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ABSTRACT 

The spatial distribution characteristics of six heavy metals and metalloid in soil of Zhuji Lipu copper mining area, Zhe-
jiang Province, was studied by using geostatistics approaches combined with GIS. These elements included Pb, As, Cr, 
Cu, Zn and Ni. The statistical analyses showed that concentrations of these elements were lognormal distribution. Con-
centrations of Pb, As, Cu, Zn and Ni were strongly correlated with each other indicating that these elements in soils may 
be from the same pollution source. However, accumulation of Cr was unique with its geometric mean being close to 
that in the control soil. This indicates that Cr content was mainly influenced by soil factors. The Kriging method was 
applied to estimate the unobserved points. The Kriging interpolation maps reflected significant spatial distribution of 
these elements as influenced by both pollution and geological factors. The present study indicated that GIS based geo-
statistics method could accurately analyze the spatial variation of heavy metals and metalloid in the mining area. Over-
all, higher concentrations of heavy metals and metalloid were found in the center of both the north and south sides. The 
content of copper in the south was significantly higher than that in the north due to paddy field land uses. In addition, 
the terrain of four terraces tilted to the center and the broad irrigation accident occurred in the 4th trench in the south of 
sampling area were also contributed to the higher concentrations of these elements. 
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1. Introduction 

Arable land pollution was becoming more serious in Chi- 
na and the world [1]. Mining and smeltering activities 
not only generated heavy metal pollution but also resu- 
lted in determination of soil quality and destruction of the 
ecological function of the system [2]. Currently in south-
ern region of China, rapid development in mining indus-
try has produced significant environmental problems 
including mine soil, water, and air pollution [3-6], which 
seriously affected food security and health of human and 
animal. Due to their long-term duration, heavy metal po- 
lluted soil is difficult to be remediated [7]. Therefore, re- 
mediation of heavy metal polluted soils has become a hot 
issue and understanding of the spatial distribution and 
variation of heavy metal pollution is an important pre-
requisite. 

The objectives of this study were to investigate the spa-
tial distribution and variation of heavy metals and metal-
loid in soils of Hang Pu copper plants of Zhuji City, Zhe- 

jiang Province of China. 

2. A study Area and Research Programs 

2.1. The Study Area 

Zhejiang North-central Pu mine is located in Zhuji City, 
Zhejiang Province, 29˚43'23"N, 119˚59'09"E with a total 
area of the mining area 0.8 km 2. Hilly terrain within the 
mining area was a major landscape. Mining land is in the 
subtropical monsoon climate with annual average tem-
perature of 16.2˚C and ≥10˚C annual accumulated tem-
perature 4924˚C - 5233˚C. Annual rainfall is 1335.9 mm 
and annual average evaporation is 1260.7 mm with an-
nual average relative humidity of 75.1%. Soil type is 
mainly yellow red soil with red sandstone-shale devel-
opment. Sampling areas are located north of the mining 
area. 

2.2. Soil Sampling Plan 

Since the mine area had relatively simple topography, the 
total 48 samples with a space between adjacent points of 
10 meter were planned in order to ensure a representative 
sampling. In the north side of one major irrigation trench, 
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all these sampling were carefully distributed according to 
the land-use types and topographic characteristics (face, 
direction and length of ladder status) (Figure 1). 

Mining water overflowing has occurred in the south 
east side of the 4th irrigation tunnels. Sampling areas was 
located about 300 meters south side and irrigation canal 
was along the general direction of flowing through the 
sampling areas from south to north central region. 

2.3. Soil Sample Collection and Analyses 

According to “soil environmental quality monitoring te- 
chnical specifications (NY/T395-2000)”, soils were col-
lected and prepared. Surface soil (0 cm - 20 cm) was sam-
pled from each point. Soils were then air-dried and ground 
through 2 mm sieve for analyses. Soils were analyzed for 
total lead, arsenic, chromium, copper, zinc, nickel, pH and 
etc [8]. 

Lead, arsenic, chromium, copper, zinc, nickel were de- 
termined with British X-ray fluorescence wavelength dis- 
persive spectrometer (Model AFS-820, PANalytical Axios 
production company). 

2.4. Spatial Variability Analysis Method 

Geographic information system (GIS) is fit for acquisi-
tion and processing of the environmental information and 
based on geographic location and the spatial analysis 
techniques, which can make a quantitative evaluation of 
regional environment. We can visual display changes in 
the regional distribution of pollution by taking advantage 
of GIS technology with visualization of the results of the 
evaluation. At present, geographic information system (GIS) 
has been widely applied to the research of regional envi-
ronmental pollution as an important spatial analysis te- 
chnology; it provides effective means for researching the 
spatial variability of pollutants. 

Therefore, the paper chooses this method to research the 
spatial distribution characteristics of heavy metals and 
show the importance of the impact of heavy metals on 
the ecological environment. 

In this paper, geostatistical spatial analyses were used 
to generally semi-variance map and describe spatial va- 
riability [9]. As a best spatial interpolation method, it has 
been widely applied to a regionalized variable characte- 
rization in soil science, environmental science and ecol-
ogy and other fields [10]. ArcGIS9.1 was used for this 
geostatistical analysis, including the semi-variogram (semi- 
variogram) of the calculation and fitting comparison, 
Kriging spatial interpolation and simulation error analy-
sis. 

Semi-variance function is also often referred to as va- 
riation function, which is studied in geostatistics of soil 
variability [11]. Located in the one-dimensional (two-di- 
mensional or three-dimensional) space in different loca-
tions x1, x2,xn on a certain soil characteristics of the 
observed value of Z(x1), Z(x2), Z(xn), Semi-variance 
[γ(h)] can reflect the spatial dependence of regionalized 
variables, the calculation can be estimated under: 
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where N (h) is used for spacing the number of all pairs of 
observation points. With h as the abscissa, γ(h) was for 
the vertical coordinate mapping, that is, semi-variance 
diagram. Spatial local interpolation (Kriging method) is 
based on variation of a function and its structural analysis 
in a limited region of the regionalized variable values for 
the best linear unbiased estimation method, namely, (is a 
weighting factor, Z(x) is the sample value, Z is the esti-
mated value): 
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3. Results and Analysis 

3.1. Statistical Analysis of Concentrations of 
Soil Heavy Metals and Metalloid 

Concentrations of six heavy metals were summarized in 
Table 1. The results showed that the highest variation 

 

 

Figure 1. Distribution of sampling points. 
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Table 1. Descriptive statistics of soil heavy metals and metalloid contents (mg/kg). 

Item Max Min Median Average Standard deviation Skewness Kurtosis Distribution Type 

As 37.9820 1.3820 64.3070 70.5432 39.6218 –0.04078 1.7586 Lognormal 

Cr 116.1390 53.3990 97.4500 95.2812 12.5296 –1.16260 4.8448 Lognormal 

Cu 1095.9320 90.9040 702.8885 664.5950 249.3063 –0.45336 2.2543 Lognormal 

Zn 9212.4770 369.5700 5542.7550 4691.7190 2237.9530 –0.29452 2.0588 Lognormal 

Ni 61.8510 18.8130 47.9535 45.7578 11.4556 –0.65865 2.4018 Lognormal 

Pb 2076.7610 152.8280 1024.9320 1072.2480 565.3570 –0.11522 –1.6825 Lognormal 

 
was found for concentrations of As, Cu, Zn, and Pb. The 
sources of these elements were contamination from min-
ing activities over the years, especially through acid mine 
waste water. According to field surveys in 1967, the stu- 
dy area received acid mine waste water outside the Bay. 
In addition, a heavy application of chemical fertilizers 
and pesticides may also be important pollution sources 
for these elements. The major chemical fertilizer was su- 
perphosphate, potassium chloride, and urea. Frequently 
phosphate fertilizers contained some of these elements. 
Among all these elements, Cr had the least variation as 
well as Ni, indicating fewer impacts of anthropogenic 
sources on these two elements Cr and Ni. 

According to the soil environmental quality standard 
of China (GB15618-1995), soils in the studied area (pH 
< 6.5) exceeded 100% of copper and zinc, lead standards, 
91.67% of arsenic and 79.17% of nickel. For the studied 
area, soil copper, zinc, lead and arsenic contents have 
reached critical levels of pollution. But nickel pollution 
was relatively slight with an average of 45.7 mg/kg (Ni 
Class II standard is 40 mg/kg), while chromium has not 
yet to reach pollution levels. Therefore, the study area 
was in general characterized by combined pollution of 
main Cu, Zn, Pb and As. 

In addition, the skewness and kurtosis analyses indica- 
te that arsenic, chromium, copper, zinc, nickel, and lead 
had a negative bias, and the addition to both Cr spikes 
outside the state. The frequency distribution histogram 
(Histogram) showed that six heavy metals and metalloid 
in soils studied were characterized by normal distribu-
tion. 

3.2. The Correlation between Heavy Metals and 
Metalloid in Soils 

Table 2 showed that in soils of the studied area, a strong 
cross correlation occurred among these heavy metals and 
metalloid, especially between As-Cu, As-Zn, As-Ni, As- 
Pb, Cu-Zn, Cu-Ni, Cu-Pb, Zn-Ni, Zn-Pb, Ni-Pb. This 
indicates that all these elements may have a same source 
mainly from anthropogenic mining relevant activities. 
However, correlation between Cr and As or Cr, Cu, Zn, 

Ni, and Pb were low. Therefore, As has the homology 
with Cu, Zn, Ni and Pb. 

Affected by mining pollution processes, the content of 
As changed simultaneously with other heavy metals, 
while Cr was not significant, the elements of mining po- 
llution and the distribution were further demonstrated. 

3.3. Spatial Variation Analysis of Heavy Metal in 
the Soil under the Conditions of 
the Isotropic 

Due to the presence of specific value of the variable, 
which may cause interruption of a continuous surface, 
experimental semi-variogram will distort or even obscure 
the inherent spatial structure of the variable characteris-
tics [12]. In this paper we identified the specific value- 
domain method [13], that is, the sample average plus or 
minus three times the standard deviations, in this interval 
(±3 s) other than the data were as specific values, and 
then the normal maximum and minimum values were 
used instead of specific values. Subsequent calculations 
were based on the field data after treatment. 

A study of six soil heavy metals and metalloid in the 
isotropic condition was shown in Figure 2. According to 
the actual variation of the function, semi-variance for the 
vertical axis and the sampling distance of abscissa dis-
played the semi-variance fitting curve drawn map. Each 
element of the semi-variogram curve has a significant con- 
tinuous increase in range. When the semi-variance with 
the increasing of separation distance has reached a cer-
tain scale (variable range), the Semi-variance curve be-
comes flat. The correlation between samples in more 
than this distance was no longer relevant after, and it a- 
ppeared as when h > a time, γ(h) was at a value of up and 
down swing, so there is spatial variability of the stru- 
cture. This change pattern can be used with a threshold 
value (Sill) models fitted to choose the best theoretical 
model variogram. Using ArcInfo in the analysis of the 
statistical analysis module, a variety of model interpola- 
tion error may be produced. If the forecast errors are un- 
biased, then the mean prediction error should be close to 
zero. 
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Table 2. The correlation coefficients of concentrations of soil heavy metals and metalloid. 

 As Cr Cu Zn Ni Pb 

As 1 0.451 0.910** 0.817** 0.875** 0.971** 

Cr 0.451 1 0.445 0.402 0.505 0.501 

Cu 0.910** 0.455 1 0.882** 0.903** 0.873** 

Zn 0.817** 0.402 0.882** 1 0.846** 0.779** 

Ni 0.875** 0.505 0.903** 0.846** 1 0.870** 

Pb 0.971** 0.501 0.873** 0.779** 0.870** 1 

**indicates at p < 0.01 (n 48). 

 

 

Figure 2. The corresponding graph of semivariograms of soil heavy metals. 

 
It is necessary to fit different methods and parameters 

repeatedly for determining the theoretical model, in order 
to obtain the theoretical variation function for simulating 
that distance has impacted on data point. So, theoretical 
variation curves should be the most approximation with 

experimental variation of the function, which was gene- 
rated by the chosen method, especially with small steps. 
It is required to determine the fitting degree between the 
theoretical variation function and the experimental varia-
tion function for inspecting the validity of the model. 
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Through several times of fitting, Table 3 shows the 
best fitting theoretical model and its parameters for the 
six heavy metals and metalloid in the semi-variance se-
lected. The results show that, for Cr and Zn the Gaussian 
model may be theoretical model of the semi-variance; the 
J-Bessel may be for Ni; the Hole Effect model for Cu and 
Pb; and the Exponential model for As. 

The ratios of soil nugget values to the value of base sta-
tions for these elements were as follows: Lead > Copper 
> Arsenic > Zinc > Nickel > Chromium. Lead, copper, 
and arsenic had ratios of element nugget value to that of 
base stations, of 92.6014%, 86.6664%, 76.0163%, respe- 
ctively. The ratios of soil nugget values to those of base 
stations for other three heavy metals were 25% - 75%. 
Spacial correlations were controlled by the structural fa- 
ctors and random factors. Structural factors included su- 
ch as parent material, soil type, climate, and soil-forming 
factors, while random factors were farming, management 
practices, cropping systems, land use patterns, pollution 
and other human activities. 

The optimized model should meet the following crite-
ria: the minimized (close to 0) Standard Mean (Mean 
Standardized), the minimum root mean square prediction 
error (Root-Mean-Square), the minimized (close to 0) a- 
verage standard error (Average Standardized Errors), clo- 

sest root mean square prediction Error (Root-Mean-Squa- 
re), closest (to 1) standard root mean square prediction 
error (Root-Mean-Square-Standardized) [14] (Table 4). 

3.4. The Simulated Values and Measured 
Values of the Cross-Validation 

Cross-validation was conducted in the data of all samples. 
Each time removing one of the points, with the remain-
ing points, the value of the predicted value of the point, 
was compared to the actual value and the predictive va- 
lue of the difference between the validations of space- 
interpolation was used to analyze the degree of accuracy, 
thus the best Kriging analysis was selected. In theory, the 
best prediction is equal to the actual measured values and 
the slope between them should be a linear related. As the 
spatial interpolation in the process of smoothing (smoo- 
thing) effects, the linear slope between the measured va- 
lues and predicted values is usually less than 1. For exa- 
mple, the predicted values of soil Pb and the measured 
values of the relevant equation are: 

Y = 0.71X + 342.779 

The correlation between measured values and the pre-
dictive values of these six heavy metals and metalloid 
was at significant level (Table 5). 

 
Table 3. Theoretical semivariogram models of soil heavy metals and metalloid and their corresponding parameters. 

Element Theoretical model Variable-range Sill Nugget Nugget/sill 

Cr Gaussian 9626.5 2.70824 1.8997 0.701452 

Ni J-Bessel 1956.2 0.68449 0.48857 0.713772 

Cu Hole effect 9626.5 1.45235 1.2587 0.866664 

Zn Gaussian 9626.5 3.7619 2.7505 0.731146 

As Exponential 9626.5 4.6073 3.5023 0.760163 

Pb Hole effect 7681.8 0.22207 0.20564 0.926014 

 
Table 4. The interpolation errors of semivariogram corresponding models. 

Element Root-Mean-Square Average-Standardized Errors Mean Standardized Root-Mean-Square Standardized 

Cr 12.23 13.93 –0.01525 0.8814 

Ni 8.995 11.27 0.01924 0.8861 

Cu 3 204.3 278.5 –0.02274 0.9998 

Zn 2117 3472 –0.1064 1.284 

As 36.83 71.32 –0.03516 0.8842 

Pb 411.1 632.2 –0.02677 1.003 

 
Table 5. The correlation coefficients between measured values and predictive values. 

Soil Properties As Cr Cu Zn Ni Pb 

Correlation 0.655** 0.368** 0.617** 0.511** 0.626** 0.728** 

**At p = 0.01 level. 
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3.5. The Spatial Distribution of Soil Heavy 

Metals and Their Patterns 

According to the principles of Kriging interpolation and 
semi-variogram fitting parameters, Geostatistical Analyst 
in ArcMap software was applied for analyzing module 
spatial variability of interpolation. Therefore spatial dis-
tribution of trends of six heavy metals and metalloid and 
the distribution of these elements classification map were 
produced (Figure 3). Kriging interpolation was affected 
by variation function model simulation accuracy, the dis- 
tribution of samples, the selection of the number of adja-
cent samples and many other factors. Interpolation accu-
racy may be reflected through the interpolation error. The 
smaller the variance, i.e., the standard root mean square 
prediction error close to 1, the more accurate Kriging in- 
terpolation [15]. 

The Kriging interpolation maps for soil copper, zinc, 

lead, arsenic, and nickel content were shown in Figures 
3-8. The overall distribution trends show a north-south 
direction with higher values in the center. With decrea- 
sing from the center of north-south direction the higher 
values were found in the south than in the north of 
Grand. 

According to the Chinese 1995 soil environmental quali- 
ty standards, the maximum allowable concentration of 
pollutants were summarized as follows (Figures 3-8). In 
all regions copper and zinc contents were more than Cla- 
ss II standard criteria for acidic soils; in northwest, east 
and south-east part of the region, the lead level was be-
tween Class I and Class II threshold criteria, and the rest 
of area, Pb was beyond the critical value of the standard 
Class II for acidic soil. In addition, the north-west and 
eastern parts of the region had arsenic content around the 
threshold criteria of Class I and the rest areas had As 

 

 

Figure 3. The interpolation map of Cu. 
 

 

Figure 4. The interpolation map of Zn. 
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Figure 5. The interpolation map of Pb. 
 

 

Figure 6. The interpolation map of As. 
 

 

Figure 7. The interpolation map of Ni. 
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Figure 8. The interpolation map of Cr. 
 

beyond the Class II criteria. Northwest, northeast, east 
and south-east areas had nickel content between the stan- 
dard critical values of Class I and II for acidic soil with 
the rest areas exceeding threshold of Class I and Class II. 

The overall distribution of chromium in soil showed 
the trends with highest values in the north, followed by 
the south and decreasing in the direction of the east-west. 
In the study area, north and south appeared to have rela-
tively high values of chromium. East, south-east and nor- 
th-east regions with mainly mountainous areas had rela-
tively low chromium content. According to the 1995 soil 
environmental quality standards, the east, southeast and 
northeast regions had chromium contents below the Class 
I critical value, while the rest of regions had Cr contents 
between Class I and Class II criteria for the acidic soil. 
All soils had Cr concentrations below the standard thre- 
shold for acidic soil. 

4. Conclusions 

Heavy metals and metalloid (arsenic, copper, zinc, nickel, 
and lead) have been significantly accumulated in soils 
around the 4th trench. Strong correlation among these 
elements may indicate all these elements came from the 
same pollution sources [16]. The contamination sources 
may be from both natural, i.e., geochemical sources, or 
anthropogenic source, i.e., human activities, or combined 
pollution sources. The present study showed strong cor-
relation between As-Cu, As-Zn, As-Ni, As-Pb, Cu-Zn, 
Cu-Ni, Cu-Pb, Zn-Ni, Zn-Pb, Ni-Pb, indicating the hig- 
hly possibility of the same sources of these elements. Ho- 
wever, correlation between Cr and As, or Cr, Cu, Zn, Ni, 
and Pb was low, indicating that Cr was less accumulate 
in the region as well as less possibility of exogenous an-
throgenic source. On the other hand, As, Cu, Zn, Ni, Pb 

were the elements most associated with pollution source. 
Ratios of nugget values of heavy metals in soils to ba- 

se stations were in the order: lead > copper > arsenic > 
zinc > nickel > chromium. Lead, copper, arsenic had the 
ratios of nugget values to base stations of 92.6%, 86.6%, 
and 76.0%, respectively. In accordance with classifica-
tion criteria of spatial correlation of regionalized varia- 
bles [17], these three elements were specially weakly co- 
rrelated, because human activity weakened their spatial 
correlation. The rest heavy metals had 25% - 75% ratios 
of nugget values to base stations, indicating their moder-
ate spatial correlation. Chromium had relatively low ratio 
of nugget values to base stations and the chromium con-
tent in soils of studied area was close to the geometric 
mean, implying that chromium was mainly affected by 
soil formation factors. 

Copper, zinc, lead, arsenic, and nickel had the similar 
spatial distribution in the studied areas. In general, their 
distribution showed the high accumulation in the center 
of the regions with decreasing concentrations form the 
center towards both south and north direction. In the 
study area, higher concentrations of Cu were found in the 
center region in the direction of south-north, and concen-
tration of Cu in the south side was higher than that in the 
north side. This is mainly due to land use patterns and 
topography of the landscape in the region. Paddy fields 
were main land use in the south side where irrigation 
water was through the 4th trench. However, in the north 
side, vegetable and wasteland were the major land use 
where runoff flew from the mining tailing area. This may 
contribute to the high concentrations in the soils of the 
north side. In addition, the terrain of four terraces tilted 
to the center and the broad irrigation accident occurred in 
the 4th trench in the south of sampling area were also 
contributed to the higher concentration of these elements. 
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