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Abstract 
It is widely believed that the matter created in p-p collisions exhibits a similar 
collective behavior as that formed in heavy ion collisions. In this paper, by 
taking into account the effects of thermal motion, the transverse momentum 
distributions of identified charged particles are discussed in the scope of the 
hydrodynamic model including phase transition. The theoretical model gives 
a good description to the data collected in p-p collisions at LHC energies for 
the transverse momentum up to about 1.0 GeVTp c= . 
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1. Introduction 

In the past decades, a number of bulk observables about charged particles, such 
as the Fourier coefficients nv  of azimuth-angle distributions [1] [2], transverse 
momentum spectra [3]-[8] and pseudorapidity distributions [9] [10], have expe-
rienced a series of extensive investigations in both nucleus and hadron collisions. 
These investigations have confirmed two facts. One is that the quark-gluon plasma 
(QGP) might have come into being in nucleus collisions at current RHIC or LHC 
energies [11] [12] [13] [14] [15]. This also might be true even in hadron collisions 
at the early lower energies of Intersecting Storage Rings (ISR) and Super Proton Syn-
chrotron (SPS) at CERN [16] [17] [18] [19] [20]. The other is that the matter created 
in nucleus or hadron collisions shows a clear feature of collective flow, expanding 
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nearly like a perfect fluid with very low viscosity [21]-[47].  
Apart from collective movement, the quanta of produced matter also have the 

components of thermal motion. The evolution of the produced matter is the con-
volution of the collective movement and thermal motion. To clarify the role of ther-
mal motion in the expansions of the produced matter in p-p collisions at LHC 
energies is the major subject of this paper. To this end, we may as usual ignore 
the minor collective flow in the transverse directions. The transverse movement 
of the produced matter is therefore only induced by the thermal motion.  

The collective movement of produced matter in the longitudinal direction can 
be solved analytically. There are a number of schemes in dealing with such pre-
cise calculations [21]-[35]. In this paper, the hydrodynamic model proposed by 
N. Suzuki is employed [27]. Besides the analytical characteristics, the other typi-
cal feature of this theoretical model is that it incorporates the effects of phase 
transition into solutions. This coincides with the current experimental observa-
tions as mentioned above. Hence, the employed model is more in line with the 
realistic situations. In addition, the model is related to the initial temperature of 
QGP, the sound speed in both partonic and hadronic media, the baryochemical 
potential, as well as the critical temperature of phase transition. This work may 
therefore help us understand various transport coefficients of expanding sys-
tem. 

In Section 2, a brief introduction is given to the theoretical model [27], pre-
senting its analytical solutions. The solutions are then used in Section 3 to for-
mulate the invariant multiplicity distributions of charged particles produced in 
collisions which are in turn compared with the measurements performed by 
LHC-CMS Collaboration in p-p collisions at LHC energies of 0.9s = , 2.76 
and 7 TeV [3], respectively. The last Section 4 is about conclusions. 

2. A Brief Introduction to the Model 

Here, for the purpose of completion and application, we shall list the key ingre-
dients of the adopted model [27].  

1) The movement of fluid meets continuity equation 

0, , 0,1T
x

µν

ν µ ν
∂

= =
∂

                          (1) 

where ( ) ( )0 1, ,x x x t zν = = , t is the time and z is the longitudinal coordinate 
along beam direction. T µν  is the energy-momentum tensor, which, for a per-
fect fluid, takes the form 

( )T p u u pgµν µ ν µνε= + − ,                       (2) 

where ( )diag 1, 1g gµν
µν= = −  is the metric tensor.  

( ) ( )0 1, cosh ,sinh , 1F Fu u u y y u uµ µ
µ= = = ,                (3) 

is the 4-velocity of fluid, Fy  is its rapidity. ε  and p  in Equation (2) are the 
energy density and pressure of fluid, which fit thermodynamic relations 
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, d d , d d ,p Ts T s p s Tε ε+ = = =                     (4) 

where T  and s  are the temperature and entropy density of fluid, respectively. 
To close Equation (1), another relation, namely the equation of state 

2d d
d d s

p s T c
T sε

= =                           (5) 

is needed, where sc  is the sound speed of fluid, which takes different values in 
QGP and in hadronic phase. 

2) Project Equation (1) to the direction of uµ  and the direction perpendicu-
lar to uµ , respectively. This leads to equations 

( )

( ) ( )

0,

sinh cosh
0.F F

su

x
T y T y

t z

ν

ν

∂
=

∂
∂ ∂

+ =
∂ ∂

                   (6) 

The first formula is the continuity equation for entropy conservation. The second 
one means the existence of a scalar function φ  satisfying relations 

cosh , sinh .F FT y T y
t z
φ φ∂ ∂
= = −

∂ ∂
                   (7) 

From φ  and Legendre transformation, Khalatnikov potential χ  is introduced 
via  

cosh sinhF FtT y zT yχ φ= − + .                    (8) 

In terms of χ , the variables t  and z  can be expressed as 

0

0

cosh sinh ,

sinh cosh ,

F F
F

F F
F

et y y
T y

ez y y
T y

θ

θ

χ χ
θ

χ χ
θ

 ∂ ∂
= + ∂ ∂ 

 ∂ ∂
= + ∂ ∂ 

                  (9) 

where 0T  is the initial temperature of fluid and ( )0ln T Tθ = . Through above 
equations, the coordinate base of ( ),t z  is transformed to that of ( ), Fyθ , and 
the first formula of Equation (6) is translated into the so called telegraphy equa-
tion 

22 2

2 2 2 2

112 0, .
2

s

s F s

c
c y c

χ χ χ
β β

θθ
−∂ ∂ ∂

− − = =
∂∂ ∂

              (10) 

3) Along with the expansions of matter created in collisions, it becomes cooler 
and cooler. As its temperature drops from the initial 0T  to the critical cT , phase 
transition occurs. The matter transforms from QGP state to hadronic state. The 
produced hadrons are initially in the violent and frequent collisions. The major 
part of these collisions is inelastic. Hence, the abundances of identified hadrons 
are in changing. Furthermore, the mean free paths of these primary hadrons are 
very short. The movement of them is still like that of a fluid meeting Equation 
(10) with only difference being the value of sc . In QGP, 0 1 3sc c= = , which is 
the sound speed of a massless perfect fluid, being the maximum of sc . In the 
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hadronic state, 0s hc c c= < . At the point of phase transition, that is as cT T= , 

sc  is discontinuous. 
4) The solution of Equation (10) for the sector of QGP is [27] 

( ) ( )( )
( )

0 2 20 0
0 0 0 0 0

2
0

0 02
00

, e ,
2

1
1, ,

2

F F
q cy I c y y

c y cc

β θχ θ β θ

θ
β θ

= −

−
= = =

             (11) 

where 0q  is a constant determined by tuning the theoretical results to experimental 
data. 0I  is the 0th order modified Bessel function of the first kind. 

In the sector of hadrons, the solution of Equation (10) is [27] 

( ) ( ) ( )0 0
0, ,

2h F F
q cy B I yχ θ θ λ θ=    ,               (12) 

where 

( ) ( ) ( ) ( )

( )

0 2 2

2
0

2
0

e , , ,

1
, , ln .

2

h c c
F h h h F

h c c
h h c

h ch

B y c y y

c Ty c c Tc

β θ θ β θθ λ θ β θ

θ θ θ
β θ θ

− += = −

 − −
= = + =  

 

         (13) 

It is evident that, if 0hc c= , then 0hβ β= , ( ) 0eB β θθ = , 0hy y= , and thus 

0hχ χ= . At the point of phase transition, cT T= , cθ θ= , ( ) 0e cB β θθ = , 
0 0h cy y cθ= = . Then 

( ) ( )
( )

0 c

0

2 2 20 0
0 0 0 c 0

2 2 20 0
0 0

0

, e ,
2

, e ,
2

c

c

c

F FT T

h h
h F c FT T

q cy I c y

q c cy I c y
c

β θ

β θ

χ θ β θ

β
χ θ θ

=

=

= −

 
= − 

 

          (14) 

( ) ( )0, ,
c c

h F FT T T T
y yχ θ χ θ

= =
≠ . That is, the potential χ  is discontinuous at point 

of cT T= .  

3. The Thermal Motion Induced Transverse Momentum  
Distributions of Identified Charged Particles 

With Khalatnikov potential χ , the rapidity distributions of fluid read as [26] 

0 0d d dcosh sinh
d 2 d dF F F

q cN z tA y y
y y y

 
= − 

 
,             (15) 

where A  is the cross area of overlap region of collisions. Inserting Equation (9) 
into above equation, the part in the round brackets becomes 

( ) ( )2

d dcosh sinh
d d

1 1cosh sinh .

F F

F F
F

z ty y
y y

c y y y y
T T y

χ χ
χ χ

θ θ θ

−

∂ ∂ ∂ ∂   = + − − + −   ∂ ∂ ∂ ∂   

   (16) 

Along with the expansions of hadronic matter, its temperature continues becom-
ing lower. According to the prescription of Cooper-Frye [26], as the temperature 
drops to the so called chemical freeze-out temperature FOT , the inelastic collisions 
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among hadrons cease. The yields of identified hadrons maintain unchanged be-
coming the measured results in experiments. Convoluting Equation (15) with the 
contributions from thermal motion, the invariant multiplicity distributions of charged 
particles equal [26] [27] [28] 

( )
( )

( ){ }
FO

2

3
B

coshd 1 d d
2π d d d exp cosh2π

T F
F

T T F T F T T

m y yN N y
p y p y m y y Tµ δ

=

−
=

− − +  
∫ ,  (17) 

where 2 2
T Tm m p= +  is the transverse mass of produced charged particle with 

rest mass m . Bµ  in Equation (17) is the baryochemical potential. For Fermi charged 
particles, 1δ =  in the denominator of Equation (17), and for Bosons, 1δ = − . 
The meaning of Equation (17) is evident. It is the convolution of d d FN y  with 
the energy of the charged particles in the state with temperature T . The former 
comes from the longitudinal collective flow. The latter stems from the thermal 
motion. 

The right hand side of Equation (17) is evaluated with FOT T= . At this mo-
ment, the fluid freezes out into the charged particles. Replacing χ  in Equation 
(16) by hχ  of Equation (12), it turns into 

( ) ( ) ( ) ( ) ( ) ( )
FO

2
FO FO FO

FO

d dcosh sinh
d d

1 , sinh , cosh ,

F F T T

h h F F F F

z ty y
y y

c B S y y y C y y y
T

β θ θ θ

=

 
− 

 

 = − + − 

 (18) 

where 

( ) ( )
( )

( ) ( )

( )
( ) ( )

FO
FO 0 FO

FO FO

FO
1 FO2

FO

, ,
, ,

21
, ,

,

h h hh F
F F

F F

h h hh
F

h F

c yyS y I y
y y

c y
I y

y

β θβ
θ λ θ

λ θ λ θ

β θβ
λ θ

β λ θ

  =   


 +  + −   
    

         (19) 

( )
( )

( ) ( )

( )
( ) ( )

( ) ( )

2
FO

FO 0 FO2
FO

2
FOFO

1 FO2
FO FO

1
, ,

,

21 1 , ,
, ,

h h hh
F F

h F

h h hh
F

F h F

c y
C y I y

y

c yy
I y

y c y

β θβ
θ λ θ

β λ θ

β θθ
λ θ

λ θ λ θ

  +    = +   
  

      + + −   
  

 (20) 

where 1I  is the 1st order modified Bessel function of the first kind. 
The integral interval of Fy  in Equation (17) is [ ],h hy y− . By using Equa-

tions (15), (17), and (18)-(20), together with the definitions in Equation (13), we 
can get the thermal motion induced transverse momentum distributions of 
identified charged particles as shown Figure 1. This figure shows the transverse 
momentum distributions of π ± , K ±  and ( )p p  at mid-rapidity of 1y <  in 
p-p collisions at 0.9s = , 2.76 and 7 TeV, respectively. The solid dots are the 
experimental data [3]. The solid curves are the results of Equation (17). The left 
and right columns are for the positive and negative charged particles, respectively.  
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Figure 1. The transverse momentum spectra of identified charged particles produced at mid-rapidity of 1y <  in p-p collisions 

at 0.9s = , 2.76 and 7 TeV (from top to bottom). The solid dots are the experimental data [3]. The solid curves are the results of 
Equation (17). The left and right columns are for the positive and negative charged particles, respectively. 

 
It can be seen that the theoretical results are in good accordance with experi-
mental data for transverse momentum up to about 1.0 GeVTp c= . 

In calculations, cT  in Equation (13) takes the well-recognized value of 
180 MeVcT = . hc  in Equation (13) takes the value of 0.35hc =  from the in-

vestigations of Refs. [28] [48] [49] [50]. Referring to the measurements of Ref. 
[4], the chemical freeze-out temperature FOT  takes the value of 160 MeV for π  
in the three different incident energies of 0.9, 2.76 and 7 TeV. For K  and p , 

FOT  takes 170 and 175 MeV, respectively, in the three cases of collisions. The 
baryochemical potential Bµ  in Equation (17) takes the value of 0Bµ =  since 
in the considered collisions, the abundances of particle and antiparticle are ap-
proximately equal to each other [3]. This can be clearly seen in Figure 1. As for 
the initial temperature 0T  in Equation (13), there is no widely accepted value so 
far. In this paper, consulting the results presented in Ref. [28], 0T  takes the 
values of 3.0, 6.5 and 7.8 GeV for incident energies equaling 0.9, 2.76 and 7 TeV, 
respectively. 

4. Conclusions 

In order to see the importance of thermal motion in the expansions of the matter 

10
-3

10
-2

10
-1

10
0

10
1

p    p  0.9TeV

1/
N

ev
dN

2 /(d
p Tdy

)[
(G

eV
/c

)-2
]

π+

Κ +

p

π
Κ
p

10
-3

10
-2

10
-1

10
0

p    p  2.76TeV

1/
N

ev
dN

2 /(d
p Tdy

)[
(G

eV
/c

)-2
]

0 0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

10
0

p    p  7TeV

p
T
[GeV/c]

1/
N

ev
dN

2 /(d
p Tdy

)[
(G

eV
/c

)-2
]

0 0.2 0.4 0.6 0.8 1
p

T
[GeV/c]

https://doi.org/10.4236/jhepgc.2018.41004


Z. J. Jiang et al. 
 

 

DOI: 10.4236/jhepgc.2018.41004 26 Journal of High Energy Physics, Gravitation and Cosmology 
 

produced in p-p collisions, the minor transverse collective flow is as usual ignored. 
The movement of matter in the transverse directions is therefore only induced 
by the thermal motion. Convoluted it with longitudinal collective movement, we 
can get the invariant multiplicity distributions of charged particles. 

The longitudinal collective flow follows the relativistic hydrodynamics. The 
most striking feature of the model used in this paper is that it takes the phase 
transition into consideration, which might have appeared in the current experi-
ments in nuclear or even in hadronic collisions. Hence, the adopted model might 
reflect a more realistic process of spatiotemporal evolution of matter created in 
collisions. 

The model contains a rich information about the transport coefficients of flu-
id, such as the sound speed in QGP 0c , the sound speed in hadronic state hc , 
the phase transition temperature cT , the chemical freeze-out temperature FOT , 
the baryochemical potential Bµ  and the initial temperature 0T . Exception for 

0T , the other five coefficients take the values either from the well-known theo-
retical results or from experimental measurements. As for 0T , there is no much 
knowledge about it at present. In our calculations, 0T  is estimated referring to 
other researches. 

The present investigations show that the Tp  distributions of charged par-
ticles measured in p-p collisions at LHC energies of 0.9s = , 2.76 and 7 TeV can 
be well described by the theoretical model for Tp  up to about 1.0 GeVTp c= . 
Certainly, the transverse collective flow objectively exists even though it is mi-
nor. It should affect the motion of the matter. The existing investigations have 
shown that if the transverse collective flow is taken into account, the describable 
region is extended to about 2.0 GeVTp c<  [5] [6] [7]. Furthermore, to describe 
the experimental data in the region of 2.0 GeVTp c≥ , some other mechanisms, 
such as the method of blast-wave and perturbative QCD [8], should be introduced. 
Considering that the overwhelming majority of charged particles situates in the 
region of 1.0GeVTp c< , we may conclude that the thermal motion plays a 
non-ignorable role in the transverse expansions of the matter produced in p-p 
collisions at LHC energies. 
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