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Abstract 
Digital Elevation Models (DEMs) depict the configuration of the earth sur-
face and are being applied in many areas in earth and environmental sciences. 
In this study, the accuracy of the Advanced Land Observing Satellite World 
3D Digital Surface Model version 2.1 (ALOS W3D30), the Shuttle Radar To-
pography Mission Digital Elevation Model version 3.0 (SRTM30) and the 
Advanced Space borne Thermal Emission and Reflection Radiometer Global 
DEM version 2.0 (ASTER GDEM2) was statistically assessed using high ac-
curacy GPS survey data. Root-Mean-Square errors of ~5.40 m, ~7.47 m and 
~20.03 m were obtained for ALOS W3D30, SRTM30 and ASTER GDEM2 
respectively. In further analyses, we discovered that ALOS W3D30 and 
SRTM30 were much more accurate in regions where the height intervals were 
within 201 m - 400 m and >801 m. ALOS W3D30 proved to be the most ac-
curate DEM that best represents the topography of the earth’s surface and 
could be used for some earth and environmental applications in Nigeria. We 
recommend that this study should serve as a guide in the use of any of these 
DEMs for earth and environmental applications in Nigeria. 
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1. Introduction 

Digital Elevation Models (three-dimensional representation of the earth surface) 
are chief sources of height information which are greatly applied in many discip-
lines. Many areas where DEMs are applied include: flood inundation modeling 
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[1]; vegetation mapping [2] [3]; mapping of Coral Reef Environments [4]; de-
velopment of Geopotential Global Models [5]; evaluation of glacier volume 
change [6]; navigation systems for commercial aviation [7]; climatic modeling 
[8]; archeology [9]; glacier surface change [10]; hydrological analysis and simu-
lations [11]; soil science and geology [12]; Catchment Geomorphology and Hy-
drology [13]; and monitoring coastal erosions and sedimentations [14]. In 
another study, the author further categorized the various areas where global or 
near global DEMs can be applied [15]. 

It is true that DEMs have become very useful sources of data for a range of 
applications in Earth and environmental sciences [16] but despite their useful-
ness, there are many sources of errors inherent in them [17]. Owing to this fact, 
and as a result of recent improvement and release of newer versions of the Ad-
vanced Land Observing Satellite World 3D Digital Surface Model version 2.1 
(ALOS W3D30); the Shuttle Radar Topography Mission Digital Elevation Model 
version 3.0 (SRTM30) and the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer Global DEM version 2.0 (ASTER GDEM2), it is very im-
portant to assess and compare the quality of these data in order to see how well 
the DEMs fit the locally available or acquired data. This will help in determining 
the size of their errors within an area of application.  

Several researchers [15] [17]-[24] from different regions of the world assessed 
the accuracy or fitness of these DEMs with respect to their locally available or 
acquired data and reported the most accurate DEM in their region. Table 1 
presents the results obtained by these authors from different countries of the 
world. Although ALOS W3D30 is reported as the most accurate DEM in almost 
all the studies, there is need to determine its actual level of accuracy per study 
area since the studies show varying levels of accuracy. This is because the accu-
racy of DEMs depends on region of study, nature of environment, methods of 
algorithm development, input data, data processing and the resolution of the 
sensor. For example from Table 1, the RMSE of ALOS W3D30 in Philippines, 
Cameron and Russia is 5.68 m, 13.06 m and 7.87 m respectively.  

Presently, there is no readily available topographic map that can easily provide 
topographic information for various scientific applications in Nigeria and it is a 
well known fact that terrestrial acquisition of geospatial data is more laborious, 
time-consuming and very expensive than doing same remotely. Although several 
studies have been carried out on the accuracy assessment of DEMs in different 
parts of the world, yet there is no comprehensive study on the vertical accuracy 
of these freely available DEMs over Nigeria. This is despite the fact that these 
DEMs are being used as chief sources of topographic information for numerous 
applications in earth and environmental sciences. This study, therefore, is 
aimed at assessing the accuracy of these DEMs over Nigeria by using terre-
strially acquired GPS (Global Positioning System) survey data since it provides 
an independent way of assessing the quality of these three DEMs over Nigeria. 
This validation will also serve as a feedback to the research groups and/or gov-
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ernment agencies that developed these DEMs and it is intended to complement 
all the other studies that have been carried out in other countries to assess their 
quality. 

2. Materials and Method 
2.1. Data Sets 

The data sets used in this study are: sixty five (65) GPS points, ALOS W3D30, 
SRTM30 and ASTER GDEM2. The sixty five (65) GPS points are geodetic coor-
dinates which form part of Nigerian geodetic network. The ellipsoidal heights 
range from 22.84 m to 1793.41 m. The Root-Mean-Square Errors (RMSE) of the 
ellipsoidal heights at the reference epoch, (01. JAN.2012), range from 0.00101 m 
to 0.0244 m for the sixty five (65) GPS points. These GPS points were obtained 
from the Office of Surveyor General of the Federation (OSGoF) in Nigeria. Fig-
ure 1 shows the distribution of the GPS points over Nigeria.  

We downloaded related portions of the ALOS W3D30 DSM [25], SRTM30 
DEM and ASTER GDEM2 [26] over Nigeria. The Raster values (heights) of 
these DEMs were extracted to the coordinates of the GPS points. These heights 
are referred to as heights obtained from each of the DEMs. Table 2 gives a 
summary of the characteristics of the DEMs used. 

 
Table 1. Results obtained from other regions. 

COUNTRY Authors STD RMSE Sample_Points 

Croatia [17]  
SRTM = 3.8 m 

ASTER = 7.1 m 
7725 

Philippines [18]  

SRTM = 8.28 m 

ASTER = 11.98 m 

ALOS = 5.68 m 

274 

Ca meron [15]  

SRTM = 13.25 m 

ASTER = 18.87 m 

ALOS = 13.06 m 

555 

Russia [22]  

SRTM = 17.91 m 

ASTER = 9.1 m 

ALOS = 7.87 m 

69 

Argentina [20] 
ASTER = 9.48 m 

ALOS = 2.81 m 
 307,509 

Egypt [23] 

SRTM = 2.6 m 

ASTER = 5.7 m 

ALOS = 2.4 m 

 416 

Saudi Arabia [23] [24] 

SRTM = 6.8 m 

ASTER = 6.9 m 

ALOS = 6.8 m 

SRTM = 7.92 m 

ASTER = 7.45 m 
137; 50 
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Table 2. Summary of the DEMs used.  

MODEL ALOS W3D30 ASTER GDEM2 SRTM30 

COVERAGE 82N-82S, 180E-180W 83N-83S, 180E-180W 60N-56S, 180E-180W 

RESOLUTION 1” 1” 1” 

HORIZONTAL DATUM GRS 80 WGS84 WGS84 

VERTICAL DATUM EGM96 EGM96 EGM96 

VERSION 2.1 2.0 3.0 

YEAR OF RELEASE 2017 2011 2015 

VERTICAL ACCURACY RMSE, 5 m RMSE, 17 m RMSE, 16 m 

IMAGING SYSTEM Optical Optical SAR C-band 

SOURCE [25] [27] [28] [26] [29] [26] [30] 

WEBSITE http://www.eorc.jaxa.jp/ALOS/en/aw3d30  http://earthexplorer.usgs.gov  http://earthexplorer.usgs.gov  

 

 
Figure 1. Distribution of GPS points over Nigeria. 

2.2. Methods of Accuracy Assessment 

As presented in Table 2, heights obtained from these three DEMs are vertically 
referenced to the Earth Gravitational Model 1996 (EGM96) and this led to the 
transformation of ellipsoidal heights using geoid undulations computed from 
EGM96 [31]. Mathematically, Equation (2) shows the relationship between el-
lipsoidal height and EGM96 derived height:  

GPS EGM96 Orthoh N H− =                     (1) 

where: GPSh Ellipsoidal height= ,  
EGM96 OrthoN Geoid undulation derived from EGM96, H height= =  derived from 

EGM96. 
The Mean error (Equation (2)), standard deviation error (Equation (3)), 
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Root-Mean-Square Error (Equation (4)), and correlation coefficient (Equation 
(5)) are the statistical tools that were used in assessing the vertical accuracy of 
the heights obtained from these three DEMs as adopted by other researchers 
[32] [33] [34] [35]. The differences in heights obtained from each of the DEMs 
and GPS points are referred to as “errors” on the ground that the terrestrially 
acquired GPS points are of higher accuracy. 

( ) ( )N
1 E

ME Mean Error
N

i== ∑                     (2) 

where; E = Error = GPS DEMH H− , GPSH  = EGM96-derived heights from the 
GPS survey data, DEMH  = heights obtained from each of the DEMs, N = num-
ber of test points. 

STDE (Standard Deviation Error) = 
( )

2N
1 E ME

N 1
i= −

−
∑           (3) 

RMSE (Root-Mean-Square Error) = 
( )N 2

1 E

N
i=∑

             (4) 

The closer the value of the RMSE to zero, the more accurate are the heights 
obtained from DEMs while the farther the value of the RMSE from zero, the less 
accurate are the heights obtained from DEMs. 

( ) ( )( )
( ) ( )2 2

Correl ,
x x y y

X
x y

Y
x y

− −

−
=

−

∑
∑ ∑

               (5) 

where; X = EGM96-derived heights from the GPS survey data, Correl = Correla-
tion Coefficient, Y = heights obtained from each of the DEMs,  

and are sample means.x y   
The closer the value of correlation coefficient to ±1, the more the level of 

agreement of the heights obtained from each of the DEMs are to EGM96-derived 
heights from the GPS survey data and vice versa. 

Furthermore, the Linear Errors (LE) of each of the three DEMs were calcu-
lated at 90% (Equation (6)), 95% (Equation (7)) and 99.73% (Equation (8)) con-
fidence levels on the assumption that the vertical errors are normally distributed 
and that the linear errors are directly proportional to the standard deviation er-
rors [35] [36].  

LE@90% 1.6449 STDE= ×                  (6) 

LE@95% 1.9000 STDE= ×                  (7) 

LE@99.73% 3.0000 STDE= ×                 (8) 

The sixty five (65) GPS points and each of the corresponding heights obtained 
from the three DEMs were classified into 200 m height intervals for a more in-
tensive performance evaluation of the DEMs. The height intervals are 0 - 200 m, 
201 - 400 m, 401 - 600 m, 601 - 800 m and >800 m. The statistical results ob-
tained from each of these classes were used to assess the effect of the undulating 
terrain on the vertical accuracy of each of the three DEMs. 
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3. Results and Discussions  

The EGM96-derived geoid undulations at the sixty five (65) GPS stations are 
shown in Figure 2. These were the values subtracted from the ellipsoidal heights 
at each of the sixty five (65) GPS points to obtain the heights referred to as 
EGM96-derived heights. 

The EGM96-derived heights from the GPS survey data and the heights ob-
tained from each of the DEMs are shown in Figure 3. 

 

 
Figure 2. Geoid undulations. 

 

 
(a) 

 
(b) 
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(c) 

Figure 3. (a-c): Heights (a) GPS versus ALOS W3D30 (b) GPS versus SRTM30 
(c) GPS versus ASTER GDEM2. 

 
A closer look at Figure 3 reveals that there is a sharp difference at stations 42, 

1 and 40 for ALOS W3D30, SRTM30 and ASTER GDEM2 respectively. These 
are the stations that have the maximum differences in heights between each 
DEM and the GPS points. The differences (errors) obtained in the heights be-
tween each of the DEMs and the sixty five (65) GPS points are shown in Figure 
4. The statistical results of these errors are shown in Table 3. The coefficients of 
correlation between the EGM96-derived heights from the GPS survey data and 
that of ALOS W3D30, SRTM30 and ASTER GDEM2 are 0.9999, 0.9998 and 
0.9993 respectively meaning that each of the DEMs are highly correlated to the 
EGM96-derived heights of the GPS points but ALOS W3D30 has the highest 
level of agreement. 

From the results shown in Table 3, it can be inferred that ALOS W3D30 is 
more accurate than STRM30 and ASTER GDEM2 in Nigeria. Overall, the RMSE 
obtained from ALOS W3D30 is 40 cm different from the specified 5 m [28]. It is 
noteworthy that SRTM30 performed far better than the specified vertical accu-
racy of 16 m.  

Furthermore, the heights were classified into 200 m height intervals in order 
to detect the height interval that better fits the locally observed GPS survey data. 
The corresponding statistical results of the errors within each height interval are 
presented in Figure 5 while the linear errors are listed in Table 4. 

At all the height intervals, ALOS W3D30 performed better in accuracy, fol-
lowed closely by SRTM30 and lagging far behind is the ASTER GDEM2. As con-
firmed by other studies [15] [18] [22] [23] ALOS W3D30 is better in accuracy 
than the other two DEMs evaluated in Nigeria. This means that ALOS W3D30 
best represents the topography of the earth’s surface within the study area espe-
cially in regions where the height are >801 m. 

There is a steady increase in the accuracy of ALOS W3D30 and SRTM30 at 
height intervals of 0 - 200 m; 201 - 400 m and a sharp increase at 601 - 800 m 
and >801 m. This shows that regions or states, whose heights are within 201 - 
400 m, have better terrain modeling by ALOS W3D30 than regions within 0 - 
200 m; 401 - 600 m and 601 - 800 m. Based on all the statistical values obtained 
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at 601 - 800 m height interval, ALOS W3D30 and ASTER GDEM2 performed 
poorly with ALOS W3D30 having more than two times the expected accuracy 
while ASTER GDEM had almost twice its expected accuracy. 

Although five (5) GPS points fell within the height interval of >801 m, ALOS 
W3D30 performed two and half times better than its expected accuracy, 
SRTM30 performed more than three times better than its expected accuracy 
while ASTRE GDEM2 stays within its expected accuracy. It is evident and as 
corroborated by other authors [15] [18] [22] [23] that vertical accuracy of global 
DEMs is greatly affected by the slope of the terrain. The linear errors (Table 4) 
computed from each height intervals confirmed the superiority of ALOS W3D30 
to the other two DEMs evaluated in this study and this clearly shows that ALOS 
W3D30 can be used alone or in combination with terrestrial data for some earth 
and environmental applications. 
 
Table 3. Statistical results of the errors. 

DEMs 
MIN 
(m) 

MAX 
(m) 

ME 
(m) 

STDE 
(m) 

RMSE 
(m) 

LE@90% 
(m) 

LE@95% 
(m) 

LE@99.73% 
(m) 

SRTM30 −5.05 24.84 3.96 6.38 7.47 10.49 12.12 19.14 

ASTER GDEM2 −5.05 76.95 15.45 12.85 20.03 21.14 24.42 38.55 

ALOS W3D30 −3.45 20.29 2.88 4.60 5.40 7.57 8.74 13.80 

 
Table 4. Linear errors of the DEMs based on height intervals. 

Height  
Intervals 

(m) 

Confidence Levels 

Count 
LE@90% (m) LE@95% (m) LE@99.73% (m) 

ALOS ASTER SRTM ALOS ASTER SRTM ALOS ASTER SRTM 

0 - 200 14 5.67 15.40 9.21 6.56 17.78 10.64 10.35 28.08 16.80 

201 - 400 22 4.38 13.80 6.79 5.05 15.94 7.85 7.98 25.17 12.39 

401 - 600 13 5.72 21.53 10.79 6.61 24.87 12.46 10.44 39.27 19.68 

601 - 800 11 10.79 30.46 11.55 12.46 35.19 13.34 19.68 55.56 21.06 

>801 5 1.86 13.85 7.42 2.15 16.00 8.57 3.39 25.26 13.53 

 

 
Figure 4. Errors in heights obtained from each of the DEMs. 
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(a) 

 
(b) 

 
(c) 

Figure 5. (a-c) Statistical results of the height intervals (a) Root-Mean-Square Errors (b) 
Standard Deviation Errors (c) Mean Errors. 

4. Conclusions  

This study which aimed at assessing the quality of global or near global DEMS 
applied several statistical tools to determine the accuracy of heights obtained 
from ALOS W3D30, ASTER GDEM2 and SRTM30 using high accuracy GPS 
survey data over Nigeria. In all the analyses, ALOS W3D30 proved to be the 
most accurate DEM that can relatively depict the topography of the earth’s sur-
face in Nigeria. We discovered that regions or states, within the study area, 
where the height intervals are >801 m, have improved statistical results than 
others while regions within 601 m - 800 m height interval have worse statistical 
results when using ALOS W3D30 in Nigeria. 
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Accuracy assessment of DEMs is of utmost importance in earth and environ-
mental sciences for it shows how the DEMs best approximate the dynamic earth 
surface. Generally, the accuracy of DEMs depends on region of study, nature of 
environment, methods of algorithm development, input data, data processing 
and the resolution of the sensor. This explains the varying levels of accuracy 
recorded by each of the DEMs. We, therefore, recommend that this study should 
serve as a guide in the use of any of these DEMs for earth and environmental 
applications in Nigeria.  
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