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ABSTRACT 

Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, 
and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained 
from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales 
to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat 
data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions 
of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 
0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 
incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2. Analysis of predictive maps showed a logarithmic 
linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate 
study areas became coarser. Proportional accuracy of interpolated models (r2) decreased, but it was maintained up to 
78% as interpolation scale moved from 0.11 m2 to 16 m2. Results indicated that accuracy retention was suitable for as-
sessment and management purposes at various scales different from the data collection scale. Our study is relevant to 
spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a 
single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets. 
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Substrate 

1. Introduction 

Stream habitat data at varying spatial scales provide in-
tegral information for lotic management and broad eco- 
logic study. Typically, stream data are collected at multi- 
ple spatial scales to provide more complete representa- 
tion of habitat and allow additional analysis power and 
ecologic insight [1-3]. The spatial scale at which stream 
habitat data are collected is important due to connectivity 
among habitat patches, species occurrence, and life his- 
tory [3-8]. Because of ecological links between scales, 
spatial analysis in varying forms has become a staple tool 
for examining multi-scale stream habitat data [4,9,10]. 
Collection of stream variables at multiple scales is also 
necessary for complex analysis of macroinvertebrates, 
fish habitat relationships, ecological processes, and 
stream habitat [3,4,7,10,11]. 

Inability to make inferences at scales other than those 
collected is linked directly to the unknown amount of 
accuracy lost when scaling between fine and coarse 
stream habitat scales [12,13]. Due to the inability of data 
sets to be scaled for comparative purposes, several data 
sets are often required for stream habitat spatial analysis 
at great expense [14]. Data analysis may only be as ac-
curate as the finest scale of data collected [12,15], lead-
ing scientists to collect data at the finest scale possible 
for each study. Unfortunately, an inverse relationship 
exists between the spatial scale of data and cost to ac-
quire it; the finer the data scale is required, the smaller 
the area is able to be examined for a given amount of 
funding.  

Utilizing data at various scales has long presented fur- 
ther problems such as pattern analysis and combination 
of data at varying scales [12,16,17]. Interpolation meth- 
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ods represent a family of spatial statistics able to create 
map products at multiple scales to aid in ecological pat- 
tern analysis and presentation of spatial data [9,18,19]. 
There are various interpolative methods including in- 
verse distance weighted, several forms of kriging, natural 
neighbor, point interpolation, trend, and spline to create 
predictions of stream habitat data [21,22]. Many of these 
methods have been directly compared on environmental 
data [23-25]. Comparisons have shown that each method 
of interpolation has its own strengths in dealing with data 
of different types and number [19,22,26-30]. Natural 
neighbor interpolation has shown promise in producing 
practical maps of streams from small amounts of spatial 
data [19]. Demonstration of the ability of natural neigh- 
bor interpolation to accurately model various scales from 
a single stream habitat dataset may provide avenues to 
make multiple scale data collection redundant and op- 
portunity for substantial cost and time savings. 

Interpolation creates continuous surfaces from spatial 
data [20], offering opportunity to alleviate the problem of 
data gaps in spatial environmental data (e.g. trying to use 
data across scales). Interpolation provides predictive 
values of variables in regions which have no data by us- 
ing information from adjacent regions. This ability pro- 
vides better potential to use datasets at different scales 
than those they were initially collected.  

Specifically, when selecting stream habitat data vari-
ables of depth, flow velocity, and benthic substrate at 
known locations, natural neighbor interpolation has shown 
to be accurate [19]. Natural neighbor works well with 
large datasets and has a nearly identical algorithm as in-
verse distance weighted interpolation. Natural neighbor 
interpolation is based on Theissen polygon networks, and 
weights adjacent data within a specified search radius. It 
takes a set of spatially located points and creates a grid 
(raster map) of the area based on the input points at the 
centroid of each cell. Natural neighbor interpolation 
works well with stream habitat data such as substrate 
because depositional patterns in rivers are typically well 
ordered, and not random [31-33]. Depth, flow velocity, 
and substrate have a high degree of spatial auto-correla-
tion which further helps prediction accuracy [22,34].  

While stream habitat variables of depth, flow veloc- 
ity, and substrate have been recreated accurately by using 
natural neighbor interpolation when applied to small 
amounts of data [19]. There has been no evaluation of the 
role of spatial scale on stream habitat model accuracy 
with this type of interpolation. Scaling of stream habitat 
data typically involves using data across scales in an at- 
tempt to understand links between habitat patches, spe- 
cies occurrence, or other environmental variable [11,35- 
38]. Such studies often highlight problems caused by 
aggregating data across ecosystem scales [11,13,16,35,36, 
39,40].  

This study evaluates accuracy loss of predictive stream 
models when moving to coarser scales using natural 
neighbor interpolation. We hypothesize that accuracy 
retention will be high enough to create practical maps for 
analysis purposes at scales well removed from the ini- 
tially collected data scale. A further objective of the 
study is to examine accuracy of natural neighbor inter- 
polation predictive models at stream sites using data on 
water depth, water velocity, and benthic substrate at mul- 
tiple spatial scales. This study will help establish poten- 
tial for the use of a single dataset across scales in stream 
habitat modeling. To our knowledge, there has been no 
such study on scalability of stream habitat data when 
using natural neighbor interpolation. Our study is rele- 
vant to spatial modeling, fish habitat assessment, and 
stream habitat management because it examines the po- 
tential of a single dataset to fulfill analysis needs which 
would otherwise require multiple datasets at varying spa- 
tial scales at an increased cost of time and money. Fur- 
ther, this study emphasizes the rate of accuracy loss be- 
tween data scales while creating visual maps of stream 
habitat, which could potentially aid and streamline both 
data and stream habitat management.  

2. Methods 

Study Sites and Data Collection  

Benthic substrate data were collected from two wadeable 
streams which were located in the Greater Yellowstone 
Ecosystem, Gallatin National Forest, Montana, USA. 
The first of our two sites was located on Little Wapiti 
creek (111˚16'53.546"W, 45˚2'20.639"N). The Little 
Wapiti creek site measured nearly 34 meters long by 12 
meters wide. The second study site was located on Gray- 
ling creek (111˚6'16.407"W, 44˚48'16.878"N). The Gray- 
ling creek site measured nearly 29 meters long by 19 
meters wide.  

Study sites were delineated by grid cells which meas- 
ured 0.33 by 0.33 meters, or an area of 0.11 m2 resolution 
per cell, using a fifty meter tape measure, laser range- 
finder, and flagging (later removed). For purposes of this 
study, 0.33 × 0.33 meter grid cells will be referred to by 
its area, 0.11 m2, or one third (1/3) of a meter squared. 
This is also referred to as base scale, the finest scale in 
the study. One third of a meter squared cells were chosen 
as the base resolution because stream habitat patches 
could be adequately captured at this scale on a wide vari- 
ety of stream sizes, including those found in this study. A 
single piece of rebar was inserted into the bank material 
on each stream bank and high tensile line was secured to 
the rebar to guide the tape measure. As each row of data 
collection was finished the rebar was repositioned up- 
stream to provide support for the next. Starting at the 
downstream left of each site, values for benthic substrate 
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size, depth, and flow velocity were recorded for each x,y 
coordinate. Substrate was recorded along a continuous 
scale in millimeters from 0.05 to >300 mm based on the 
intermediate axis diameter [41]. Thus, actual values of 
substrate size were recorded for each 0.11 m2 cell for 
each study site. Stream depth (cm, top-setting wading rod) 
and mean water velocity (m/s at 60% depth, Marsh- 
McBirney Flowmate 2000) were measured at the center 
of each cell. This was repeated until the site was captured 
in a complete grid of x,y coordinate points (Figure 1, 
Grayling creek example, upper left inset). All values 
were recorded in Microsoft Excel. Corner points for each 
study site were recorded and exported to ArcMap 10. In 
ArcMap 10, corner points for each study site were geo- 
referenced and exported to Microsoft Excel. Next, x,y 
coordinates were calculated for the remainder of cells in 
the site grid and appended to the initial Excel dataset of 
water depth, flow, and benthic substrate size. Little Wap-
iti creek had 3630 x,y coordinate points at the base scale, 

and Grayling creek had 4950 x,y coordinate points at the 
base scale. The final base scale datasets were imported 
back to ArcMap 10. 

In ArcMap 10, data subsets at 11 additional scales 
were created from base scale for each study site. Scale 
increments began at the base scale (0.11 m2) and were 
increased in size by adding 1/3 of a meter to the length 
and width of each scale (Figure 2). Thus, base scale of 
1/3 of a meter had its cells increased in size to length and 
width of 2/3 meter by 2/3 meter (0.44 m2) for scale two 
(Table 1). Scale two in turn had 1/3 of a meter added to 
its cell width and length to create a one meter by one 
meter cell scale (1 m2) for scale three (Table 1). This 
process was continued until 12 scale increments were 
created, including the final scale of 4.0 m × 4.0 m per 
cell, or 16 m2 (Table 1). The number of cells used when 
plotted with scale as the x axis follows a power function 
with the equation y = 4755.797x−1.923 (Grayling creek), 
and y = 3438.1x−1.822 (Little Wapiti creek) (Table 1).  

 

      

  

Figure 1. Example of x,y coordinate point grid for Grayling Creek showing 4950 data locations each containing depth, flow, 
and dominant observed substrate information. Natural neighbor interpolation of the points created the baseline visual map 
representing reality. 
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Grids Used to Create Natural Neighbor Interpolations at Different Scales 
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Figure 2. Coordinates of centroids of each cell used to created natural neighbor interpolations of study sites. 
 
Table 1. Data information used for interpolations including raster cell size. The number of cells used when plotted with scale 
as the x axis follows a power function with the equation y = 4755.797x−1.923 (Grayling creek), and y = 3438.1x−1.822 (Little 
Wapiti creek). 

Scale Cell size in m2 Cell dimensions 
Number of cells used to create 
interpolations (Grayling, Little 

Wapiti) 

Percent of data used 
compared to base scale 

Grayling 

Percent of data used compared 
to base scale L. Wapiti 

(Base) 1 0.11 0.33 × 0.33 4950, 3630 - - 

2 0.44 0.66 × 0.66 1262, 937 25.49% 25.81% 

3 1.00 1.00 × 1.00 572, 409 11.56% 11.27% 

4 1.78 1.33 × 1.33 325, 254 6.57% 7.00% 

5 2.78 1.66 × 1.66 201, 157 4.06% 4.33% 

6 4.00 2.0 × 2.0 152, 117 3.07% 3.22% 

7 5.44 2.33 × 2.33 107, 83 2.16% 2.29% 

8 7.11 2.66 × 2.66 87, 72 1.76% 1.98% 

9 9.00 3.0 × 3.0 70, 55 1.41% 1.52% 

10 11.11 3.33 × 3.33 57, 47 1.15% 1.29% 

11 13.44 3.66 × 3.66 48, 38 0.97% 1.05% 

12 16.00 4.0 × 4.0 43, 33 0.87% 0.91% 
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Natural neighbor interpolation was run on each scale 

to create interpolated maps for comparative analysis to 
the base scale. Natural neighbor maps served as visual 
and statistical base for scale accuracy comparisons be- 
cause they have been shown to predict stream habitat 
data variables depth, and benthic substrate well [19]. 
When a continuous grid of data is collected at 1/3 m2 
trend curves indicate natural neighbor interpolations are 
100% accurate, thus allowing the base scale interpolation 
to be used as a digital representation of reality for effec- 
tive comparison [19]. Although successively fewer points 
were used to create interpolations two through 12 (Table 
1), values from the interpolated surface from each site 
were extracted to the original x,y coordinate points from 
base scale (3630 for Wapiti and 4950 for Grayling) to 
allow for exact comparison between base and coarser 
scales at each site. Extraction was accomplished using 
the extract values to points tool in ArcMap 10.  

Each interpolated dataset from scale two through 12, 
was then subjected to Ordinary Least Squares (OLS) 
regression (ArcToolbox, ArcMap 10). Regressions were 
run with predicted values of depth, flow, and benthic 
substrate (from interpolated scales 2 - 12) as the depend-
ent variable to explain the expected variable (base scale). 
In this way, OLS regressions provided comparative r2 
values for interpolations and residuals for each individual 
x,y coordinate (the original 3630 for Little Wapiti creek 
and 4950 for Grayling creek). Using OLS in this way 
provides quantitative, directly proportional (percent) 
comparison between base scale and scales two through 
12 in the form of r2. Maps of depth, flow velocity, and 
benthic substrate residuals were created to display posi-
tive and negative prediction trends in the form of stan-
dard deviation at each x,y location. Mapping residuals is 
important because it allows for unique examination of 
regional accuracy of interpolations. Maps were created 
showing over and under estimation of each coordinate 
with standard deviation values classes ranging from −2.5 
to 2.5. Residual maps were created by performing OLS 
regression on extracted natural neighbor interpolated 
values for all scales compared to base scale.  

Root mean square error (RMSE) values were then 
calculated for interpolations at each scale, plotted, and 
appropriate trend lines applied to all predicted habitat 
values (depth, flow, benthic substrate) (Figures 3-7). 
Plotting of RMSE values for each scale shows decay of 
accuracy for each scale effectively. Root mean square 
error compliments r2 values because RMSE decreases as 
proportional r2 increases. It is important to note that 
unlike r2 values from interpolations, r2 values on RMSE 
graphs indicate log trend line fit, and not proportional 
accuracy of interpolations at each scale. Substrate, which 
contains silt, sand, gravel, cobble, boulder, and land, had 
RMSE values calculated for all substrate sizes combined, 

as well as for each substrate type to allow better under-
standing of interpolation accuracy (substrate is often 
discussed in terms of categories, though collected in the 
form of continuous data).  

3. Results 

Accuracy of depth, flow, and benthic substrate RMSE 
values degraded in a logarithmic linear fashion as data 
scale used to create interpolations became coarser (0.11 
m2 to 16 m2) (Figures 3-7). At both sites, depth and flow 
interpolations retained accuracy more effectively than for 
benthic substrate (Table 2, Figures 3-7). Grayling creek 
maintained lower RMSE values than Little Wapiti creek 
for flow, similar RMSE values for depth, and nearly 
identical RMSE values at all scales for benthic substrate 
(Figures 2-6). As scale of data (and number of data 
points) used to create interpolations became coarser, 
range between maximum and minimum values for vari- 
ables decreased. An example of decrease in range of 
values is shown through depth; by the coarsest scale the 
range of depths produced by interpolations was 0 - 44.9 
cm, rather than 0 - 83 cm, a reduction of nearly half. As 
indicated by r2 values, interpolation accuracy decreased 
with use of coarser data, but maintained some integrity 
even as the amount of data used to create maps decreased 
nearly 99%, 4950 to 43 for Grayling creek and 3630 to 
33 for Little Wapiti creek, from base scale to scale 12 for 
both sites (Tables 1 and 2).  
 
Table 2. Wapiti Creek base scale (0.11 m2) compared to 
interpolated values from scales 2, 4, 6, 8, 10, and 12. 

Little Wapiti 

Substrate Depth Flow 

r2 Scale r2 Scale r2 Scale 

0.90 2 0.88 2 0.86 2 

0.80 4 0.73 4 0.74 4 

0.74 6 0.59 6 0.67 6 

0.57 8 0.25 8 0.37 8 

0.51 10 0.4 10 0.34 10 

0.53 12 0.35 12 0.41 12 

Grayling 

Substrate Depth Flow 

r2 Scale r2 Scale r2 Scale 

0.86 2 0.95 2 0.95 2 

0.78 4 0.91 4 0.94 4 

0.69 6 0.86 6 0.87 6 

0.67 8 0.87 8 0.9 8 

0.56 10 0.78 10 0.78 10 

0.54 12 0.81 12 0.78 12 
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Figure 3. Root mean square error values for natural neighbor predicted maps of depth values on Wapiti Creek. Scales 1 - 12 
are found on Table 1 and range from 0.11 to 16 square meter cell size. 
 

 

Figure 4. Root mean square error values for natural neighbor predicted maps of flow velocity values on Wapiti Creek. Scales 
1 - 12 are found on Table 1 and range from 0.11 at the base scale to 16 square meter cell size used to crease interpolations at 
scale 12. 
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Figure 5. Root mean square error values for predicted maps of all substrate values at Wapiti and Grayling Creeks. Scales 1 - 
12 are found on Table 1 and range from 0.11 to 16 square meter cell size. 
 

Interpolated surfaces of Grayling and Wapiti creeks 
provided visual confirmation of a shrinking range of 
maximum interpolated values as indicated by RMSE 

(Figures 3-7), r2 (Table 2), and residual standard devia-
tion (Figures 8 and 9). Interpolation results grew less 
spatially complex as scale became coarser for all habitat   
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Figure 6. Little Wapiti creek substrate RMSE values with a logarithmic trend line applied showing r2 values for each. In-
crease in RMSE as scale moves away from the baseline reference scale shows a progressive tapering effect of accuracy loss as 
predictive scale moves away from the baseline. Sand substrate size maintained the smallest RMSE change between scales. 
 

 

Figure 7. Grayling creek substrate RMSE values with a logarithmic trend line applied showing r2 values for each. Increase in 
RMSE as scale moves away from the baseline reference scale shows a progressive tapering effect of accuracy loss as predic-
tive scale moves away from the baseline. Sand and gravel maintained the smallest RMSE changes between scales. 
 
variables at both sites. Decrease in spatial complexity 
was due in part to loss of extreme depths, flow variation 
and atypically located substrate variables located in the 
sparser data grid used for coarse scale interpolations 
(Figure 2). However, location and shape of deep areas, 
thalweg, zones of like flow, and substrate depositional 
areas were generally well maintained even to the termi- 
nal scale. Maintenance of spatial integrity is indicated by 
r2 values (percent match) from OLS regressions of each 
interpolation when compared to base scale (Table 2, Fig- 

ures 8 and 9).  
Ordinary Least Squares regressions demonstrated that 

all models coarser than base scale tended to underesti- 
mate deeper sections of river, and overestimate shallow 
sections, creating a smoothing effect along both benthic 
substrate edge boundaries and depth transition zones 
(Figures 8 and 9). This predictive smoothing effect in- 
creased in physical area proportional to the original base 
scale habitat feature as scale decreased. Another way of 
illustrating this behavior is that residuals from scale two  
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Wapiti Creek Residual Values at Scale 2 (top row) and Scale 12 (bottom row) 

Flow               Depth            Substrate 

Standard Deviation 
Categories 

<−2.5 Std. Dev. 

−2.5 - −1.5 Std. Dev. 

−1.5 - −0.5 Std. Dev. 

−0.5 - 0.5 Std. Dev. 

0.5 - 1.5 Std. Dev. 

1.5 - 2.5 Std. Dev. 

>2.5 Std. Dev. 

 

Figure 8. Wapiti Creek residual maps showing depth, flow, and substrate standard deviations for each of the 3630 x,y coor-
dinate points at the site. Highly localized regions of standard deviation variation in scale one progress to larger regions of 
similar standard deviation values as scale becomes smaller, referred to in the text as a smoothing effect. Distribution pattern 
type of standard deviation types moves from random to clustered. 
 
showed highly localized fluctuation in standard deviation 
values surrounding habitat zones with high heterogeneity 
and better lower standard deviation (Figures 8 and 9), 
while interpolations created from coarser scales saw less 
regional fluctuation and higher overall standard deviation 
from the base scale (Figures 8 and 9). Localized varia- 
tion in standard deviation has decreased because both 
maximum range of values and the amount of data used 
for interpolations had both decreased (Table 1). The 
space between each interpolated data point increased 
appreciably by the coarsest scale (Figure 2), which also 
contributed to lack of localized variation. Regressions 
also demonstrated models created from the coarsest scale, 
using 99% fewer data points and 145 times more coarse 

than the original 0.11 m2, were able to match perform- 
ance of finer scales for some variables (Table 2).  

4. Discussion 

Our study demonstrated that habitat data collected at a 
single spatial scale can be successfully used to accurately 
predict stream habitat at other spatial scales. Our results 
define the structure of accuracy loss occurring when in- 
terpolating coarse resolution with small amounts of fine 
scale data. As amount of data used to create predictive 
maps of stream habitat variables departs from the desired 
resolution, model accuracy decay occurs in a log linear 
fashion. As accuracy decays, interpolations using less 
data are able to retain sufficient predictive capability   
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Grayling Creek Residual Value Changes between Scale 2 (row 1) and 12 (row 2) 
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Figure 9. Grayling Creek residual maps showing depth, flow, and substrate standard deviations for each of the 3630 x,y co-
ordinate points at the site. Abrupt localized changes in standard deviation are more prevalent in scale one. A more gradual 
change in standard deviation, or smoothing effect, may be seen in scale 12. 
 
required to produce practical (functional, easily inter- 
preted, informative) maps of stream habitat. This is im- 
portant because adequate accuracy retention between 
scales affords capability for multi-scale inferences from a 
single data set. By defining the structure of accuracy loss 
of natural neighbor interpolations of stream habitat at 
scales other than the data collection scale through trends 
in RMSE and OLS regression r2, we have provided a 
method for estimating the amount of accuracy lost by 
interpolating across scales.  

By observing the combined results of RMSE trends 
and residual values as a guide to natural neighbor inter- 
polative inaccuracies, it is possible to see a detailed pro- 
gression of errors caused by departure from initial scale 
when interpolating stream habitat variables. Identifying a 
cause for error propagation is valuable because the 
source of error in environmental predictive models is not 
always readily apparent. Maps of interpolations and re- 
gression residuals also aid in clarifying the scalability of 
stream habitat variables by showing specific locations of 
strong and weak model predictions when moving be- 
tween scales. This helps quantify what detail is elimi- 
nated when using data at a coarse scale, an issue impor- 

tant to ecological studies [12,15,36]. The ability to un- 
derstand accuracy loss when interpolating at coarser 
scale is better understood, thus increasing the value of a 
single dataset. 

5. Conclusion 

This study indicated that the initial scale of collected data 
and stream size influence the range of scales at which the 
data set retains usefulness for predictive purposes. For 
instance Little Wapiti creek showed a drop in predictive 
accuracy below 60% at the fifth scale removed (from the 
original) for all habitat variables. The Wapiti site en-
compassed a series of three pool/riffle zones, while 
Grayling creek was a single pool riffle interface (three to 
four times the scale of Little Wapiti). Because of stream 
size difference in the study, results may have identified 
presence of a threshold for predictive accuracy purely 
associated with stream size. This makes ecological sense, 
in which a larger order stream may have proportionally 
larger habitat patches which in turn maintains any scale’s 
predictive accuracy at further reaching scales.  

Maintaining spatial integrity of site boundaries and 
habitat transition zones though interpolations at varying 
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scales from a single dataset was shown to be possible in 
this study. Spatial integrity is important because it allows 
accurate measurement of area of available habitat. In 
streams, the amount and distribution of available habitat 
are closely tied to species occurrence and species diver- 
sity, and their examination aids in ecological study at 
varying spatial scales [5,6,42-45]. 

An important question with respect to accuracy of 
stream habitat models, and perhaps all models, is what 
level of accuracy is acceptable. This paper does not at- 
tempt to answer that question, it only helps quantify the 
level of accuracy possible and identify details and accu- 
racy lost during the collection and analysis process. Ac- 
ceptable accuracy is often a function of the question be- 
ing asked and may vary greatly [44]. Though we do not 
advocate a particular level for acceptable accuracy in this 
study, the ability to scale a single habitat data set to a 
scale far removed from the original and still maintain 
accuracy, is a valuable tool for stream management and 
assessment purposes.  
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