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Abstract 

White Mold of soybeans (Glycine Max), also known as Sclerotinia stem rot 
(Sclerotinia sclerotiorum), is among the most important fungal diseases that 
affect soybean yield and represents a recurring annual threat to soybean pro-
duction in South Dakota. Accurate quantification of white mold in soybean 
would help understand white mold impact on production; however, this re-
mains a challenge due to a lack of appropriate data at a county and state 
scales. This study used Landsat images in combination with field-based ob-
servations to detect and quantify white mold in the northeastern part of 
South Dakota. The Random Forest (RF) algorithm was used to classify the 
soybean and the occurrence of white mold from Landsat images. Results 
show an estimate of 132 km2, 88 km2, and 190 km2 of white mold extent, 
representing 31%, 22% and 29% of the total soybean area for Marshall, Co-
dington and Day counties, respectively, in 2017. Compared with ground ob-
servations, it was found that soybean and white mold in soybean fields were 
respectively classified with an overall accuracy of 95% and 99%. These results 
highlight the utility of freely available remotely sensed satellite images such as 
Landsat 8 images in estimating diseased crop extents, and suggest that further 
exploration of consistent high spatial resolution images such as Sentinel, and 
Rapid-Eye during the growing season will provide more details in the quanti-
fication of the diseased soybean. 
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1. Introduction 

White Mold of soybeans (Glycine max), also known as “Sclerotinia Stem Rot” 
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(SSR), is among the most important fungal diseases affecting soybean yields and 
represents a recurring annual threat to soybean production in South Dakota. In-
itially reported in Poland in 1982 as a disease of local importance [1], white mold 
was, more than a decade later, ranked in the top ten diseases that suppress soy-
bean yields [2]. The apothecia of white mold generally appear after the crop ca-
nopy develops, around mid to late July and the environmental conditions cor-
responding to the development of white mold are cool (air temperature around 
12˚C - 24˚C), wet and moist (enough rain: 70 - 120 hours of continuous wet-
ness) conditions [3]. These conditions are favorable for optimal yield; therefore, 
incidence of white mold has been negatively correlated with yields [4] because 
the disease is more likely to develop where there is high yield potential. Thus, 
mapping and quantifying the disease is crucial to understand its impact on 
yields, and two options can be used: field scouting represents an accurate as-
sessment, but remains time-consuming and does not provide a global view of the 
variations in the field, while remote sensing represents the best solution because 
it provides a synoptic view and allows observations to span large areas in a short 
period [5].  

The rationale behind the use of large scale imagery techniques is that they 
represent a fast, non-destructive method [6], and rely on biophysical characte-
ristics that depend on the wavelength used for crop status monitoring. Malthus 
and Madeira [7] highlighted the interest of using image to detect crop diseases 
by examining the spectral leaf reflectance properties of field bean infected by the 
fungus Botrytis fabae. Later, Polischuk et al. [8] studied the correlation between 
chlorophyll content and spectral reflectance in virus affected plants. In the 
2000s, several authors explored diverse options for disease detection: Kobayashi 
et al. [9] used multispectral radiometers and airborne multispectral scanner to 
identify the panicle blast rice. Qin and Zhang [10] collected ADAR (Airborne 
Data Acquisition and Registration) remote sensing images to map rice sheath 
blight. Further, Huang and Apan [11] used a portable spectroradiometer to col-
lect hyperspectral data and detect Sclerotinia rot disease in celery. Naidu et al. 
[12] later identified grapevines viral infections by using the leaf spectral reflec-
tance collected with a portable spectrometer. The use of hyperspectral images is 
necessary to characterize plant stress [13] [14] and spectral indices are crucial in 
detecting and identifying plant diseases [14] [15] [16]. However, most of these 
studies required the use of portable spectro-radiometer or airborne remote-
ly-sensed images, which represent costly resources and have reduced accessibili-
ty to common users and farmers.  

While vegetation stress has received a lot of scientific attention, soybeans 
stress mapping has received little attention, and when it has, these studies fo-
cused either on other diseases than white mold [17], or in water stress [13] [18]. 
Vigier, Pattey and Strachan [14] used hyperspectral reflectance to compute sev-
eral vegetation indices to detect white mold, but the study focused on inoculated 
disease, rather than in-situ observation, and reflectance was collected using a 
field spectrometer. Recent studies have focused on mapping soybean at national 
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scale [19] [20], but these efforts have not addressed disease detection. In South 
Dakota which is one of the main soybean producing state, no studies have been 
conducted for the quantification of soybean diseases, especially white mold using 
remote-sensing approaches.  

There is still a knowledge gap in the effectiveness of free of charge mod-
erate-resolution remotely sensed images such as Landsat in accurately mapping 
crop diseases, especially the occurrence and evolution of white mold in the 
Midwest. The current study employs free Landsat 8 images to map and quantify 
white mold in selected counties in South Dakota. Random forest (RF) classifiers 
[21] were used to extract spectral characteristics of soybean and white mold 
leading to mapping the spatial extent of the disease. 

2. Materials and Methods 

2.1. Study Area and Data Gathering 

The study was located in northeastern South Dakota and includes three counties: 
Marshall, Day and Codington. Soybeans are planted in South Dakota between 
May 8 and June 21, with the most active period between May 15-June 11 [22]. 
The harvest occurs between September 22 and November 3, with the most active 
period between September 28 and October 24. Field data consisted of scouting 
and reporting on the presence/absence of white mold during the months of July 
and August in the year 2017. In the study area, a total of 11 fields were scouted, 
where white mold was reported and confirmed as shown in Figure 1.  

We downloaded the 30-meter spatial resolution Landsat Analysis Ready Data 
(ARD) from Earth Explorer (https://earthexplorer.usgs.gov/) for the growing 
season of the year 2017, and covering the three counties in the northeastern South 
Dakota (Marshall, Day, and Codington counties) as shown in Figure 1. These 
Cloud-free images were respectively from May 11, July 14, and August 31 and 
were derived from Landsat Collection 1 Level-1 precision and terrain-corrected 
scenes consisting of Top-of-Atmosphere (TOA) Reflectance, Surface Reflectance 
(SR), Brightness temperature (BT) and Quality Assessment (QA). In our study, 
the products of interest consisted of SR and the selected bands are summarized 
in Table 1. Yet, Landsat images were particularly hard to obtain during the 
growing season, due to persistent clouds that often extend the 16-day revisiting 
period of Landsat. This situation allowed to collect only two Landsat images 
(May and July) for soybean classification and one image (August) for white 
mold mapping.  

The Crop Data Layer (CDL) is a land cover dataset developed by the National 
Agricultural Statistics Services (NASS) of the United States Department of 
Agriculture (USDA). This dataset can be used to extract soybean masks or other 
land cover of interest; however, the timing in the publication of CDL might not 
always match the needs to map the land cover within the growing season. The 
CDL is generally produced early in the year, for the land cover map of the pre-
vious year. We used CDL as a reference data in our study, guiding the trainings  
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Figure 1. Study area showing the three counties (Marshall, Day, and Codington) in Nor-
theastern South-Dakota and the training polygons. The background image is a Landsat 
false color combination of bands 6-5-4 for July 14, 2017. 
 
Table 1. Original Landsat 8 bands including the Shortwave Infrared (SWIR), the Near 
Infrared (NIR), the red (RED), the green (GREEN) and the blue (BLUE) bands, and their 
corresponding names used in the Random Forest (RF) classification, and in the stacked 
image. 

Image Original Band RF Name Stacked Band 

Landsat-8 May 11, 2017 

SWIR 1 B6_05 Band 1 

NIR B5_05 Band 2 

RED B4_05 Band 3 

GREEN B3_05 Band 4 

BLUE B2_05 Band 5 

Landsat-8 July 14, 2017 

SWIR 1 B6_07 Band 6 

NIR B5_07 Band 7 

RED B4_07 Band 8 

GREEN B3_07 Band 9 

BLUE B2_07 Band 10 
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for land cover mapping. This data also served in the comparison with our re-
sulting land cover map. 

2.2. Random Forest (RF) Classifiers for Mapping Soybean and  
White Mold 

2.2.1. The Random Forest Algorithm for Image Classification 
Methods that produce classifiers and aggregate their results have recently found 
many interests in the machine learning field [23]. The underlying principle is the 
same: based on a set of trainings used to extract spectral characteristics of dif-
ferent defined classes, these non-parametric classifiers (meaning that they re-
quire no statistical assumptions such as the normal distribution of the input da-
taset), build models that decide to which class to affect each observation. Among 
them are methods such as boosting, that use successive trees to assign extra 
weight to samples that have been incorrectly predicted by earlier predictors [24], 
and bagging, in which successive trees are independent from earlier trees [25]. In 
the end of the prediction process, a weighted vote is taken in the boosting while 
a simple majority vote is taken in the bagging [23].  

The RF algorithm [21] is one of the learning methods that adds an additional 
layer of randomness to the bagging: each node is split using the best among a 
subset of predictors randomly chosen at that node, which is different from stan-
dard trees (i.e. Decision Tree-DT), where each node is split using the best split 
among all variables [23]. In the remote sensing field, especially in image or land 
cover classification, RF has shown to perform equally to Support Vector Ma-
chine (SVM) [26] [27] or to outperform Decision Tree (DT) [28]. Other studies 
have shown that RF outperformed SVM in term of robustness and stability [29] 
and in terms of accuracy [30]. The RF is preferred in our study because it can 
deal with classification problems of unbalanced, multiclass and small sample da-
ta [31]. In fact, when collecting training data, some classes may require more 
training than others in order to capture the maximum variability in their spec-
tral differences. This type of data collection can be dealt with by RF which does 
not require further processing. 

2.2.2. Soybean Mapping and Validation 
To classify land cover, we collected a set of trainings (about 183,810 pixels) used 
to extract spectral characteristics of different classes in ArcMap. We particularly 
trained four classes namely: Water, Corn, Soybean and Other Land Cover. To 
guide the trainings, three types of information could be displayed to better in-
terpret the land cover in digitizing the training polygons: 1) Landsat-8 compo-
sites, 2) Crop Data Layer (CDL) serving as a cross-reference, and 3) high resolu-
tion Google Earth images. The quality of the training samples was evaluated us-
ing the Jeffries-Matusita’s (JM) spectral separability index, which provides a 
good mean of estimating the difference between the classes [32] [33]. This index 
is a measure of statistical separability for two-class cases based on distance, and 
can be extended in the separability of multiple classes. The JM distance between 
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classes ωi and ωj is formulated as shown in Equation (1). In general, a JM of 
greater than 1.9 represents a good difference, while JM of less than 1 implies a 
combination of the classes (no difference); a JM between 1 and 1.8 generally 
suggests improvement of training classes. The JM index was computed in ENVI.  

( ) ( ){ }2

dij i jJ p x p x xω ω= −∫                 (1) 

where x is the feature vector of dimension k and ( )ip x ω  and ( )jp x ω  are 
class conditional probability distributions of x. 

The training polygons were imported in R, and seventy percent of the pixels 
(128,667) were used to build the model while thirty percent (55,143) were used 
for validation. The two early images (May and July) bands were stacked using 
ENVI 5.0, and the resulting stacked image was classified using the RF algo-
rithm in R. The ten Landsat bands (Table 1) were used as independent va-
riables, while the land cover (four classes) to predict represented the response 
variable. The soybean mask was extracted from the resulting land cover classi-
fication map. The set-apart thirty percent of the samples were used to assess 
the accuracy of the Land cover map. A confusion matrix was built to assess the 
accuracy of each class as well as the overall accuracy, and to estimate the clas-
sification errors. 

2.2.3. White Mold Mapping and Validation, and Areas Estimates 
The August 31 Landsat image was used to evaluate soybeans health and to cha-
racterize white mold. Field locations of well-known white mold occurrence were 
used to extract the spectral characteristics of white mold using the computed 
Normalized Difference Vegetation Index-NDVI [34] from the same image. 
NDVI is a measure of the vegetation health and greenness, computed as the ratio 
between the difference and the sum of the Near Infrared (NIR) band and the 
Red band, which respectively represent the regions of high chlorophyll absorp-
tion and reflectance (Equation (2)). Locations presenting similar NDVI than the 
known fields were targeted to train the data for modeling; a total of 3981 pixels 
were collected in the trainings. Classes consisted of white mold (unhealthy) and 
other soybean (healthy), representing the response variables, while the explana-
tory variables consisted of the 5 individual Landsat bands and the NDVI. To 
maximize the accuracy of white mold detection and reduce the false positive, all 
pixels with low NDVI that do not correspond to white mold were excluded from 
the soybean mask. In fact, soybean disturbances occurring in July are not white 
mold because at this stage, there is not yet canopy closure. While healthy soy-
bean in mid-July has and expected NDVI around 0.5, all pixels with NDVI lower 
than 0.45 within the soybean mask were excluded. 

The RF algorithm was run on the soybean mask extracted from the LC classi-
fication; as with the land cover, seventy percent (2787 pixels) of the total sample 
pixels were used to build the model while thirty percent (1194 pixels) were used 
for accuracy assessment. To assess the accuracy of the results, the set-apart thirty 
percent of the samples were used to produce the confusion matrix, estimate the 
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individual classes errors and the overall map accuracy. The resulting mapped 
white mold pixels were used to estimate areas by using the pixel counts and pixel 
size as it pertains to Landsat (Equation (3)). 

NIR RedNDVI
NIR Red

−
=

+
                      (2) 

TA N A= ×                           (3) 

where TA is the Total Area, N is the number of pixels, and A is the area of a pix-
el (30 m × 30 m).  

3. Results and Discussion 

3.1. Land Cover Spectral Separability 

The performance of the trainings was assessed using the computed Jeffries-Matusita 
index, which assesses the classes’ spectral separability. Overall, all the classes ex-
hibit good spectral separability (JM > 1.9) while the pair Soybean/Corn exhibits 
the lowest index (1.86) and water showing the highest separability (JM = 2). Ta-
ble 2 provides different values of JM index between classes as trained for the 
Landsat bands in the northern part of the study area.  

The original input Landsat bands have been stacked in a color composite im-
age combining both May and July bands. The corresponding output bands de-
signations are listed in Table 1. Figure 2 provides a visual display of each band’s 
ability to discriminate individual classes. Both NIR and SWIR bands in May and 
July separated water successfully; corn tended to stand out particularly in July 
using the visible bands (Blue, Green, and Red), while soybean (areas where soy-
bean will grow) was distinguished in the visible bands in May. In fact, soybean is 
not visible in the fields at this period, but their areas can be distinguished with 
corn. The “OtherLC” class looks particularly difficult to extract because of the 
high variability of the land covers included (grass, pasture, other crops). 

3.2. Land Cover Classification Results 

The stacked May and July images were classified using the RF algorithm and the 
land cover map was generated using the R software. The four classes (Water, 
Corn, OtherLC and Soybean) were labeled and colored to match the Crop Data 
Layer (CDL) dataset. Figure 3 shows a comparison between the July False color 
(6-5-4) Landsat composite, the CDL and the classified images. Water (Upper-right) 
is in some cases classified as other land cover, especially when it corresponds to  
 
Table 2. Jeffries-Matusita (JM) spectral separability index, showing the goodness of the 
training. 

Classes Water Corn Soybean 

OtherLC 1.9998 1.9419 1.9681 

Water 
 

2 2 

Corn 
  

1.8335 
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swamps as mapped by CDL. Overall, the classified image is close to the CDL but 
reflects more what is observed in the composite Landsat image, especially the 
field roads in-between soybean fields that are excluded from the classified map, 
thus excluding the false positive when mapping the disease. The rationale behind 
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Figure 2. Classes spectral separability shown by the density plot of each band reflectance. The Near Infrared (NIR) band is very 
good in discriminating Water in both images (B5_05 and B5_07), while Other Land Cover can be distinguished using the July 
green band (B3_07); Corn is however well distinguished using the May NIR band; the shortwave infrared however is the remain-
ing band susceptible to separate soybean, when the above mentioned classes are successfully extracted. 
 

computing a land cover map instead of using existing datasets such as the CDL 
is the timing: The release date of the CDL for a given year occurs early the fol-
lowing year, while the estimate the disease extent may be needed earlier than 
that. However, extracting the mask of interest from CDL is a good alternative 
provided it is released on time. 

3.3. Land Cover Map Accuracy Assessment 

The accuracy of the resulting classification map was assessed using the confusion 
matrix (Table 3), with the 30% set-apart pixels that were not used in the RF classi-
fication process. The classification results achieved an overall accuracy of 95%. 
The “Water” class performed the best (98% accuracy) while “Corn” performed 
the least (91% accuracy); OtherLC was classified with 97% accuracy while soy-
bean achieved an accuracy of 94%. Table 3 reports the individual class accura-
cies as well as the errors. The commission and omission errors are reported as  
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Figure 3. A comparison between a July 14 false color 6-5-4 Landsat 8 image composite 
(A), the Crop Data Layer (CDL) map (B) and the resulting classification (C) of the 
stacked May and July images. The classification image is very similar to the CDL; the 
classified map can clearly delineate soybean, especially in the roads between the fields.  
 
Table 3. Confusion matrix of the land cover map accuracy assessment. 

 
Ground Truth  

Classification Water Corn OtherLC Soybean 
Commission 

Error 
Producer’s 
Accuracy 

Water 459 8 0 0 0.02 0.98 

OtherLC 5 1042 10 27 0.03 0.97 

Corn 1 23 356 13 0.09 0.91 

Soybean 0 24 8 524 0.06 0.94 

Omission Error 0.01 0.05 0.05 0.07   

User’s Accuracy 0.99 0.95 0.95 0.93   

 
well: Soybean is accurately classified with a 94% producer’s (meaning that ap-
proximately 94% of the soybean ground truth pixels also appear as soybean pix-
els in the classified image) and 93% user’s accuracy (meaning that 93% of the 
soybean pixels in the image actually represent soybean in the ground). 

3.4. White Mold Mapping 

Figure 4 shows the computed NDVI (B) on the August Landsat image (A), and 
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the resulting mapped soybean and white mold (C). In late August, the soybean 
crops are mature and therefore the vegetation index is high. The detected white 
mold NDVI ranges between 28% - 78% while the healthy soybean exhibits a high 
NDVI of more than 79%.  

Some unhealthy areas can also be detected with very low NDVI values, cor-
responding to early soybean damages that are not white mold. However, these 
cases represent sparse and isolated pixels and were not included in the training. 
Despite the efforts to accurately detect white mold, some other disturbances can 
also present similar spectral index, especially since the white mold mapping is 
only using one image. Including several images in the white mold mapping 
would allow exclusion of disturbances that have the same index with white mold 
while representing something else. Information on the timing of white mold is 
crucial in excluding such disturbances in the presence of several images. Yet, 
unplanned disturbances such as drought or hail damages would not exhibit sim-
ilar spatial patterns as white mold in the field, and can therefore be distinguished 
from the mapped disease. 

3.5. White Mold Map Accuracy Assessment 

The accuracy of the resulting white mold map was assessed using the 30% 
set-apart samples that have not been used in the model building. The map 
achieved an overall accuracy of 99%. Table 4 reports accuracy and the commis-
sion/omission errors of the resulting white mold map. White mold is mapped 
with high accuracy (99%). These results can be explained by the quality of the 
independent variables that not only use individual bands, but also includes the 
NDVI in the modeling. However, this accuracy depends largely on the set-apart 
pixels used for the validation process, and considered as ground truth. Unfortu-
nately, one limitation of the RF which is known as the black box, is that it cannot 
provide the contribution of each variable in the model. More importantly, we 
checked the known fields that were affected by white mold and all of them were 
correctly mapped. The resulting final white mold map is shown in Figure 5, as 
well as the classified Landsat images and the fields locations. 
 

 
Figure 4. August Landsat composite (A), August Landsat NDVI with white mold range 
(B), and mapped soybean and white mold (C): White mold is accurately mapped from the 
soybean mask, using the appropriate NDVI signal. 
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Table 4. White mold accuracy assessment: Confusion matrix table comparing the mapped 
classes with ground truth. 

 Ground Truth 

Class Healthy Unhealthy Commission Error Producer’s Accuracy 

Healthy 1834 22 0.01 0.99 

Unhealthy 1 643 0.01 0.99 

Omission Error 0.01 0.03   

User’s Accuracy 0.99 0.97   

 

 
Figure 5. White mold in northeastern South Dakota: the map shows a classified image in 
background with the four important classes and the quantified white mold over the soy-
bean mask.  

3.6. Quantified Soybean and White Mold 

Using the Landsat pixel size (30 m × 30 m), we estimated the total area of the classi-
fied soybean in the three counties based on the total number of pixels mapped. 
Table 5 reports the total soybean areas estimation from both the classification  
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Table 5. Comparison between soybean area estimates from the United States Department 
of Agriculture (USDA) and the classified map in this study, as well as white mold extent 
estimated for each county, based on the calculations from the Landsat pixel size (30 m × 
30 m) and the total number of pixels. 

County Name County Area (km2) Soybean (km2) Soybean (USDA-km2) White Mold (km2) 

Marshall 2294.16 426.59 427.35 131.96 

Codington 1856.90 403.70 439.89 88.37 

Day 2824.50 653.22 660.04 189.93 

 
and the USDA report [35], as well as the estimated white mold areas per county. 
The USDA estimated areas reported consist of the harvested statistics, but the 
values are very similar to those obtained by the classified Landsat images. The 
white mold area estimates are respectively 132 km2, 88 km2, and 190 km2, and 
represent 31%, 22% and 29% of the total soybean area for Marshall, Codington 
and Day counties.  

4. Conclusions 

This study demonstrated that free of charge remotely sensed images could be 
used to detect and quantify white mold. The RF algorithm used was efficient in 
mapping the land cover and detecting white mold as reflected in the accuracy 
assessment. To improve the accuracy in the disease detection, this study com-
bined both Landsat individual bands and NDVI. Including NDVI in the model 
provides more information, especially since the index puts together the strengths 
of the NIR band and the Red band.   

A good knowledge of the investigated fields is necessary to complement im-
ages processing and ensure a proper validation. Constraints such as the images 
availability, or the timing of the disease should be addressed carefully in map-
ping the disease. To improve the classification results, more images can be ob-
tained by the fusion of medium spatial resolution Landsat (30 m, 16 days) with 
high temporal resolution Moderate Imaging Spectroradiometer—MODIS (500 
m, 1 day) for instance. Disease extents may be underestimated because of the 
Landsat pixel size that may not capture small disease patches. The use of satellite 
images with short revisiting period and a higher spatial resolution such as Senti-
nel-2 (10 m, 5 days revisiting period) or daily Rapid-eye may provide a better way 
of quantifying the disease, but the extent or the coverage might require many scenes 
according to the size of the study area.  

The disease rating might also represent an important factor in mapping the oc-
currence of white mold, as according to the latitude and the difference in the plant-
ing dates for instance, some phenological differences might be observed in the sig-
nal of white mold. The disease severity can help accounts for these differences while 
mapping the crop stress, which may result in better disease quantification. 
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