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Abstract 
Urban land-use modeling has gained increased attention as a research topic over the last decade. 
This has been attributed to advances in remote sensing and computing technology that now can 
process several models simultaneously at regional and local levels. In this research we imple-
mented a cellular automata (CA) urban growth model (UGM) integrated in the XULU modeling 
frame-work (eXtendable Unified Land Use Modeling Platform). We used multi-temporal Landsat 
satellite image sets for 1986, 2000 and 2010 to map urban land-use in Nairobi. We also tested the 
spatial effects of varying model coefficients. This approach improved model performance and 
aided in understanding the particular urban land-use system dynamics operating in our Nairobi 
study area. The UGM was calibrated for Nairobi and predicted development was derived for the 
city for the year 2030 when Kenya plans to attain Vision 2030. Observed land-use changes in ur-
ban areas were compared to the results of UGM modeling for the year 2010. The results indicate 
that varying the UGM model coefficients simulates urban growth in different directions and mag-
nitudes. This approach is useful to planners and policy makers because the model outputs can 
identify specific areas within the urban complex which will require infrastructure and amenities 
in order to realize sustainable development. 

 
Keywords 
Urban Growth Model, Cellular Automata, XULU, Model Coefficients, Prediction, Sustainable  
Development 

 
 

1. Introduction 
Urban modeling studies are currently considered as an essential component for numerous complex environmental 
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analyses [1]. These studies play a vital role in sustainable planning and are crucial for planning future urban de-
velopment. Over the last few decades, cities in sub-Saharan Africa have experienced quite rapid growth rates; 
Nairobi grew at a rate of growth of 4.9 per cent between 1990 and 2006 [2].  

These high growth rates have been driven principally by large rural/urban migration into African cities as 
people search for employment and better living standards. This has led to pressures on existing urban infra-
structure and amenities [3]. Problems linked to sustainable urban development in African cities are manifold and 
complex and solutions require an integrated approach. To be effective, such an integrated urban planning ap-
proach must allow planners to recognize and anticipate urban dynamics and their consequences [4]. 

Modeling is one of the methods in the portfolio of tools and techniques available to characterize the dynamics 
of the land-use system [5]. Von Neumann [6] was one of the early pioneers of cellular automata (CA) and Tob-
ler [7] first applied CA in geography. Models based on CA have evolved over the last decades in simulating ur-
ban development growth and patterns [8]. CA models have been used successfully in simulating dynamic spatial 
interactions by incorporating biophysical and socio-economic land-use change variables [9]-[11]. CA have 
shown potential in representing and simulating the complexity of the underlying processes involved in urban 
growth and land-use change, and have provided an additional level of knowledge and understanding of spatial 
and temporal change [12]  

In this study, we implemented a XULU-based Urban Growth Model (UGM) for Nairobi. Reference [13] de-
veloped this UGM and first applied it in the German federal state of North-Rhine Westphalia. UGM is based on 
the modeling algorithm of the SLEUTH model [14] which uses the concept of cellular automata. For our analy-
sis of Nairobi, calibration of UGM was based on the five model parameters described in the SLEUTH urban 
growth model [15] [16]. Model calibration was performed using land-use datasets for 1986 and 2010. 

Little attention has been paid to the spatial effects of systematically varying each UGM parameter when im-
plementing the model. This research is one of the first attempts to address this issue, and, following successful 
model calibration, we focused on the spatial effects of varying model parameters. Our objective was to syste-
matically analyze and document the contribution of each model parameter in simulating urban growth. Urban 
land-use data for Nairobi were derived from annual Landsat image data acquired in 1986, 2000 and 2010. Model 
parameters were modified and tested in 31 separate simulations. Results reveal significant spatial effects in si-
mulated urban land-use patterns between 1986 and 2010. The model was used to predict future urban land-use 
development in the year 2030. UGM was used successfully to study land use change and provide predictions of 
future urban land-use trends in Nairobi as Kenya accomplishes Vision 2030, the nation’s ambitious economic 
and social development program [17]. 

2. The Study Area 
Nairobi, the capital city of Kenya, extends between latitudes 1˚09' and 1˚28'South, and longitude 36˚04' and 
37˚10'East. The city covers an area of 696 km2 and lies at an average altitude of 1700 meters above sea level 
(Figure 1). Nairobi uses the WGS 84 Universal Transverse Mercator (UTM) 37 South map projection. Within 
its administrative borders the city includes urban, agriculture, and rangeland land-uses as well as open/transitional 
areas, and remnants of evergreen tropical forests. Nairobi has a high annual population growth rate compared to 
other cities in Africa. From a population of 310,000 in 1960, the population reached 510,000 in 1970 (Republic 
of Kenya, 1970), 828,000 in 1979 [18], 1,321,000 in 1989 [19], 2,137,000 in 1999 [20] and 3,138,369 in 2009 
[21]. The projected population in the year 2020 will be almost six million [22]. 75% of the city’s population 
lives in informal settlements [22]. 

3. Modeling Nairobi’s Urban Growth 
Our approach to urban growth modeling of Nairobi utilized information derived from multi-temporal Landsat 
satellite data in combination with additional datasets of slope, roads and an exclusion layer. Figure 2 illustrates 
the data processing flow developed for this urban growth model. Reference [23] developed XULU as a model-
ing framework that enables model integration and implementation using requisite functions of data storage, in-
put/output methods, model runs, editing and visualization. The first use of XULU was to compute predicted fu-
ture land-uses under varying change scenarios with their specific boundary conditions for a watershed in Benin 
[24]. 

UGM has been implemented in the XULU modeling platform as a modification of the SLEUTH approach  
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Figure 1. Administrative boundary of Nairobi city (Source: False colour 
composite using bands 4, 3, 2, Landsat 2010).                           

 

 
Figure 2. Flowchart for urban growth modeling.                           

 
[11] [13]. UGM requires four spatial input parameters: urban land-use, transportation, slope and exclusion. The 
exclusion layer identifies those areas within the study site that cannot be changed (e.g. water bodies or protected 
areas) or areas which, if not excluded, are to a certain degree resistant to urbanization. The transportation layer 
represents the road network in a research area. While SLEUTH needs at least four urban land-use data sets to 
calculate a set of calibration coefficients [16], the modified UGM in XULU only needs a map for the starting 
year of the calibration phase and a reference map at the end year. The simulated urban area of the end year is 
compared to the reference map using a Multiple Resolution Validation (MRV) procedure as described in Refer-
ence [25]. 

Calibration is the most important step in any modeling application [15]. In the calibration phase of UGM a 
“brute-force” method is used to determine five calibration parameters. These parameters control the transition 
rules that are implemented in the model and include: Dispersion, Breed, Spread, Slope Resistance, and Road 
Gravity. Dispersion controls the number of image pixels that are randomly selected for possible urbanization 
and determines the extent of their outward distribution. Breed refers to the probability that a newly generated 
settlement initiates its own growth. Spread controls the extent to which existing settlements radiate. Slope resis-
tance characterizes the likelihood of growth on steep slopes. Road gravity influences the creation of new centers 



K. Mubea, G. Menz 
 

 
639 

along roads. Urban growth can be classified in UGM as: 1) spontaneous new growth; 2) new urban center estab-
lishment or spreading urban center growth; 3) edge growth; and, 4) road influenced growth [26]. Table 1 shows 
a summary of urban growth types simulated by our UGM as well as the contributing model parameters [26]. 

UGM conducts simulation based on Cellular Automata (CA). CA is a discrete dynamic system in which space 
is divided into regular spatial cells, and time progresses in discrete steps [27]. Each cell in the system is charac-
terized by one of a finite number of states. The state of every cell is updated at each discrete time-step according 
to a set of local rules and the state of a cell at a given time depends on its own state and the states of its neigh-
bors at the previous time step [28]. 

Following successful calibration of our Nairobi UGM, model parameters were modified in order to determine 
the spatial effects of each parameter combination. Each model parameter value ranges between 0 and 100 and 
thus indicates the respective contribution of each parameter in simulating urban growth. The “goodness of fit” of 
a set of parameters in a model is determined by a set of spatial metrics, each describing in a discrete way how 
accurately a set of parameters can replicate real-world historical patterns [12]. Several studies have examined 
the modification of existing urban land-use models so as to localize the models and identify optimal model pa-
rameters for each application [9]. Reference [29] examined SLEUTH model parameters for different counties 
and cities under Project Gigalopolis. Reference [30] explored sensitivity analysis for cellular automata model-
ling by varying neighbourhood size and type. Reference [31] performed a sensitivity analysis of the parameters 
within a logistic regression CA model and their influence on predicted urban gowth for metropolitan areas in 
China.  

Model parameters are highly auto-correlated, making it difficult to understand each growth cycle in the evolu-
tion of an urban environment. We can observe only the reproduction of the overall urban complexity [30]. To 
better understand the role and importance of each UGM parameter, we conducted a series of urban growth si-
mulations. In each simulation, each model parameter was modified individually by a value of +1 from optimal 
calibration values. We compared the resulting simulated urban maps with the predicted 2010 map using Kappa 
(K) statistics from the Map Comparison Kit (MCK) software [31]. MCK offers a combination of standard cell 
by cell map comparison (the K statistic and newly derived variants) as well as recent developments in fuzzy-set 
map comparison (K fuzzy) [31].  

4. Analysis 
4.1. Data 
Cloud-free Landsat satellite imagery for 1986, 2000 and 2010 were used to derive the land-use data layer re-
quired for the UGM. The city of Nairobi is entirely enclosed within Landsat TM path 168, row 61. The Landsat 
data sets used included TM, and ETM+ images in WGS-84 Universal Transverse Mercator (UTM), 37-South 
projection. Reference data were developed for each of the separate years and then randomly partitioned for clas-
sifier training and accuracy assessment. Ground truth data included a topographic map which was used as loca-
tional reference data for the 1986 and 2000 classifications while GPS points served as reference data for the 
2010 classification. Road network data for Nairobi was obtained from Nairobi City Council and included all of 
the roads within the city. An exclusion layer was obtained from Survey of Kenya and included government 
buildings and property as well as other land areas designated as reserved. 
 
Table 1. Summary of growth types simulated by the UGM model.                                                 

Growth Cycle Order Growth Type Controlling Parameter(s) Summary Description 

1 Spontaneous Dispersion Randomly selects potential new growth cells. 

2 New Spreading Breed Growing urban centers from center spontaneous 
growth. 

3 Edge Spread Old or new urban centers spawn additional growth. 

4 Road-Influenced Road Gravity, Dispersion, 
Breed. 

Newly urbanized cell spawns growth along  
transportation network 

Throughout Slope Resistance Slope Effect of slope on reducing probability of urbanization. 

Throughout Excluded Layer User-Defined User specifies areas resistant or excluded to  
development. 
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4.2. Land-Use Change Analysis 
Land-use classification of Nairobi included six land-use classes: urban, forest, agriculture, open/transition areas, 
water and rangeland. Urban land-use included built-up areas within the research area. Forest included evergreen 
forest as well as high density mixed forests consisting of trees and little or no under-storey vegetation. Open/ 
transitional areas included bare land, exposed areas, quarries and transitional areas. Water included rivers and 
reservoirs. The sewage treatment plant in Ruai was also included in the water class. Rangeland included bush 
land and ground layer covered by grass and sparsely disturbed scrub species. The design of the classification 
scheme involved consideration of factors such as the major land-use groups within the research area, disparities 
in spatial resolution of the remote sensor data, and the need to consistently discriminate land-use classes irres-
pective of seasonal disparities [32]. 

Image pre-processing steps for the optical datasets included radiometric and geometric correction. GPS points 
were used for image to map registration. Combinations of the image reflectance spectral bands (i.e., stacked 
vectors) were used for classification of the 1986, 2000 and 2010 images. Training sites representing the land-use 
classes of interest were collected using the Region of Interest tool in ENVI 4.8. Support vector machine (SVM) 
classification was applied to all the data sets and its performance assessed using error matrices. Recently, the 
SVM classification approach has been demonstrated as superior in comparison to maximum likelihood classifi-
ers [33]. 

Post-classification refinements were utilized to diminish classification errors as a result of the similarities in 
spectral signatures of certain classes. Independent samples of pixels for each class were randomly selected from 
each classification category to assess classification accuracies. Error matrices as cross-tabulations of mapped 
classes versus reference classes were compiled and used to assess classification accuracies [34]. Overall classi-
fication accuracy, user’s and producer’s accuracies, and the Kappa statistic were then derived from the error ma-
trices.  

4.3. Modeling 
Inputs for UGM included land-use datasets (1986 and 2010), slope data, exclusion data and road data for Nairo-
bi. Land-use data for 1986 were used as the base data for modeling while land-use data for 2010 were used as 
the reference grid. These land-use maps all satisfied the minimum accuracy requirement of 85% stipulated in the 
Anderson classification scheme [32]. Land-use data for the three dates were each reclassified to a binary map 
showing only urban and non-urban land-uses. Slope data was derived from the Digital Elevation Model (DEM) 
of Nairobi at 30 meters spatial resolution. Exclusion data was used to place constraints on urban growth and in-
cluded areas within Nairobi where development is restricted, including government property and buildings, 
parks and reserved areas.  

Road data included a complete road network for Nairobi, and for modeling purposes, the major roads within 
the city were assigned a weighting factor. The road layer included three weight values of 100, 50 and 25 [12] 
[16]. A weighting factor of 100 was assigned to class A roads (International trunk roads), a factor of 50 was as-
signed to class B and C roads (National Trunk Roads), and a value of 25 was assigned to local streets (Minor 
roads). The road classification in Kenya is explained in more detail in Reference [35]. Development within Nai-
robi was most likely to occur along the major roads. Modeling was done at 100 meters spatial resolution, and all 
datasets were resampled to this level. 

Model calibration of UGM involved running the model using default values of 1, 50 and 100 for slope, breed, 
dispersion, road, and spread parameters. Model calibration was done iteratively in four sequences from coarse to 
fine calibration as the parameters were varied. The MRV method was used to achieve the optimal parameteriza-
tion for the UGM during the calibration phase as well as for validation of the model results. The Multiple Reso-
lution Validation (MRV) method was first used in a thorough comparison of land-use models in which the tests 
were conducted in seven laboratories with 13 applications, 9 different models and in 12 study areas [25]. 

In order to explore spatial effects of our UGM, we conducted tests of parameter combinations and permuta-
tions according to the Equation (1). The value of runs for each combination was obtained where n is the number 
of parameters (in this case, five) and r is the parameters to be maintained constant. We obtained five sets of re-
sults for the first combination, ten sets for the second combination, ten sets for the third combination, five sets 
for the fourth combination, and one set for the fifth combination. 
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In total we obtained 31 simulated urban growth maps. In order to evaluate the spatial effects within each map, 
we used the Map Comparison Kit (MCK) software [31] to generate K  statistics using the predicted map of 
2010. Reference [36] describes K  statistics and additional statistics within K  including Khisto and Kloca-
tion. 

K  is a measure of similarity between two maps based on a contingency table [31] [37]. K  is defined ac-
cording to Equation (2) where ( )P A  is the proportion of cases in agreement (i.e., correctly allocated) and 
( )P E  is the proportion of agreement that is expected by chance: 
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Klocation is a measure of the similarity of the spatial allocation of categories of the two compared maps [25]. 
( )maxP  gives the maximal similarity that can be found based upon the total number of cells allocated to each 

category. Klocation is calculated according to Equation (3): 
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Khisto is a measure of the quantitative similarity of the two compared map [36]. Thus Khisto makes it possi-
ble to express K  as a combination of similarity in quantity and location as shown in Equation (4): 
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5. Results and Discussion 
A land-use summary for Nairobi was performed and results tabulated in Table 2 and Figure 3. Land-use maps 
for Nairobi are illustrated in Figures 4-6. The urban/built-up areas increased from 35.16 km2 in 1986 to 52.50 
km2 in 2000 and 79.38 km2 in 2010. Forest increased from 62.87 km2 in 1986 to 71.14 km2 in 2000 but de-
creased to 66.86 km2 in 2010. Areas where forest decreased were classified as agriculture or urban. Agriculture 
increased from 144.72 km2 in 1986 to 152.53 km2 in 2000 but decreased to 148.21 km2 in 2010. Typical agri-
culture land-use included small scale gardens and peri-urban agriculture. These areas were converted to urban 
land-use with the construction of residential and commercial buildings necessary for the increased urban popula-
tion in Nairobi. Open/Transition areas increased from 99.54 km2 in 1986 to 146.94 km2 in 2000 but decreased to  
 
Table 2. Land-use summary and error estimates for Nairobi.                                                      

Year 1986 2000 2010 

Land-Use Classes Area (km2) % Area (km2) % Area (km2) % 

Urban 35.16 4.9 52.50 7.4 79.38 11.1 

Forest 62.87 8.8 71.14 10.0 66.86 9.4 

Agriculture 144.72 20.3 152.53 21.4 148.21 20.8 

Open/Transition Areas 99.54 14.0 146.94 20.6 117.94 16.5 

Rangeland 361.11 50.6 261.74 36.7 257.61 36.1 

Water 9.60 1.3 11.15 1.6 26.00 3.6 

Total 696 100 696 100 696 100 

Overall Accuracy (%) 92.64 
 

90.9 
 

91.87 
 Kappa Coefficient 0.8679 0.8834 0.8953 
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Figure 3. Land-use estimates for Nairobi.                               

 

 
Figure 4. Land-use map of Nairobi derived from Landsat TM 1986.           

 
117.94 km2 in 2010. Rangeland decreased from 361.11 km2 in 1986 to 261.74 km2 in 2000 and 257.61 km2 in 
2010. Water increased from 9.60 km2 in 1986 to 11.15 km2 in 2000 and increased further to 26.00 km2 in 2010.  

Modeling of Nairobi utilized as inputs urban extents extracted from classified land-use maps for 1986 and 
2010. Other layers used included slope, areas excluded from development and the Nairobi road network. A 
nearest neighbor technique was used to resample all of the datasets to a spatial resolution of 100 meters. Cali-
bration was performed using the 2010 land-use map as a reference grid. The best model parameters for UGM 
were also evaluated based on the weighted average calculated with the MRV using 2010 land-use as a reference 
grid.  

Figure 7 shows the best model coefficients obtained following successful calibration of UGM at 100 meter 
spatial resolution. These coefficient values are: slope = 52, spread = 27, dispersion = 1, breed = 52, road = 2. 
These coefficients were obtained at a weighted value of 0.95. We therefore conclude that the UGM calibration 
produced an agreement of approximately 95% for the built-up/non-built-up categories between the 2010 refer-
ence map and the 2010 map fitted with the model.  

In order for an urban growth model to be of use to policy makers and urban planners, simulation of urban 
growth must be performed after calibration. To demonstrate this capability, we used UGM to predict Nairobi 
land-use for the year 2030. We started by using 2010 land-use as reference data during the UGM calibration, 
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and proceeded under the assumption that current urban planning policies would remain constant. The expansion 
of urban land-use (built-up areas) was modeled with the UGM using the identical model parameters obtained in 
the 1986-2010 calibration (Figure 7) at 100 meters spatial resolution.  

Simulated urban land-use estimates for Nairobi in 2030 were achieved using the calibrated UGM. This exer-
cise predicts that urban land-use in Nairobi will increase from 73.14 km2 in 2010 to118.35 km2 in 2030. The 
map of simulated urban land-use for Nairobi in 2030 is shown in Figure 8. The prediction of new settlements or 
built-up areas in Nairobi was derived at a weighted value of 0.95. The model predicts that new urban growth in 
the city is most likely to be influenced by breed and slope parameters; both showing values of 52. The spread 
parameter is next in importance, at a value of 27. The road and dispersion parameters are shown to be the least 
likely factors in new urban growth. These results suggest that new areas will be developed in proximity to roads, 
principally for residential and commercial uses. Such growth could result from the high rural to urban migration 
into Nairobi, as new residents arrive in the city in search of employment, social amenities and economic oppor-
tunity.  
 

 
Figure 5. Land-use map of Nairobi derived from Landsat ETM 2000.          

 

 
Figure 6. Land-use map of Nairobi derived from Landsat ETM+ 2010.         



K. Mubea, G. Menz 
 

 
644 

 
Figure 7. Best model parameters for Nairobi UGM.                         

 

 
Figure 8. Simulated urban growth for Nairobi, 2010-2030.                    

 
In order to analyze the influence of each individual parameter upon the UGM, 2010-2030 urban growth was 

simulated varying each of the best model parameters by a value of +1. The best model parameters obtained us-
ing UGM yielded a simulated urban growth of 73.14 km2. A total of 31 simulations were conducted; results of 
the five combination sets are shown in Tables 3-7. K statistics were used for map comparisons. 

Table 3 summarizes the 1st combination. In this combination, the four best parameters were each varied by a 
value of +1, with one parameter remaining constant (shown in bold in Table 3). The simulated urban growth 
figures all exceed the 73.14 km2 figure obtained using the best model parameters (Figure 7). The highest spatial 
effect is realized in Set 5, where the slope value is held constant while the other values were varied. In Set 5, 
urban growth = 79.99 km2, with the lowest resultant Khisto value of 0.950. Again, the Khisto measure makes it 
possible to express K as a combination of similarity in quantity and location. The lowest spatial effect (75.77 
km2) with the highest Khisto value (0.980) was observed in Set 4, where the road value was held constant while 
the others were varied.  

Table 4 shows the 2nd combination in which the three best parameters were varied by +1 and two parameters 
(shown in bold in the Table 4) remained constant. Again, simulated urban growth values are uniformly greater 
than the 73.14 km2 figure predicted using the optimal model parameters (Figure 7). Set 8 yielded a value of 
73.31 km2 with a high Khisto value of 0.999. This value is quite close to the simulated urban growth value of 
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73.14 km2, indicating a minimum of spatial effect in this model. The highest spatial effect (79.14 km2) and low-
est Khisto value (0.954) was observed in Set 14, in which the slope and breed parameters were held constant 
while the others were varied. 

Table 5 summarizes the 3rd combination, where the two best parameters were varied by +1 and the other three 
parameters remained constant (again shown in bold). Again, the simulated urban growth values are greater than 
the 73.14 km2 figure obtained using best model parameters as shown in Figure 7. Set 19 yielded a simulated 
urban growth value of 73.16 km2 with a high Khisto value of 0.996. This simulated urban growth value is very 
close to the figure of 73.14 km2 produced by the original calibrated UGM model. Thus, varying two model pa-
rameters Dispersion (at 2) and Slope (at 53)—in Set 19 yields a good fit curve for urban growth modeling along 
with the least spatial effect. In contrast, Set 20 yielded the highest spatial effect (77.32 km2) with a low Khisto 
value (0.985). These figures result from varying Dispersion at 2 and Slope at 52 (rather than 53 as in Set 19). 

Table 6 shows the 4th combination where the single best parameter was varied by +1 while keeping the other 
four parameters constant (shown in bold). The simulated urban growth values are greater than the value of 73.14 
km2 obtained using best model parameters (Figure 7). Set 26 yielded a value of 73.18 km2 with the highest 
Khisto value of 1.000. The 73.18 km2 value was closest to the simulated urban growth value of 73.14 km2. Va-
rying only the Slope parameter in set 26 yielded the least spatial effect. It is useful to compare these results with 
those produced in Set 30 in which only the Spread parameter was varied. Set 30 yielded the highest spatial effect; 
an indication of the sensitivity of our UGM in modeling urban growth.  
 
Table 3. Model parameter variation in 1st combination for UGM of Nairobi.                                              

Simulation Using Urban Land-Use Classification of 2010 as Reference 

Set 
Model Parameters 

Simulation (km2) 
Kappa Statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

6 27 1 53 3 53 74.06 0.747 0.752 0.993 

7 27 2 52 3 53 76.73 0.745 0.766 0.973 

8 27 2 53 2 53 73.31 0.739 0.740 0.999 

9 27 2 53 3 52 76.06 0.749 0.766 0.978 

10 28 1 52 3 53 78.01 0.755 0.783 0.964 

11 28 1 53 2 53 73.93 0.759 0.764 0.994 

12 28 1 53 3 52 78.23 0.745 0.774 0.962 

13 28 2 52 2 53 77.02 0.737 0.759 0.971 

14 28 2 52 3 52 79.41 0.744 0.780 0.954 

15 28 2 53 2 52 74.03 0.753 0.758 0.993 

 
Table 4. Model parameter variation in 2nd combination for UGM of Nairobi.                                         

Simulation Using Urban Land-Use Classification of 2010 as Reference 

Set 
Model Parameters 

Simulation (km2) 
Kappa Statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

1 27 2 53 3 53 76.99 0.740 0.762 0.971 

2 28 1 53 3 53 76.76 0.751 0.772 0.973 

3 28 2 52 3 53 78.71 0.739 0.770 0.959 

4 28 2 53 2 53 75.77 0.737 0.752 0.980 

5 28 2 53 3 52 79.99 0.741 0.780 0.950 
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Table 7 shows the 5th combination under which all of the best parameters were varied by a value of +1. The 
simulated urban growth value produced by this combination was 77.29 km2 with a Khisto value of 0.969. This 
growth value significantly exceeds the 73.14 km2 figure yielded by using best model parameters. It is clear that 
varying all parameters affects our UGM significantly. 

In this research we explored the spatial effects of varying the UGM model parameters and the results indicate 
the sensitivity of our UGM in urban growth modeling. Varying at least one model parameter while leaving the 
other parameters constant had a significant effect on the resulting simulated urban growth values. The highest 
spatial effect obtained was 79.99 km2 (Table 3) while the lowest value derived was 73.16 km2 (Table 5). The 
value of 79.99 km2 was obtained as the Slope parameter was held constant while the others were varied. The 
value of 73.16 km2 was obtained by holding Spread, Breed, and Road parameters constant while varying Dis-
persion and Slope. In addition, examining Table 6 shows that the value of 73.18 km2 was the second lowest 
 
Table 5. Model parameter variation in 3rd combination for UGM of Nairobi.                                            

Simulation Using Urban Land-Use Classification of 2010 as Reference 

Set 
Model Parameters 

Simulation (km2) 
Kappa Statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

16 27 1 52 3 53 74.08 0.752 0.757 0.993 

17 27 1 53 2 53 72.68 0.759 0.761 0.996 

18 27 1 53 3 52 75.09 0.749 0.760 0.985 

19 27 2 52 2 53 73.16 0.750 0.750 1.000 

20 27 2 52 3 52 77.32 0.742 0.766 0.969 

21 27 2 53 2 52 73.28 0.743 0.743 0.999 

22 28 1 52 2 53 72.94 0.757 0.758 0.998 

23 28 1 52 3 52 76.93 0.743 0.765 0.972 

24 28 1 53 2 52 75.19 0.764 0.776 0.985 

25 28 2 52 2 52 73.92 0.762 0.767 0.994 

 
Table 6. Model parameter variation in 4th combination for UGM of Nairobi.                                                 

Simulation Using Urban Land-Use Classification of 2010 as Reference 

Set 
Model Parameters 

Simulation (km2) 
Kappa Statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

26 27 1 52 2 53 73.18 0.758 0.759 1.000 

27 27 1 52 3 52 74.70 0.751 0.760 0.988 

28 27 1 53 2 52 75.70 0.749 0.763 0.981 

29 27 2 52 2 52 73.74 0.752 0.755 0.995 

30 28 1 52 2 52 76.48 0.757 0.776 0.975 

 
Table 7. Model parameter variation in 5th combination for UGM of Nairobi.                                                 

Simulation Using Urban Land-Use Classification of 2010 as Reference 

Set 
Model Parameters 

Simulation (km2) 
Kappa Statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

31 28 2 53 3 53 77.29 0.736 0.760 0.969 
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value obtained for spatial effect. This figure was obtained by varying the Slope parameter and holding the other 
parameters constant.  

Analysis of the lower spatial effect values (73.16 km2 from Table 5 and 73.18 km2 from Table 6), shows that 
these results are produced by holding Spread, Breed and Road parameters constant. This suggests that these 
three model parameters are closely correlated in the production of similar amounts of urban growth cells. Model 
sets yielding a low spatial effect and those with a high spatial effect are shown in Table 8 and Table 9. 

From Tables 4-6 it is clear that maintaining constant values for Dispersion and Slope at a minimum yielded 
high spatial effects (78.23 km2, 76.93 km2 and 76.48 km2). As the value of the Road parameter was increased we 
observed in all simulations increasing urbanization of more accessible areas. This connection to the road net 
work is evident with equal growth rates (due to the values of the other parameters), an effect observed by Ref-
erence [38].  

Table 9 shows the urban growth simulations for the 31 Sets. Again, the simulated urban growth value of 
73.14 km2 was produced by UGM using the best model parameters (Figure 7). Table 9 shows that Set 19 pro-
duced an urban growth value of 73.16 km2, the closest to that produced by the UGM (also in Table 5). 

Figure 10 shows the K and Klocation values for the 31 simulations. In Set 24 model parameters of Dispersion, 
Road and Slope were held constant. Set 24 had the highest K value of 0.764 indicating the high spatial effect 
associated with this Set (75.19 km2). In set 31 all model parameters were varied and Set 31yielded the lowest K 
value (0.736) along with a high spatial effect of 77.02 km2. High K values indicate low similarity between the 
maps and therefore a high spatial effect. In Set 10 two model parameters—Dispersion and Breed—were kept 
constant. Set 10 generated the highest Klocation value of 0.783; this is indicative of the high spatial effect, 
measured at 78.01 km2. In set 8 where the two parameters of Spread and Road were kept constant, both a low K 
value and a low spatial effect (73.31 km2) were produced. High K and Klocation values describe low similarity 
between the maps and indicate high spatial effects. 

Additionally, Figure 10 shows that low K and Klocation values were observed in Sets 8 and 9; 0.739 in Set 8 
and 0.740 in Set 9, with the lowest Klocation value being observed in Set 8. In these two Sets only the Spread 
model parameter was held constant. Set 31 yielded the lowest K value at 0.736.  

 
Table 8. Model parameter sets with low spatial effect for UGM of Nairobi.                                          

Simulation Using Urban Land-Use Classification of 2010 as Reference 

Set 
Model Parameters 

Simulation (km2) 
Kappa Statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

4 28 2 53 2 53 75.77 0.737 0.752 0.980 

8 27 2 53 2 53 73.31 0.739 0.740 0.999 

19 27 2 52 2 53 73.16 0.750 0.750 1.000 

26 27 1 52 2 53 73.18 0.758 0.759 1.000 

 
Table 9. Model parameter sets with high spatial effect for UGM of Nairobi.                                          

Simulation Using Urban Land-Use Classification of 2010 as Reference 

 Model Parameters 
Simulation (km2) 

Kappa Statistics 

Set Spread Dispersion Breed Road Slope K Klocation Khisto 

5 28 2 53 3 52 79.99 0.741 0.780 0.950 

14 28 2 52 3 52 79.41 0.744 0.780 0.954 

20 27 2 52 3 52 77.32 0.742 0.766 0.969 

30 28 1 52 2 52 76.48 0.757 0.776 0.975 

31 28 2 53 3 53 77.29 0.736 0.760 0.969 
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Figure 11 shows the Khisto values for the 31 simulations. The highest value of Khisto (1.000) was obtained 
in both Set 19 and in Set 26. In Set 19 three model parameters (Spread, Breed, and Road) were kept constant, In 
Set 26 four parameters (Spread, Dispersion, Breed and Road) were held constant. This high Khisto value indi-
cates the lowest spatial effect. In set 5, where a single parameter (Slope) was kept constant, the lowest Khisto 
value of 0.950 was produced, indicating the highest spatial effect observed at 79.99 km2. High Khisto values in-
dicate a high degree of similarity between the maps in terms of quantity and location of predicted urban growth 
and indicate the lowest spatial effect.  

Table 8 presents the set of parameters that yielded the minimum urban growth levels and indicate low spatial 
effect. The lowest spatial effect of 73.16 km2 is indicated by the highest Khisto value of 1.000. It is clear that 
maintaining the values of the Spread, Breed and Road parameters leads to a low spatial effect and indicates that 
these three model parameters are highly correlated. The growth types predicted were: new spreading growth as a 
result of Breed; edge growth as a consequence of Spread; and road-influenced growth as a result of the Road 
parameter.  

Table 9 presents the set of parameters that produced the maximum urban growth levels. Maintaining only the 
Slope parameter and increasing the values of the other four parameters resulted in a high spatial effect at 79.99 
km2 along with the lowest Khisto value of 0.950. However, holding the Dispersion, Breed and Road parameters 
constant while varying the other two parameters produced a low spatial effect (76.48 km2) with a high Khisto 
value of 0.975. This suggests that the Dispersion, Breed and Road model parameters are moderately correlated, 
but less so than the Spread, Breed and Road model parameters (see Table 8).  

 

 
Figure 9. Spatial effects of 31 UGM simulations.                         

 

 
Figure 10. K and Klocation values for urban growth simulation.              
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Maintaining Spread, Breed and Slope constant resulted in the lowest spatial effect value of 73.16 km2 (Table 
8) with the highest Khisto value of 1.000, as illustrated in Figure 12. The highest spatial effect of 79.99 km2 
(Table 9) with the lowest Khisto value of 0.950 is mapped in Figure 13. Figure 12 and Figure 13 both include 
the 2010 simulated urban growth map and the simulated spatial effect map. Additionally, statistics from Figure 
12 and Figure 13 including the four map categories are shown in Table 10. 

From Table 10 it can be seen that for the lowest spatial effect case identical values are present for Categories 
3 and 4. In the highest spatial effect case the values for Categories 3 and 4 differ significantly; 14.21 km2 for 
Category 3, and 21.06 km2 for Category 4. The values for Categories 1 and 2 are quite similar. Examining the 
spatial effect as shown in Category 4, reveals a difference of 4.68 km2 (16.38 km2 and 21.06 km2), confirming 
the sensitivity of our UGM.  

These results can help regional and urban planners to understand the implications of varying the parameters in 
the Urban Growth Model. This can allow planners to simulate differing future urban growth scenarios by incor-
porating varying combinations of model parameters. Higher spatial effects in model outputs translate to simula-
tions with increasing urban sprawl. Lower spatial effects translate to less urban sprawl simulation. This informa-
tion can be effective in the design of “smart” cities, which is a vital research agenda in modern urban planning. 
 

 
Figure 11. Khisto values for urban growth simulation.                     

 

 
Figure 12. Lowest spatial effect based parameters values obtained from set 
19 (see Table 8).                                                   
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Figure 13. Highest spatial effect based parameters values obtained from set 5 
(see Table 9).                                                      

 
Table 10. Statistics of spatial effect maps.                                                                    

 Lowest Spatial Effect Highest Spatial Effect 

Category Description Area (km2) Area (km2) 

1 In None of the Maps 604.78 600.1 

2 In Both Maps 56.78 58.93 

3 Reference Map 16.38 14.21 

4 Spatial Effect 16.38 21.06 

6. Conclusions 
Nairobi, Kenya’s capital, was used as an example of a rapidly expanding African city to analyze the spatial ef-
fects of varying urban growth parameters in urban land-use modeling. UGM uses cellular automata in urban 
growth modeling and simulation. We explored a number of different combinations of UGM parameters and their 
spatial effects. Each model parameter influences urban growth independently. The question of which model 
combinations produce least or highest spatial effect was the focus of this research. 

The Spread, Breed and Road model parameters were observed to be highly correlated. In addition, Kappa sta-
tistics were used to compare simulation maps. The lowest spatial effect was achieved by holding constant the 
Spread, Breed and Road model parameters while varying the other parameters. This also translated to the high-
est value of Khisto. The highest spatial effect was observed by keeping the Slope parameter constant while va-
rying the other four parameters. This also translated to the lowest Khisto value. High Khisto values indicate high 
quantity and location similarity between the maps and are indicative of the lowest spatial effect. 

By the year 2030, the nation of Kenya plans to achieve Vision 2030, an ambitious economic and social de-
velopment program. Effective urban and regional planning is a critical component of the Vision 2030 program. 
Information on the spatial effects of the UGM described in this study can assist in identification of optimal sce-
narios of future urban growth. It is possible to accurately identify areas that are likely to experience spontaneous 
growth, edge growth, road-influenced growth or growth arising from new spreading centers. By simulating var-
ious urban growth scenarios, policy makers can analyze the effects of establishing new housing and road infra-
structure in undeveloped areas rather than in existing settlements. The UGM can provide an accurate and useful 
guide to the growth of Nairobi, as well as identify and illustrate areas in which expansion can best take place. 
The UGM can even serve as a master planning tool. Cellular automata modeling is an effective approach for 
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regional modeling of African cities such as Nairobi, and can be adapted to provide effective opportunities to 
study other African cities using UGM. 
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