phase transition for which there is a change in spatial dimension. In 
going from n-dimensional space to ( )1n − -dimensional space we have a release 
of latent heat, a decrease in entropy, a decrease in energy density, and a change 
in volume from nV  to 1nV − . In transitioning from ( )1n −  dimensions in space 
to n dimensions, latent heat is absorbed, with an accompanying increase in en-
tropy, energy density, and a change in volume from 1nV −  to nV . The generaliza-
tion can be written as Equation (2-12) where the factor of 1/2 is needed in order 
to retain the identity of photons in both spaces. In transitioning between spatial 
dimensions, total energy is conserved. See Equation (2-19). Another way to write 
Equation (2-19) is either Equation (2-21) or (2-22). The volume also changes 
from n-space to ( )1n − -space, and vice versa, according to Equation (2-26), or 
Equation (2-27), depending on whether we wish to work with latent heat density 
or latent heat. 

We considered the particular phase transition from 4n =  to ( )1 3n − = . To 
give a specific example for how the generalized CC relation works, we assumed a 
specific value for transition temperature, as well as a particular value for latent 
heat. We then calculated particular values for the internal energy density, entro-
py density, and volume both before and after the phase transition. We found 
that if we assume that 27

43 34 3 10T T T= = = ×  Kelvin, and, furthermore, if we 
take L to equal 1.8 × 1094 Joules, then we have: 

125 4
4 1.15 10 J mu −= × ⋅ , 97 4 1

4 4.81 10 J m Ks − −⋅ ⋅= × , 31 4
4 2.14 10 mV −= × , 

with 
94 3

3 6.13 10 J mu −× ⋅= , 67 3 1
3 2.72 10 J m Ks − −⋅ ⋅= × , 3

3 0.267 mV =   

The subscripts 3, 4 refer to the dimension of space where the quantity is de-
fined. We have considered only black-body photon radiation in order to keep 
the discussion simple. We notice a tremendous decrease in entropy in transi-
tioning from 4n =  to ( )1 3n − =  space, as well as a dramatic change in vo-
lume. The volume 4V  is defined in 4-space whereas 3V  is a three-dimensional 
construct; as such they cannot readily be compared. Nevertheless, 3V  is a sub-
space of 4V  because compactification will curl up one of the space dimensions. 
We remark that the latent heat released was assumed substantial, and we believe 
that it is released in the residual 3n =  space as we discount exotic scenarios 
such as parallel universes. 

The 4-volume, 4V , can be calculated once the latent heat, L, is known and 
vice versa. We assume that the 3V  value is known since the cosmic scale para-
meter is determined by the temperature, and the temperature is specified. The 

3V  value at transition temperature 34 43T T=  must be equal to 3
3 0V V a−=  

where “ a ” is the cosmic scale parameter, and 0V  is the present size of the ob-
servable universe. Since 0 43a T T=  where 0 2.725 KT = , and since the radius 
of the observable universe is, at present, 4.4 × 1026 meters, we calculate for 3V  a 
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value of 0.267 m3 at a temperature of 27
43 3 10 KT = × . The relation between 4V  

and latent heat, L, is a linear relation with an increase in L leading to an increase 
in 4V . See Equation (3-12), or what is equivalent, Equation (3-11). A graph for 

4 3 V V  versus L, for various L values, is illustrated in Figure 1. 
The numbers calculated above have a direct connection to a previous work by 

the author [11] on inflation. We treated inflation as an isothermal expansion 
process, within a greater Carnot heat engine cycle. We hypothesize in this paper 
that the beginning of the isothermal process may have started with a 4n =  to 
( )1 3n − =  phase transition. This would account for the tremendous amount of 
heat release, which is needed for the isothermal process, from points  a b→  in 
the cycle. While this is conjecture, the numbers are seen to have the right order 
of magnitude. In addition, when we focus on the inhomogeneity in temperature 
in WMAP and Planck maps, which is of the order of 55 10T Tδ −= ± × , we find 
that the temperature fluctuations can be produced from one spatial dimension to 
the next when transitioning between spaces. See, for example, Equation (4-12) 
and Equation (4-13). If both neighboring spaces allow for adiabatic expan-
sion/contraction, then there will be a smooth carry-over of temperature inho-
mogeneity from one spatial dimension to the next. This seems to be a special 
feature of our generalized CC relation. The specific thermodynamic variables 
vary in a characteristic way with respect to a variation in temperature. See Equa-
tion (4-1), Equation (4-2). If we assume adiabatic expansion or adiabatic con-
traction in n-dimensional space, then we have the further relations, Equations 
(4-3)-(4-7). 

Higher order spatial phase transitions can be considered, e.g. from 5n =  to 
( )1 4n − = , from 6n =  to ( )1 5n − = , etc. We can apply the generalized CC 
relation, Equation (2-12), to these situations. If we multiply Equation (2-12) by 
negative one, left and right hand sides, we can also transition in reverse, from 
( )1n −  spatial dimensions to n-spatial dimensions. Now latent heat must be 
supplied for the process to happen, as entropy will increase as well as internal 
energy density. 

If we decrease the number of spatial dimensions, then we can only transition 
from 3n =  to ( )1 2n − = , and from 2n =  to ( )1 1n − = . We notice that the 
internal energy density, specified by Equation (2-1), is infinite for 0n =  as we 
are then dividing by ( )0Γ , which is in the denominator and is zero. If 1n =  is 
substituted in Equation (2-1), then the denominator is well defined, but we obtain a 
zero value in the numerator. Radiation energy cannot exist in a 1-dimensional 
space. Nevertheless, a transition from 2n =  to ( )1 1n − =  is a possibility. As 
the dimension decreases, there is less latent heat released, and the energy densi-
ties decrease as well. The entropy also decreases, as more space allows for more 
disorder, and less space means less disorder. 

Finally, we close this paper with the observation that space, in and of itself, 
must have energy. We know that space filled with radiation has energy. This is 
obvious from Equation (2-1) because any finite temperature above absolute zero 
will give us a finite energy density for n greater than one. The energy is trapped 
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in the radiation itself, i.e. within the photons, within a given dimension. What 
we have shown in this work is that if one gives up space, by decreasing the di-
mension, one automatically releases latent heat. When one adds space, by in-
creasing the spatial dimension, then one has to necessarily supply latent heat. 
Therefore, space itself must have energy content since transitioning between 
spaces supplies or costs energy. In other words, the latent heat supplied can be 
either positive or negative depending on the direction of the spatial transition. 
We can quantify the amount of energy released and taken in, when switching 
from one spatial dimension to another, with our generalized CC relation. This is 
the most spectacular result of this paper. 
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